首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Qi T  Ly K  Poyner DR  Christopoulos G  Sexton PM  Hay DL 《Peptides》2011,32(5):1060-1067
The receptors for calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) are complexes of the calcitonin receptor-like receptor (CLR) and receptor activity-modifying proteins (RAMP). The CGRP receptor is a CLR/RAMP1 pairing whereas CLR/RAMP2 and CLR/RAMP3 constitute two subtypes of AM receptor: AM1 and AM2, respectively. Previous studies identified Glu74 in RAMP3 to be important for AM binding and potency. To further understand the importance of this residue and its equivalent in RAMP1 (Trp74) we substituted the native amino acids with several others. In RAMP3, these were Trp, Phe, Tyr, Ala, Ser, Thr, Arg and Asn; in RAMP1, Glu, Phe, Tyr, Ala and Asn substitutions were made. The mutant RAMPs were co-expressed with CLR in Cos7 cells; receptor function in response to AM, AM2/intermedin and CGRP was measured in a cAMP assay and cell surface expression was determined by ELISA. Phe reduced AM potency in RAMP3 but had no effect in RAMP1. In contrast, Tyr had no effect in RAMP3 but enhanced AM potency in RAMP1. Most other substitutions had a small effect on AM potency in both receptors whereas there was little impact on CGRP or AM2 potency. Overall, these data suggest that the geometry and charge of the residue at position 74 contribute to how AM interacts with the AM2 and CGRP receptors and confirms the role of this position in dictating differential AM pharmacology at the AM2 and CGRP receptors.  相似文献   

2.
The expressions of the calcitonin receptor (CTR), the calcitonin receptor-like receptor (CLR), the receptor activity-modifying proteins (RAMP) 1-3, and of the receptor component protein (RCP) have been studied in mouse bone marrow macrophages (BMM) during osteoclast differentiation, induced by treatment with M-CSF and RANKL. Analyses of mRNA showed that CLR and RAMP1-3, but not CTR, were expressed in M-CSF stimulated BMM. RANKL gradually increased CTR mRNA, transiently enhanced CLR and transiently decreased RAMP1 mRNA, but did not affect RAMP2, RAMP3, or RCP mRNA. However, RANKL did not affect protein levels of CLR or RAMP1-3 as assessed by Western blots or FACS analyses, whereas immunocytochemistry showed enhanced CTR protein. Analyses of cAMP production showed that BMM cells expressed functional receptors for calcitonin gene-related peptide (CGRP), amylin, adrenomedullin, and intermedin, but not for calcitonin and calcitonin receptor stimulating peptide (CRSP), but that RANKL induced the expression of receptors for calcitonin and CRSP as well. Calcitonin, CGRP, amylin, adrenomedullin, intermedin, and CRSP all down regulated the CTR mRNA, but none of the peptides caused any effects on the expression of CLR or any of the RAMPs. Our data show that BMM cells express receptors for CGRP, amylin, adrenomedullin, and intermedin and that RANKL induces the formation of receptors for calcitonin and CRSP in these cells. We also show, for the first time, that the CTR is not only down regulated by signaling through the CTR but also by the peptides signaling through CLR/RAMPs.  相似文献   

3.
Calcitonin gene‐related peptide (CGRP) and adrenomedullin (AM) are related peptides that are potent vasodilators. The CGRP and AM receptors are heteromeric protein complexes comprised of a shared calcitonin receptor‐like receptor (CLR) subunit and a variable receptor activity modifying protein (RAMP) subunit. RAMP1 enables CGRP binding whereas RAMP2 confers AM specificity. How RAMPs determine peptide selectivity is unclear and the receptor stoichiometries are a topic of debate with evidence for 1:1, 2:2, and 2:1 CLR:RAMP stoichiometries. Here, we describe bacterial production of recombinant tethered RAMP‐CLR extracellular domain (ECD) fusion proteins and biochemical characterization of their peptide binding properties. Tethering the two ECDs ensures complex stability and enforces defined stoichiometry. The RAMP1‐CLR ECD fusion purified as a monomer, whereas the RAMP2‐CLR ECD fusion purified as a dimer. Both proteins selectively bound their respective peptides with affinities in the low micromolar range. Truncated CGRP(27‐37) and AM(37‐52) fragments were identified as the minimal ECD complex binding regions. The CGRP C‐terminal amide group contributed to, but was not required for, ECD binding, whereas the AM C‐terminal amide group was essential for ECD binding. Alanine‐scan experiments identified CGRP residues T30, V32, and F37 and AM residues P43, K46, I47, and Y52 as critical for ECD binding. Our results identify CGRP and AM determinants for receptor ECD complex binding and suggest that the CGRP receptor functions as a 1:1 heterodimer. In contrast, the AM receptor may function as a 2:2 dimer of heterodimers, although our results cannot rule out 2:1 or 1:1 stoichiometries.  相似文献   

4.
Kuwasako K  Cao YN  Nagoshi Y  Kitamura K  Eto T 《Peptides》2004,25(11):2003-2012
Three receptor activity modifying proteins (RAMPs) chaperone calcitonin-like receptor (CLR) to the cell surface. RAMP2 enables CLR to form an adrenomedullin (AM)-specific receptor that is sensitive to AM-(22-52) (AM(1) receptor). RAMP3 enables CLR to form an AM receptor sensitive to both calcitonin gene-related peptide (CGRP)-(8-37) and AM-(22-52) (AM(2) receptor), though rat and mouse AM(2) receptors show a clear preference for CGRP alpha-(8-37) over AM-(22-52). RAMP1 enables CRL to form the CGRP-(8-37)-sensitive CGRP(1) receptor, which can also be activated by higher concentrations of AM. Here we review the available information on the pharmacological features and possible pathophysiological roles of the aforementioned AM receptors.  相似文献   

5.
The receptors for the calcitonin gene-related peptide (CGRP)/adrenomedullin (AM) family peptides were characterized in the mefugu Takifugu obscurus, a euryhaline fugu species very close to Takifugu rubripes, which has as many as five adrenomedullin genes (AM1-5). CGRP and AM share a G protein-coupled core receptor called calcitonin receptor-like receptor (CLR), and the specificity of the CLR is determined by the interaction with receptor activity-modifying proteins (RAMPs). Through database mining, three CLRs (CLR1-3) and five RAMPs (RAMP1-5) were identified, and all of them were cloned by RT-PCR and characterized by functional expression in COS7 cells in every possible combination of CLR-RAMP. The following combinations generated cAMP in response to physiological concentrations of CGRP, AM1 (an ortholog of mammalian AM), AM2, and AM5: CLR1-RAMP1/4 (CGRP), CLR1-RAMP2/3/5 (AM1), CLR2-RAMP2 (AM1), CLR1-RAMP3 (AM2), and CLR1-RAMP3 (AM5). Their expressions were found by Northern blot analysis to be tissue specific and salinity dependent. For example, CLR1-RAMP5 and CLR1-RAMP2 are expressed specifically in the gill and kidney, respectively, suggesting their involvement in osmoregulation. Furthermore, relatively high levels of CLRs and RAMPs were found in the spleen and ovary, suggesting roles in the immune and female reproductive systems. Immunohistochemistry revealed that AM receptors of the following types are expressed in the locations, indicated in brackets, of the mefugu gill and kidney: CLR1-RAMP5 (interlamellar vessels), CLR2-RAMP2 (pillar cells), and CLR1-RAMP2 (apical side of renal proximal tubule cells).  相似文献   

6.
Adrenomedullin (AM) is a peptide hormone with numerous effects in the vascular systems. AM signals through the AM1 and AM2 receptors formed by the obligate heterodimerization of a G protein-coupled receptor, the calcitonin receptor-like receptor (CLR), and receptor activity-modifying proteins 2 and 3 (RAMP2 and RAMP3), respectively. These different CLR-RAMP interactions yield discrete receptor pharmacology and physiological effects. The effective design of therapeutics that target the individual AM receptors is dependent on understanding the molecular details of the effects of RAMPs on CLR. To understand the role of RAMP2 and -3 on the activation and conformation of the CLR subunit of AM receptors, we mutated 68 individual amino acids in the juxtamembrane region of CLR, a key region for activation of AM receptors, and determined the effects on cAMP signaling. Sixteen CLR mutations had differential effects between the AM1 and AM2 receptors. Accompanying this, independent molecular modeling of the full-length AM-bound AM1 and AM2 receptors predicted differences in the binding pocket and differences in the electrostatic potential of the two AM receptors. Druggability analysis indicated unique features that could be used to develop selective small molecule ligands for each receptor. The interaction of RAMP2 or RAMP3 with CLR induces conformational variation in the juxtamembrane region, yielding distinct binding pockets, probably via an allosteric mechanism. These subtype-specific differences have implications for the design of therapeutics aimed at specific AM receptors and for understanding the mechanisms by which accessory proteins affect G protein-coupled receptor function.  相似文献   

7.
Receptor activity modifying proteins (RAMPs) interact with calcitonin receptors to produce novel amylin receptor phenotypes. We have recently demonstrated that the short intracellular C-terminus of RAMPs plays a key role in the function of amylin receptors derived from the CTa calcitonin receptor through the use of chimeric RAMPs and RAMPs that are truncated at the C-terminus [15, Udawela M, Christopoulos G, Morfis M, Christopoulos A, Ye S, Tilakaratne N, Sexton PM. A critical role for the short intracellular C terminus in receptor activity modifying protein function. Mol Pharmacol 2006;70:1750-60., 18, Udawela M, Christopoulos G, Tilakaratne N, Christopoulos A, Albiston A, Sexton PM. Distinct receptor activity-modifying protein domains differentially modulate interaction with calcitonin receptors. Mol Pharmacol 2006;69:1984-89.]. The calcitonin receptor in humans is expressed as two major alternatively spliced isoforms termed CTa and CTb. Relatively little is known about how alternate splicing of the receptor affects the interaction between calcitonin receptors and RAMPs. We have examined the effect of RAMP truncation, through use of mutant constructs that delete the last 8 amino acids of each of the 3 known human RAMPs, and characterised these for interaction with CTb receptors through co-expression in COS-7 cells. As seen with the CTa receptor isoform, RAMP truncation caused a marked loss in induction of AMYb receptor phenotypes as characterised by (125)I-rat amylin radioligand binding assays and cAMP accumulation assays; the latter as a marker of receptor signalling. The effect was most pronounced for RAMP1 and RAMP2 deletion mutants, but attenuated responses were also observed with co-expressed RAMP3 deletion mutants. These data support a direct role for the RAMP C-terminus in the interaction of RAMP/calcitonin receptor complexes with intracellular accessory proteins involved in signalling and/or receptor trafficking.  相似文献   

8.
The calcitonin-like receptor (CLR) associated with receptor-activity-modifying proteins (RAMP) 1 or -2 recognizes calcitonin gene-related peptide (CGRP) and adrenomedullin (AM), respectively. The amino acid sequence CNRTWDGWLCW corresponding to residues 64-74 in the extracellular N-terminus of the CLR is conserved. The Asp(69) (D(69)) is present in all family B1 G-protein-coupled receptors. Here the D(69) of a V5-tagged mouse CLR has been mutated to Ala (A), Glu (E), and Asn (N). The function of the intact and the mutant CLR was investigated in COS-7 cells coexpressing myc-tagged mouse RAMP1 or -2. In CLR/RAMP1 and -2 expressing cells CGRP and AM stimulated cAMP formation with an EC(50) of 0.17 and 0.50 nM, respectively. The expression of the D69A, D69E, and D69N mutants at the cell surface was comparable to that of the intact CLR. cAMP stimulation by CGRP and AM was abolished in the D69A mutant. With the D69E mutant the EC(50) of CGRP and AM were 1000-fold higher than those with the intact CLR. With the D69N mutant the EC(50) of CGRP was 0.48 nM and that of AM 0.44 nM, but the maximal cAMP formation was reduced to 24% and to 12% of cells with the intact CLR. Co-immunoprecipitation of RAMP1 with the CLR, indicating complex formation, was reduced with the D69A, D69N, and D69E mutants. RAMP2 co-precipitated with the mutant receptors indistinguishable from the intact CLR. In conclusion, mutation of D69 to N, E or A in the CLR did not affect its expression at the cell surface, but impaired or abolished the CGRP and AM receptor function in the presence of RAMP1 and -2, respectively.  相似文献   

9.
The three receptor activity-modifying proteins (RAMPs1, -2, and -3) associate with a wide variety of G protein-coupled receptors (GPCRs), including calcitonin receptor-like receptor (CRLR). In this study, we used flow cytometry to measure RAMP translocation to the cell surface as a marker of RAMP-receptor interaction. Because VPAC2 does not interact with RAMPs, although, like CRLR, it is a Family B peptide hormone receptor, we constructed a set of chimeric CRLR/VPAC2 receptors to evaluate the trafficking interactions between CRLR domains and each RAMP. We found that CRLR regions extending from transmembrane domain 1 (TM1) through TM5 are necessary and sufficient for the transport of RAMPs to the plasma membrane. In addition, the extracellular N-terminal domain of CRLR, its 3rd intracellular loop and/or TM6 were also important for the cell-surface translocation of RAMP2, but not RAMP1 or RAMP3. Other regions within CRLR were not involved in trafficking interactions with RAMPs. These findings provide new insight into the trafficking interactions between accessory proteins such as RAMPs and their receptor partners.  相似文献   

10.
RAMPs (receptor activity-modifying proteins) were discovered in 1998 as accessory proteins needed to the functionnal activity of CGRP (calcitonin gene-related peptide) receptors. Three RAMPs generated by three different genes are known in human, rat and mice. The coding sequences of such genes are described, but as yet, regulation sequences are unknown. RAMPs interact with GPCR (G protein-coupled receptors) of class II. In the case of the calcitonin/CGRP peptide family, RAMPs determine the functionnal specificity of the receptor, glycosylate and translocate the receptor to the cell surface. CGRP receptors are observed in presence of the RAMP1/calcitonin receptor-like receptor (CRLR), but the association of RAMP2 or RAMP3 with CRLR generates an adrenomedullin receptor. The calcitonin receptor (CTR) is translocated alone to the cell surface, but interactions of RAMPs with CTR forms amylin receptors. If RAMPs can interact with glucagon, parathyroid hormone and VIP/PACAP (vasoactive intestinal peptide/pituitary adenylate cyclase activating polypeptide (VPACR1)) receptors, the functionnal specificity of these receptors remains unaltered. However, the complex VPACR1/RAMP2 enhances specifically the phosphoinoside signaling pathway.  相似文献   

11.
Expression of the calcitonin receptor-like receptor (CRLR) and its receptor activity modifying proteins (RAMPs) can produce calcitonin gene-related peptide (CGRP) receptors (CRLR/RAMP1) and adrenomedullin (AM) receptors (CRLR/RAMP2 or -3). A chimera of the CRLR and green fluorescent protein (CRLR-GFP) was used to study receptor localization and trafficking in stably transduced HEK 293 cells, with or without co-transfection of RAMPs. CRLR-GFP failed to generate responses to CGRP or AM without RAMPs. Furthermore, CRLR-GFP was not found in the plasma membrane and its localization was unchanged after agonist exposure. When stably coexpressed with RAMPs, CRLR-GFP appeared on the cell surface and was fully active in intracellular cAMP production and calcium mobilization. Agonist-mediated internalization of CRLR-GFP was observed in RAMP1/CGRP or AM, RAMP2/AM, and RAMP3/AM, which occurred with similar kinetics, indicating the existence of ligand-specific regulation of CRLR internalization by RAMPs. This internalization was strongly inhibited by hypertonic medium (0.45 m sucrose) and paralleled localization of rhodamine-labeled transferrin, suggesting that CRLR endocytosis occurred predominantly through a clathrin-dependent pathway. A significant proportion of CRLR was targeted to lysosomes upon binding of the ligands, and recycling of the internalized CRLR was not efficient. In HEK 293 cells stably expressing CRLR-GFP and Myc-RAMPs, these rhodamine-labeled RAMPs were co-localized with CRLR-GFP in the presence and absence of the ligands. Thus, the CRLR is endocytosed together with RAMPs via clathrin-coated vesicles, and both the internalized molecules are targeted to the degradative pathway.  相似文献   

12.
Adrenomedullins (AM) form a multifunctional subfamily of the calcitonin gene-related peptide (CGRP) superfamily, the members of which exert their physiological roles through a 1:1 combination of calcitonin receptor-like receptors (CLRs) and receptor activity-modifying proteins (RAMPs). It has been shown that RAMPs can modify the biochemical properties of CLRs; for example, RAMP escorts CLR to the plasma membrane, affects glycosylation state of CLR, and transforms the ligand selectivity of CLR, but on the other hand the effects of CLRs on the biochemical and functional properties of the partner RAMPs are not well established. In this study, using pufferfish (mefugu, mf) homolog, we revealed that mfCLR1 could affect the post-translational modification and trafficking pathway of mfRAMP1. In addition, mfCLRs boosted mfRAMP1, mfRAMP2b, and mfRAMP3 translocation to cell surface. We further revealed that mfRAMPs, except mfRAMP1 and mfRAMP3, could be expressed as multimers on the plasma membrane. However, only monomeric form of mfRAMP2a, mfRAMP4, and mfRAMP5 could heteromerize with mfCLR1 but not with mfCLR2 or mfCLR3, which was consistent with their abilities to induce cAMP response. Collectively our results indicate that the glycosylation, subcellular trafficking, and pharmacological properties of the components of RAMP-CLR receptor complexes are regulated in an interdependent manner.  相似文献   

13.
Adrenomedullin (AM) is a novel hypotensive peptide that exerts a variety of strongly protective effects against multiorgan damage. AM-specific receptors were first identified as heterodimers composed of calcitonin-receptor-like receptor (CLR), a G protein coupled receptor, and one of two receptor activity-modifying proteins (RAMP2 or RAMP3), which are accessory proteins containing a single transmembrane domain. RAMPs are required for the surface delivery of CLR and the determination of its phenotype. CLR/RAMP2 (AM1 receptor) is more highly AM-specific than CLR/RAMP3 (AM2 receptor). Although there have been no reports showing differences in intracellular signaling via the two AM receptors, in vitro studies have shed light on their distinct trafficking and functionality. In addition, the tissue distributions of RAMP2 and RAMP3 differ, and their gene expression is differentially altered under pathophysiological conditions, which is suggestive of the separate roles played byAM1 and AM2 receptors in vivo. Both AM and the AM1 receptor, but not the AM2 receptor, are crucial for the development of the fetal cardiovascular system and are able to effectively protect against various vascular diseases. However, AM2 receptors reportedly play an important role in maintaining a normal body weight in old age and may be involved in immune function. In this review article, we focus on the shared and separate functions of the AM receptor subtypes and also discuss the potential for related drug discovery. In addition, we mention their possible function as receptors for AM2 (or intermedin), an AM-related peptide whose biological functions are similar to those of AM.  相似文献   

14.
R Muff  W Born  J A Fischer 《Peptides》2001,22(11):1765-1772
Adrenomedullin (AM), alpha- and beta-calcitonin gene-related peptide (CGRP), amylin and calcitonin (CT) are structurally and functionally related peptides. The structure of a receptor for CT (CTR) was elucidated in 1991 through molecular cloning, but the structures of the receptors for the other three peptides had yet to be elucidated. The discovery of receptor-activity-modifying proteins (RAMP) 1 and -2 and their co-expression with an orphan receptor, calcitonin receptor-like receptor (CRLR) has led to the elucidation of functional CGRP and AM receptors, respectively. RAMP1 and -3 which are co-expressed with CTR revealed two amylin receptor isotypes. Molecular interactions between CRLR and RAMPs are involved in their transport to the cell surface. Heterodimeric complexes between CRLR or CTR and RAMPs are required for ligand recognition.  相似文献   

15.
Calcitonin receptor-like receptor (CLR) and the receptor activity-modifying protein 1 (RAMP1) comprise a receptor for calcitonin gene-related peptide (CGRP). Although CGRP induces endocytosis of CLR/RAMP1, little is known about post-endocytic sorting of these proteins. We observed that the duration of stimulation with CGRP markedly affected post-endocytic sorting of CLR/RAMP1. In HEK and SK-N-MC cells, transient stimulation (10(-7) M CGRP, 1 h), induced CLR/RAMP1 recycling with similar kinetics (2-6 h), demonstrated by labeling receptors in living cells with antibodies to extracellular epitopes. Recycling of CLR/RAMP1 correlated with resensitization of CGRP-induced increases in [Ca(2+)](i). Cycloheximide did not affect resensitization, but bafilomycin A(1), an inhibitor of vacuolar H(+)-ATPases, abolished resensitization. Recycling CLR and RAMP1 were detected in endosomes containing Rab4a and Rab11a, and expression of GTPase-defective Rab4aS22N and Rab11aS25N inhibited resensitization. After sustained stimulation (10(-7) M CGRP, >2 h), CLR/RAMP1 trafficked to lysosomes. RAMP1 was degraded approximately 4-fold more rapidly than CLR (RAMP1, 45% degradation, 5 h; CLR, 54% degradation, 16 h), determined by Western blotting. Inhibitors of lysosomal, but not proteasomal, proteases prevented degradation. Sustained stimulation did not induce detectable mono- or polyubiquitination of CLR or RAMP1, determined by immunoprecipitation and Western blotting. Moreover, a RAMP1 mutant lacking the only intracellular lysine (RAMP1K142R) internalized and was degraded normally. Thus, after transient stimulation with CGRP, CLR and RAMP1 traffic from endosomes to the plasma membrane, which mediates resensitization. After sustained stimulation, CLR and RAMP1 traffic from endosomes to lysosomes by ubiquitin-independent mechanisms, where they are degraded at different rates.  相似文献   

16.
Asthma is a chronic inflammatory disease affecting the lung, characterized by breathing difficulty during an attack following exposure to an environmental trigger. Calcitonin gene-related peptide (CGRP) is a neuropeptide that may have a pathological role in asthma. The CGRP receptor is comprised of two components, which include the G-protein coupled receptor, calcitonin receptor-like receptor (CLR), and receptor activity-modifying protein 1 (RAMP1). RAMPs, including RAMP1, mediate ligand specificity in addition to aiding in the localization of receptors to the cell surface. Since there has been some controversy regarding the effect of CGRP on asthma, we sought to determine the effect of CGRP signaling ablation in an animal model of asthma. Using gene-targeting techniques, we generated mice deficient for RAMP1 by excising exon 3. After determining that these mice are viable and overtly normal, we sensitized the animals to ovalbumin prior to assessing airway resistance and inflammation after methacholine challenge. We found that mice lacking RAMP1 had reduced airway resistance and inflammation compared to wildtype animals. Additionally, we found that a 50% reduction of CLR, the G-protein receptor component of the CGRP receptor, also ameliorated airway resistance and inflammation in this model of allergic asthma. Interestingly, the loss of CLR from the smooth muscle cells did not alter the airway resistance, indicating that CGRP does not act directly on the smooth muscle cells to drive airway hyperresponsiveness. Together, these data indicate that signaling through RAMP1 and CLR plays a role in mediating asthma pathology. Since RAMP1 and CLR interact to form a receptor for CGRP, our data indicate that aberrant CGRP signaling, perhaps on lung endothelial and inflammatory cells, contributes to asthma pathophysiology. Finally, since RAMP-receptor interfaces are pharmacologically tractable, it may be possible to develop compounds targeting the RAMP1/CLR interface to assist in the treatment of asthma.  相似文献   

17.
Calcitonin (CT), calcitonin gene-related peptide (CGRP), amylin, and adrenomedullin constitute a family of structurally related peptides that signal via either the calcitonin receptor-like receptor or the CT receptor, with receptor phenotype determined by coexpression of one of the three receptor activity-modifying proteins (RAMPs). The nature of the interaction between the receptor and RAMP was investigated using chimeras between RAMP1 and RAMP2 where the amino-terminal domain of RAMP1 was attached to the transmembrane domain and carboxy terminus of RAMP2 and called RAMP1/2, and vice versa for RAMP2/1. Cotransfection of wild-type or chimeric RAMPs with the insert-negative isoform of the human CT receptor (hCTR(I1-)) into COS-7 cells resulted in the expression of (125)I-rat amylin binding sites. Highest specific binding was observed when either RAMP1 or RAMP2/1 were cotransfected, indicating the importance of the RAMP transmembrane domain and/or carboxy terminus for the degree to which amylin receptors are expressed. In contrast, the phenotype generated was primarily determined by the amino terminus, with similar RAMP1- and RAMP1/2-induced receptor phenotypes that had higher affinity for human CGRPalpha and lower affinity for human calcitonin than the RAMP2- and RAMP2/1-induced receptors.  相似文献   

18.
The receptor activity-modifying proteins (RAMPs) comprise a family of three accessory proteins that heterodimerize with the calcitonin receptor-like receptor (CL receptor) or with the calcitonin receptor (CTR) to generate different receptor phenotypes. However, RAMPs are more widely distributed across cell and tissue types than the CTR and CL receptor, suggesting additional roles for RAMPs in cellular processes. We have investigated the potential for RAMP interaction with a number of Class II G protein-coupled receptors (GPCRs) in addition to the CL receptor and the CTR. Using immunofluorescence confocal microscopy, we demonstrate, for the first time, that RAMPs interact with at least four additional receptors, the VPAC1 vasoactive intestinal polypeptide/pituitary adenylate cyclase-activating peptide receptor with all three RAMPs; the glucagon and PTH1 parathyroid hormone receptors with RAMP2; and the PTH2 receptor with RAMP3. Unlike the interaction of RAMPs with the CL receptor or the CTR, VPAC1R-RAMP complexes do not show altered phenotypic behavior compared with the VPAC1R alone, as determined using radioligand binding in COS-7 cells. However, the VPAC1R-RAMP2 heterodimer displays a significant enhancement of agonist-mediated phosphoinositide hydrolysis with no change in cAMP stimulation compared with the VPAC1R alone. Our findings identify a new functional consequence of RAMP-receptor interaction, suggesting that RAMPs play a more general role in modulating cell signaling through other GPCRs than is currently appreciated.  相似文献   

19.
RAMPs (receptor activity modifying proteins) impart remarkable effects on G protein-coupled receptor (GPCR) signaling. First identified through an interaction with the calcitonin receptor-like receptor (CLR), these single transmembrane proteins are now known to modulate the in vitro ligand binding affinity, trafficking, and second messenger pathways of numerous GPCRs. Consequently, the receptor-RAMP interface represents an attractive pharmacological target for the treatment of disease. Although the three known mammalian RAMPs differ in their sequences and tissue expression, results from in vitro biochemical and pharmacological studies suggest that they have overlapping effects on the GPCRs with which they interact. Therefore, to determine whether RAMP2 and RAMP3 have distinct functions in vivo, we generated mice with targeted deletions of either the RAMP2 or RAMP3 gene. Strikingly, we found that, although RAMP2 is required for survival, mice that lack RAMP3 appear normal until old age, at which point they have decreased weight. In addition, mice with reduced expression of RAMP2 (but not RAMP3) display remarkable subfertility. Thus, each gene has functions in vivo that cannot be accomplished by the other. Because RAMP2, RAMP3, and CLR transduce the signaling of the two potent vasodilators adrenomedullin and calcitonin gene-related peptide, we tested the effects of our genetic modifications on blood pressure, and no effects were detected. Nevertheless, our studies reveal that RAMP2 and RAMP3 have distinct physiological functions throughout embryogenesis, adulthood, and old age, and the mice we have generated provide novel genetic tools to further explore the utility of the receptor-RAMP interface as a pharmacological target.  相似文献   

20.
The receptor activity-modifying proteins (RAMPs) and the calcitonin receptor-like receptor (CRLR) are both required to generate adrenomedullin (AM) and calcitonin gene-related peptide (CGRP) receptors. A mature, fully glycosylated, form of CRLR was associated with (125)I-CGRP binding, upon co-expression of RAMP1 and CRLR. In contrast, RAMP2 and -3 promoted the expression of smaller, core-glycosylated, CRLR forms, which were linked to AM receptor pharmacology. Since core glycosylation is classically a trademark of immature proteins, we tested the hypothesis that the core-glycosylated CRLR forms the AM receptor. Although significant amounts of core-glycosylated CRLR were produced upon co-expression with RAMP2 or -3, cross-linking experiments revealed that (125)I-AM only bound to the fully glycosylated forms. Similarly, (125)I-CGRP selectively recognized the mature CRLR species upon co-expression with RAMP1, indicating that the glycosylation does not determine ligand-binding selectivity. Our results also show that the three RAMPs lie close to the peptide binding pocket within the CRLR-RAMP heterodimers, since (125)I-AM and (125)I-CGRP were incorporated in RAMP2, -3, and -1, respectively. Cross-linking also stabilized the peptide-CRLR-RAMP ternary complexes, with the expected ligand selectivity, indicating that the fully processed heterodimers represent the functional receptors. Overall, the data indicate that direct protein-protein interactions dictate the pharmacological properties of the CRLR-RAMP complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号