首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Lin YF  Jan YN  Jan LY 《The EMBO journal》2000,19(5):942-955
ATP-sensitive potassium (K(ATP)) channels regulate insulin secretion, vascular tone, heart rate and neuronal excitability by responding to transmitters as well as the internal metabolic state. K(ATP) channels are composed of four pore-forming alpha-subunits (Kir6.2) and four regulatory beta-subunits, the sulfonylurea receptor (SUR1, SUR2A or SUR2B). Whereas protein kinase A (PKA) phosphorylation of serine 372 of Kir6.2 has been shown biochemically by others, we found that the phosphorylation of T224 rather than S372 of Kir6.2 underlies the catalytic subunits of PKA (c-PKA)- and the D1 dopamine receptor-mediated stimulation of K(ATP) channels expressed in HEK293 cells. Specific changes in the kinetic properties of channels treated with c-PKA, as revealed by single-channel analysis, were mimicked by aspartate substitution of T224. The T224D mutation also reduced the sensitivity to ATP inhibition. Alteration of channel gating and a decrease in the apparent affinity for ATP inhibition thus underlie the positive regulation of K(ATP) channels by PKA phosphorylation of T224 in Kir6.2, which may represent a general mechanism for K(ATP) channel regulation in different tissues.  相似文献   

2.
The pharmacological properties of slow Ca(2+)-activated K(+) current (K(slow)) were investigated in mouse pancreatic beta-cells and islets to understand how K(slow) contributes to the control of islet bursting, [Ca(2+)](i) oscillations, and insulin secretion. K(slow) was insensitive to apamin or the K(ATP) channel inhibitor tolbutamide, but UCL 1684, a potent and selective nonpeptide SK channel blocker reduced the amplitude of K(slow) tail current in voltage-clamped mouse beta-cells. K(slow) was also selectively and reversibly inhibited by the class III antiarrythmic agent azimilide (AZ). In isolated beta-cells or islets, pharmacologic inhibition of K(slow) by UCL 1684 or AZ depolarized beta-cell silent phase potential, increased action potential firing, raised [Ca(2+)](i), and enhanced glucose-dependent insulin secretion. AZ inhibition of K(slow) also supported mediation by SK, rather than cardiac-like slow delayed rectifier channels since bath application of AZ to HEK 293 cells expressing SK3 cDNA reduced SK current. Further, AZ-sensitive K(slow) current was extant in beta-cells from KCNQ1 or KCNE1 null mice lacking cardiac slow delayed rectifier currents. These results strongly support a functional role for SK channel-mediated K(slow) current in beta-cells, and suggest that drugs that target SK channels may represent a new approach for increasing glucose-dependent insulin secretion. The apamin insensitivity of beta-cell SK current suggests that beta-cells express a unique SK splice variant or a novel heteromultimer consisting of different SK subunits.  相似文献   

3.
The activity of the serine/threonine kinase c-Raf (Raf) is inhibited by increased intracellular cAMP. This is believed to require phosphorylation with the cAMP-dependent protein kinase (PKA), although the mechanism by which PKA inhibits Raf is controversial. We investigated the requirement for PKA phosphorylation using Raf mutants expressed in HEK293 or NIH 3T3 cells. Phosphopeptide mapping of (32)P-labeled Raf (WT) or a mutant lacking a putative PKA phosphorylation site (serine to alanine, S43A) confirmed that serine 43 (Ser(43)) was the major cAMP (forskolin)-stimulated phosphorylation site in vivo. Interestingly, the EGF-stimulated Raf kinase activity of the S43A mutant was inhibited by forskolin equivalently to that of the WT Raf. Forskolin also inhibited the activation of an N-terminal deletion mutant Delta5-50 Raf completely lacking this phosphorylation site. Although WT Raf was phosphorylated by PKA, phosphorylation did not inhibit Raf catalytic activity in vitro, nor did forskolin treatment inhibit the activity of an N-terminally truncated Raf protein (Raf 22W) or a full-length Raf protein (Raf-CAAX) expressed in NIH 3T3 cells. In contrast, forskolin inhibited the EGF-dependent activation of a Raf isoform (B-Raf), lacking an analogous phosphorylation site to Ser(43). Thus, these results demonstrate that PKA exerts its inhibitory effects independently of direct Raf phosphorylation and suggests instead that PKA prevents an event required for the EGF-dependent activation of Raf.  相似文献   

4.
A much greater insulin response is observed after oral glucose load than after intravenous injection of glucose. The hormonal factor(s) implicated as transmitters of signals from the gut to pancreatic beta-cells was referred to incretin; gastric inhibitory polypeptide or glucose-dependent insulinotropic polypeptide (GIP) is identified as one of the incretins. GIP exerts its effects by binding to its specific receptor, the GIP receptor, which is expressed in various tissues including pancreatic islets, adipose tissue, and brain. However, the physiological role of GIP has been generally thought to stimulate insulin secretion from pancreatic beta-cells, and the other actions of GIP have received little attention. We have bred and characterized mice with a targeted mutation of the GIP receptor gene. From these studies, we now know that GIP not only mediates early insulin secretion by acting on pancreatic beta-cells, but also links overnutrition to obesity by acting on adipocytes.  相似文献   

5.
The vacuolar H+-ATPase (V-ATPase) is a major contributor to luminal acidification in epithelia of Wolffian duct origin. In both kidney-intercalated cells and epididymal clear cells, cAMP induces V-ATPase apical membrane accumulation, which is linked to proton secretion. We have shown previously that the A subunit in the cytoplasmic V1 sector of the V-ATPase is phosphorylated by protein kinase A (PKA). Here we have identified by mass spectrometry and mutagenesis that Ser-175 is the major PKA phosphorylation site in the A subunit. Overexpression in HEK-293T cells of either a wild-type (WT) or phosphomimic Ser-175 to Asp (S175D) A subunit mutant caused increased acidification of HCO3-containing culture medium compared with cells expressing vector alone or a PKA phosphorylation-deficient Ser-175 to Ala (S175A) mutant. Moreover, localization of the S175A A subunit mutant expressed in HEK-293T cells was more diffusely cytosolic than that of WT or S175D A subunit. Acute V-ATPase-mediated, bafilomycin-sensitive H+ secretion was up-regulated by a specific PKA activator in HEK-293T cells expressing WT A subunit in HCO3-free buffer. In cells expressing the S175D mutant, V-ATPase activity at the membrane was constitutively up-regulated and unresponsive to PKA activators, whereas cells expressing the S175A mutant had decreased V-ATPase activity that was unresponsive to PKA activation. Finally, Ser-175 was necessary for PKA-stimulated apical accumulation of the V-ATPase in a polarized rabbit cell line of collecting duct A-type intercalated cell characteristics (Clone C). In summary, these results indicate a novel mechanism for the regulation of V-ATPase localization and activity in kidney cells via direct PKA-dependent phosphorylation of the A subunit at Ser-175.  相似文献   

6.
cAMP-dependent protein kinase (PKA) can modulate synaptic transmission by acting directly on the neurotransmitter secretory machinery. Here, we identify one possible target: syntaphilin, which was identified as a molecular clamp that controls free syntaxin-1 and dynamin-1 availability and thereby regulates synaptic vesicle exocytosis and endocytosis. Deletion mutation and site-directed mutagenesis experiments pinpoint dominant PKA phosphorylation sites to serines 43 and 56. PKA phosphorylation of syntaphilin significantly decreases its binding to syntaxin-1A in vitro. A syntaphilin mutation of serine 43 to aspartic acid (S43D) shows similar effects on binding. To characterize in vivo phosphorylation events, we generated antisera against a peptide of syntaphilin containing a phosphorylated serine 43. Treatment of rat brain synaptosomes or syntaphilin-transfected HEK 293 cells with the cAMP analogue BIMPS induces in vivo phosphorylation of syntaphilin and inhibits its interaction with syntaxin-1 in neurons. To determine whether PKA phosphorylation of syntaphilin is involved in the regulation of Ca(2+)-dependent exocytosis, we investigated the effect of overexpression of syntaphilin and its S43D mutant on the regulated secretion of human growth hormone from PC12 cells. Although expression of wild type syntaphilin in PC12 cells exhibits significant reduction in high K(+)-induced human growth hormone release, the S43D mutant fails to inhibit exocytosis. Our data predict that syntaphilin could be a highly regulated molecule and that PKA phosphorylation could act as an "off" switch for syntaphilin, thus blocking its inhibitory function via the cAMP-dependent signal transduction pathway.  相似文献   

7.
Abstract: It is generally believed that protein phosphorylation is an important mechanism through which the functions of voltage- and ligand-gated channels are modulated. The intracellular carboxyl terminus of P2×2 receptor contains several consensus phosphorylation sites for cyclic AMP (cAMP)-dependent protein kinase (PKA) and protein kinase C (PKC), suggesting that the function of the P2×2 purinoceptor could be regulated by the protein phosphorylation. Whole-cell voltage-clamp recording was used to record ATP-evoked cationic currents from human embryonic kidney (HEK) 293 cells stably transfected with the cDNA encoding the rat P2×2 receptor. Dialyzing HEK 293 cells with phorbol 12-myristate 13-acetate, a PKC activator, failed to affect the amplitude and kinetics of the ATP-induced cationic current. The role of PKA phosphorylation in modulating the function of the P2×2 receptor was investigated by internally perfusing HEK 293 cells with 8-bromo-cAMP or the purified catalytic subunit of PKA. Both 8-bromo-cAMP and PKA catalytic subunit caused a reduction in the magnitude of the ATP-activated current without affecting the inactivation kinetics and the value of reversal potential. Site-directed mutagenesis was also performed to replace the intracellular PKA consensus phosphorylation site (Ser431) with a cysteine residue. In HEK 293 cells expressing (S431C) mutant P2×2 receptors, intracellular perfusion of 8-bromo-cAMP or purified PKA catalytic subunit did not affect the amplitude of the ATP-evoked current. These results suggest that as with other ligand-gated ion channels, protein phosphorylation by PKA could play an important role in regulating the function of the P2×2 receptor and ATP-mediated physiological effects in the nervous system.  相似文献   

8.
K cells are a subpopulation of enteroendocrine cells that secrete glucose-dependent insulinotropic polypeptide (GIP), a hormone that promotes glucose homeostasis and obesity. Therefore, it is important to understand how GIP secretion is regulated. GIP-producing (GIP/Ins) cell lines secreted hormones in response to many GIP secretagogues except glucose. In contrast, glyceraldehyde and methyl pyruvate stimulated hormone release. Measurements of intracellular glucose 6-phosphate, fructose 1,6-bisphosphate, and pyruvate levels, as well as glycolytic flux, in glucose-stimulated GIP/Ins cells indicated that glycolysis was not impaired. Analogous results were obtained using glucose-responsive MIN6 insulinoma cells. Citrate levels increased similarly in glucose-treated MIN6 and GIP/Ins cells. Thus pyruvate entered the tricarboxylic acid cycle. Glucose and methyl pyruvate stimulated 1.4- and 1.6-fold increases, respectively, in the ATP-to-ADP ratio in GIP/Ins cells. Glyceraldehyde profoundly reduced, rather than increased, ATP/ADP. Thus nutrient-regulated secretion is independent of the ATP-dependent potassium (K(ATP)) channel. Antibody staining of mouse intestine demonstrated that enteroendocrine cells producing GIP, glucagon-like peptide-1, CCK, or somatostatin do not express detectable levels of inwardly rectifying potassium (Kir) 6.1 or Kir 6.2, indicating that release of these hormones in vivo may also be K(ATP) channel independent. Conversely, nearly all cells expressing chromogranin A or substance P and approximately 50% of the cells expressing secretin or serotonin exhibited Kir 6.2 staining. Compounds that activate calcium mobilization were potent secretagogues for GIP/Ins cells. Secretion was only partially inhibited by verapamil, suggesting that calcium mobilization from intracellular and extracellular sources, independent from K(ATP) channels, regulates secretion from some, but not all, subpopulations of enteroendocrine cells.  相似文献   

9.
Effects of the imidazoline compound RX871024 on cytosolic free Ca(2+) concentration ([Ca(2+)]i) and insulin secretion in pancreatic beta-cells from SUR1 deficient mice have been studied. In beta-cells from wild-type mice RX871024 increased [Ca(2+)]i by blocking ATP-dependent K(+)-current (K(ATP)) and inducing membrane depolarization. In beta-cells lacking a component of the K(ATP)-channel, SUR1 subunit, RX871024 failed to increase [Ca(2+)]i. However, insulin secretion in these cells was strongly stimulated by the imidazoline. Thus, a major component of the insulinotropic activity of RX871024 is stimulation of insulin exocytosis independently from changes in K(ATP)-current and [Ca(2+)]i. This means that effects of RX871024 on insulin exocytosis are partly mediated by interaction with proteins distinct from those composing the K(ATP)-channel.  相似文献   

10.
The gastrointestinal hormone, glucose-dependent insulinotropic polypeptide (GIP), is one of the most important regulators of insulin secretion following ingestion of a meal. GIP stimulates insulin secretion from the pancreatic beta-cell via its G protein-coupled receptor activation of adenylyl cyclase and other signal transduction pathways, but there is little known regarding subsequent protein kinase pathways that are activated. A screening technique was used to determine the relative abundance of 75 protein kinases in CHO-K1 cells expressing the GIP receptor and in two pancreatic beta-cell lines (betaTC-3 and INS-1 (832/13) cells). This information was used to identify kinases that are potentially regulated following GIP stimulation, with a focus on GIP regulation of the ERK1/2 MAPK pathway. In CHO-K1 cells, GIP induced phosphorylation of Raf-1 (Ser-259), Mek1/2 (Ser-217/Ser-221), ERK1/2 (Thr-202 and Tyr-204), and p90 RSK (Ser-380) in a concentration-dependent manner. Activation of ERK1/2 was maximal at 4 min and was cAMP-dependent protein kinase-dependent and protein kinase C-independent. Studies using a beta-cell line (INS-1 clone 832/13) corroborated these findings, and it was also demonstrated that the ERK1/2 module could be activated by GIP in the absence of glucose. Finally, we have shown that GIP regulation of the ERK1/2 module is via Rap1 but does not involve Gbetagamma subunits nor Src tyrosine kinase, and we propose that cAMP-based regulation occurs via B-Raf in both CHO-K1 and beta-cells. These results establish the importance of GIP in the cellular regulation of the ERK1/2 module and identify a role for cAMP in coupling its G protein-coupled receptors to ERK1/2 activity in pancreatic beta-cells.  相似文献   

11.
Agonists stimulate cannabinoid 1 receptor (CB1R) internalization. Previous work suggests that the extreme carboxy-terminus of the receptor regulates this internalization – likely through the phosphorylation of serines and threonines clustered within this region. While truncation of the carboxy-terminus (V460Z CB1) and consequent removal of these putative phosphorylation sites prevents endocytosis in AtT20 cells, the residues necessary for CB1R internalization remain elusive. To determine the structural requirements for internalization, we evaluated endocytosis of carboxy-terminal mutant CB1Rs stably expressed in HEK293 cells. In contrast to AtT20 cells, V460Z CB1R expressed in HEK293 cells internalized to the same extent and with similar kinetics as the wild-type receptor. However, mutation of serine and/or threonine residues within the extreme carboxy-terminal attenuated internalization when these receptors were expressed in HEK293 cells. These results establish that the extreme carboxy-terminal phosphorylation sites are not required for internalization of truncated receptors, but are required for internalization of full-length receptors in HEK293 cells. Analysis of β-arrestin-2 recruitment to mutant CB1R suggests that putative carboxy-terminal phosphorylation sites mediate β-arrestin-2 translocation. This study indicates that the local cellular environment affects the structural determinants of CB1R internalization. Additionally, phosphorylation likely regulates the internalization of (full-length) CB1Rs.  相似文献   

12.
ATP-sensitive potassium (KATP) channels couple the metabolic status of a cell to its membrane potential-a property that endows pancreatic beta-cells with the ability to regulate insulin secretion in accordance with changes in blood glucose. The channel comprises four subunits each of Kir6.2 and the sulphonylurea receptor (SUR1). Here, we report that KATP channels undergo rapid internalisation from the plasma membrane by clathrin-mediated endocytosis. We present several lines of evidence to demonstrate that endocytosis is mediated by a tyrosine based signal (330YSKF333) located in the carboxy-terminus of Kir6.2 and that SUR1 has no direct role. We show that genetic mutations, Y330C and F333I, which cause permanent neonatal diabetes mellitus, disrupt this motif and abrogate endocytosis of reconstituted mutant channels. The resultant increase in the surface density of KATP channels would predispose beta-cells to hyperpolarise and may account for reduced insulin secretion in these patients. The data imply that endocytosis of KATP channels plays a crucial role in the (patho)-physiology of insulin secretion.  相似文献   

13.
Enteroendocrine (EE) cells represent complex, rare, and diffusely-distributed intestinal epithelial cells making them difficult to study in vivo. A specific sub-population of EE cells called Gut K-cells produces and secretes glucose-dependent insulinotropic peptide (GIP), a hormone important for glucose homeostasis. The factors that regulate hormone production and secretion, as well as the timing of peptide release, are remarkably similar for K-cells and islet beta-cells suggesting engineering insulin production by K-cells is a potential gene therapeutic strategy to treat diabetes. K-cell lines could be used to study the feasibility of this potential therapy and to understand Gut K-cell physiology in general. Heterogeneous STC-1 cells were transfected with a plasmid (pGIP/Neo) encoding neomycin phosphotransferase, driven by the GIP promoter-only cells in which the GIP promoter was active survived genetic selection. Additional clones expressing pGIP/Neo plus a GIP promoter/insulin transgene were isolated-only doubly transfected cells produced preproinsulin mRNA. Bioactive insulin was stored and then released following stimulation with arginine, peptones, and bombesin-physiological GIP secretagogues. Like K-cells in vivo, the GIP/insulin-producing cells express the critical glucose sensing enzyme, glucokinase. However, glucose did not regulate insulin or GIP secretion or mRNA levels. Conversely, glyceraldehyde and methyl-pyruvate were secretagogues, indicating cells depolarized in response to changes in intracellular metabolite levels. Potassium channel opening drugs and sulphonylureas had little effect on insulin secretion by K-cells. The K-cell lines also express relatively low levels of Kir 6.1, Kir 6.2, SUR1, and SUR2 suggesting secretion is independent of K(ATP) channels. These results provided unexpected insights into K-cell physiology and our experimental strategy could be easily modified to isolate/characterize additional EE cell populations.  相似文献   

14.
Glucose-dependent insulinotropic polypeptide (GIP) is an important gastrointestinal hormone, which regulates insulin release and glucose homeostasis, but is rapidly inactivated by enzymatic N-terminal truncation. Here we report the enzyme resistance and biological activity of several Glu(3)-substituted analogues of GIP namely; (Ala(3))GIP, (Lys(3))GIP, (Phe(3))GIP, (Trp(3))GIP and (Tyr(3))GIP. Only (Lys(3))GIP demonstrated moderately enhanced resistance to DPP-IV (p<0.05 to p<0.01) compared to native GIP. All analogues demonstrated a decreased potency in cAMP production (EC(50) 1.47 to 11.02 nM; p<0.01 to p<0.001) with (Lys(3))GIP and (Phe(3))GIP significantly inhibiting GIP-stimulated cAMP production (p<0.05). In BRIN-BD11 cells, (Lys(3))GIP, (Phe(3))GIP, (Trp(3))GIP and (Tyr(3))GIP did not stimulate insulin secretion with both (Lys(3))GIP and (Phe(3))GIP significantly inhibiting GIP-stimulated insulin secretion (p<0.05). Injection of each GIP analogue together with glucose in ob/ob mice significantly increased the glycaemic excursion compared to control (p<0.05 to p<0.001). This was associated with lack of significant insulin responses. (Ala(3))GIP, (Phe(3))GIP and (Tyr(3))GIP, when administered together with GIP, significantly reduced plasma insulin (p<0.05 to p<0.01) and impaired the glucose-lowering ability (p<0.05 to p<0.01) of the native peptide. The DPP-IV resistance and GIP antagonism observed were similar but less pronounced than (Pro(3))GIP. These data demonstrate that position 3 amino acid substitution of GIP with (Ala(3)), (Phe(3)), (Tyr(3)) or (Pro(3)) provides a new class of functional GIP receptor antagonists.  相似文献   

15.
The hormone glucose-dependent insulinotropic polypeptide (GIP) potently stimulates insulin secretion and promotes beta-cell proliferation and cell survival. In the present study we identified Forkhead (Foxo1)-mediated suppression of the bax gene as a critical component of the effects of GIP on cell survival. Treatment of INS-1(832/13) beta-cells with GIP resulted in concentration-dependent activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB)/Foxo1 signaling module. In parallel studies, GIP decreased bax promoter activity. Serial deletion analysis of the bax promoter demonstrated that the region -682 to -320, containing FHRE-II (5AAAACAAACA), was responsible for GIP-mediated effects. Foxo1 bound to FHRE-II in gel mobility shift assays, and Foxo1-FHRE-II interactions conferred GIP responsiveness to the bax promoter. INS-1 cells incubated under proapoptotic and glucolipotoxic conditions demonstrated increased nuclear localization of Foxo1 and bax promoter activity and decreased cytoplasmic phospho-PKB/Foxo1. GIP partially restored expression PKB/Foxo1 and bax promoter activity. Similar protective effects were found with dispersed islet cells from C57BL/6 mice, but not with those from GIP receptor knock-out (GIPR(-/-)) mice. GIP treatment reduced glucolipotoxicity-induced cell death in C57 BL/6 and Bax(-/-) islets, but not GIPR(-/-) mouse islets. Chronic treatment of Vancouver diabetic fatty Zucker rats with GIP resulted in down-regulation of Bax and up-regulation of Bcl-2 in pancreatic beta-cells. The results show that PI3K/PKB/Foxo1 signaling mediates GIP suppression of bax gene expression and that this module is a key pathway by which GIP regulates beta-cell apoptosis in vivo.  相似文献   

16.
Incretins such as glucagon-like peptide-1 and gastric inhibitory polypeptide/glucose-dependent insulinotropic peptide are known to potentiate insulin secretion mainly through a cAMP/protein kinase A (PKA) signaling pathway in pancreatic beta-cells, but the mechanism is not clear. We recently found that the cAMP-binding protein cAMP-GEFII (or Epac 2), interacting with Rim2, a target of the small G protein Rab3, mediates cAMP-dependent, PKA-independent exocytosis in a reconstituted system. In the present study, we investigated the role of the cAMP-GEFII--Rim2 pathway in incretin-potentiated insulin secretion in native pancreatic beta-cells. Treatment of pancreatic islets with antisense oligodeoxynucleotides (ODNs) against cAMP-GEFII alone or with the PKA inhibitor H-89 alone inhibited incretin-potentiated insulin secretion approximately 50%, while a combination of antisense ODNs and H-89 inhibited the secretion approximately 80-90%. The effect of cAMP-GEFII on insulin secretion is mediated by Rim2 and depends on intracellular calcium as well as on cAMP. Treatment of the islets with antisense ODNs attenuated both the first and second phases of insulin secretion potentiated by the cAMP analog 8-bromo-cAMP. These results indicate that the PKA-independent mechanism involving the cAMP-GEFII--Rim2 pathway is critical in the potentiation of insulin secretion by incretins.  相似文献   

17.
Glucose-dependent insulinotropic polypeptide is an incretin hormone that stimulates insulin secretion and reduces postprandial glycaemic excursions. The glucose-dependent action of GIP on pancreatic beta-cells has attracted attention towards its exploitation as a potential drug for type 2 diabetes. Use of NMR or X-ray crystallography is vital to determine the three-dimensional structure of the peptide. Therefore, to understand the basic structural requirements for the biological activity of GIP, the solution structure of the major biologically active fragment, GIP(1-30)amide, was investigated by proton NMR spectroscopy and molecular modelling. The structure is characterised by a full length alpha-helical conformation between residues F(6) and A(28). This structural information could play an important role in the design of therapeutic agents based upon GIP receptor agonists.  相似文献   

18.
Endopeptidase 24.15 (ep24.15: EC3.4.24.15), a secreted protein involved in peptide metabolism, is unusual in that it does not contain a signal peptide sequence. In this work, we describe the physical interaction between ep24.15 and 14-3-3 epsilon, one isoform of a family of ubiquitous phosphoserine/threonine-scaffold proteins that organizes cell signaling and is involved in exocytosis. The interaction between ep24.15 and 14-3-3 epsilon increased following phosphorylation of ep24.15 at Ser(644) by protein kinase A (PKA). The co-localization of ep24.15 and 14-3-3 epsilon was increased by exposure of HEK293 cells (human embryonic kidney cells) to forskolin (10 microm). Overexpression of 14-3-3 epsilon in HEK293 cells almost doubled the secretion of ep24.15 stimulated by A23187 (7.5 microm) from 10%[1.4 +/- 0.24 AFU/(min 10(6) cells)] to 19%[2.54 +/- 0.24 AFU/(min 10(6) cells)] (p < 0.001) of the total intracellular enzyme activity. Treatment with forskolin had a synergistic effect on the A23187-stimulated secretion of ep24.15 that was totally blocked by the PKA inhibitor KT5720. The ep24.15 point mutation S644A reduced the co-localization of ep24.15 and 14-3-3 in stably transfected HEK293 cells. Indeed, secretion of the ep24.15 S644A mutant from these cells was only slightly stimulated by A23187 and insensitive to forskolin, in contrast to that of the wild type enzyme. Together, these data suggest that prior interaction with 14-3-3 is an important step in the unconventional stimulated secretion of ep24.15.  相似文献   

19.
Understanding mechanisms by which glibenclamide stimulates insulin release is important, particularly given recent promising treatment by glibenclamide of permanent neonatal diabetic subjects. Antidiabetic sulfonylureas are thought to stimulate insulin secretion solely by inhibiting their high-affinity ATP-sensitive potassium (K(ATP)) channel receptors at the plasma membrane of beta-cells. This normally occurs during glucose stimulation, where ATP inhibition of plasmalemmal K(ATP) channels leads to voltage activation of L-type calcium channels for rapidly switching on and off calcium influx, governing the duration of insulin secretion. However, growing evidence indicates that sulfonylureas, including glibenclamide, have additional K(ATP) channel receptors within beta-cells at insulin granules. We tested nonpermeabilized beta-cells in mouse islets for glibenclamide-stimulated insulin secretion mediated by granule-localized K(ATP) channels by using conditions that bypass glibenclamide action on plasmalemmal K(ATP) channels. High-potassium stimulation evoked a sustained rise in beta-cell calcium level but a transient rise in insulin secretion. With continued high-potassium depolarization, addition of glibenclamide dramatically enhanced insulin secretion without affecting calcium. These findings support the hypothesis that glibenclamide, or an increased ATP/ADP ratio, stimulates insulin secretion in part by binding at granule-localized K(ATP) channels that functionally contribute to sustained second-phase insulin secretion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号