首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mahmood  T.  Malik  K.A.  Shamsi  S.R.A.  Sajjad  M.I. 《Plant and Soil》1998,199(2):239-250
Denitrification and total N losses were quantified from an irrigated field cropped to maize and wheat, each receiving urea at 100 kg N ha-1. During the maize growing season (60 days), the denitrification loss measured directly by acetylene inhibition-soil cover method amounted 2.72 kg N ha-1 whereas total N loss measured by 15N balance was 39 kg ha-1. Most (87%) of the denitrification loss under maize occurred during the first two irrigation cycles. During the wheat growing season (150 days), the denitrification loss directly measured by acetylene inhibition-soil cover and acetylene inhibition-soil core methods was 1.14 and 3.39 kg N ha-1, respectively in contrast to 33 kg N ha-1 loss measured by 15N balance. Most (70-88%) of the denitrification loss under wheat occurred during the first three irrigation cycles. Soil moisture and NO 3 - -N were the major factors limiting denitrification under both crops. Higher N losses measured by 15N balance than C2H2 inhibition method were perhaps due to underestimation of denitrification by C2H2 inhibition method and losses other than denitrification, most probably NH3 volatilization.  相似文献   

2.
Seasonal variation in denitrification activity was measured in twoflooded water meadows, one on peaty and one on sandy soil, over a three-yearperiod. Measurements were taken during flooded and drained periods, usingthe acetylene-blockage technique, and the rates were compared to massbalance estimates of nitrate removal in the percolating water.Denitrification activity was higher in sandy soil than in peaty soil. Higherwater infiltration rate and thereby higher nitrate load was considered to bethe cause of the higher denitrification in the sandy soil. Floodingsignificantly increased denitrification, and the rates were higher in autumnand winter than in spring. This was considered to be a result of highernitrogen concentration in inflowing stream water during winter. Annualdenitrification was estimated to 430–460 kg N ha-1yr-1 in the sandy soil meadow, and 220 kg N ha-1yr-1 in the peaty soil meadow. In the sandy soil there was alarge discrepancy between nitrate removal rates and denitrification rates,which can be explained by nitrification of ammonium released from the soil.In the peaty soil nitrate disappearance and denitrification correspondedfairly well.  相似文献   

3.
Denitrification (N2 production) and oxygen consumption rates were measured at ambient field nitrate concentrations during summer in sediments from eight wetlands (mixed hardwood swamps, cedar swamps, heath dominated shrub wetland, herbaceous peatland, and a wetland lacking live vegetation) and two streams. The study sites included wetlands in undisturbed watersheds and in watersheds with considerable agricultural and/or sewage treatment effluent input. Denitrification rates measured in intact cores of water-saturated sediment ranged from 20 to 260 mol N m-2 h-1 among the three undisturbed wetlands and were less variable (180 to 260 mol N M-2 h-1) among the four disturbed wetlands. Denitrification rates increased when nitrate concentrations in the overlying water were increased experimentally (1 up to 770 M), indicating that nitrate was an important factor controlling denitrification rates. However, rates of nitrate uptake from the overlying water were not a good predictor of denitrification rates because nitrification in the sediments also supplied nitrate for denitrification. Regardless of the dominant vegetation, pH, or degree of disturbance, denitrification rates were best correlated with sediment oxygen consumption rates (r 2 = 0.912) indicating a relationship between denitrification and organic matter mineralization and/or sediment nitrification rates. Rates of denitrification in the wetland sediments were similar to those in adjacent stream sediments. Rates of denitrification in these wetlands were within the range of rates previously reported for water-saturated wetland sediments and flooded soils using whole core15N techniques that quantify coupled nitrification/denitrification, and were higher than rates reported from aerobic (non-saturated) wetland sediments using acetylene block methods.  相似文献   

4.
1. Anthropogenic activities have increased reactive nitrogen availability, and now many streams carry large nitrate loads to coastal ecosystems. Denitrification is potentially an important nitrogen sink, but few studies have investigated the influence of benthic organic carbon on denitrification in nitrate‐rich streams. 2. Using the acetylene‐block assay, we measured denitrification rates associated with benthic substrata having different proportions of organic matter in agricultural streams in two states in the mid‐west of the U.S.A., Illinois and Michigan. 3. In Illinois, benthic organic matter varied little between seasons (5.9–7.0% of stream sediment), but nitrate concentrations were high in summer (>10 mg N L−1) and low (<0.5 mg N L−1) in autumn. Across all seasons and streams, the rate of denitrification ranged from 0.01 to 4.77 μg N g−1 DM h−1 and was positively related to stream‐water nitrate concentration. Within each stream, denitrification was positively related to benthic organic matter only when nitrate concentration exceeded published half‐saturation constants. 4. In Michigan, streams had high nitrate concentrations and diverse benthic substrata which varied from 0.7 to 72.7% organic matter. Denitrification rate ranged from 0.12 to 11.06 μg N g−1 DM h−1 and was positively related to the proportion of organic matter in each substratum. 5. Taken together, these results indicate that benthic organic carbon may play an important role in stream nitrogen cycling by stimulating denitrification when nitrate concentrations are high.  相似文献   

5.
Denitrification and N2O emission from urine-affected grassland soil   总被引:1,自引:0,他引:1  
Denitrification and N2O emission rates were measured following two applications of artificial urine (40 g urine-N m–2) to a perennial rye-grass sward on sandy soil. To distinguish between N2O emission from denitrification or nitrification, urine was also applied with a nitrification inhibitor (dicyandiamide, DCD). During a 14 day period following each application, the soil was frequently sampled, and incubated with and without acetylene to measure denitrification and N2O emission rates, respectively.Urine application significantly increased denitrification and N2O emission rates up to 14 days after application, with rates amounting to 0.9 and 0.6 g N m–2 day–1 (9 and 6 kg N ha–1 day–1), respectively. When DCD was added to the urine, N2O emission rates were significantly lower from 3 to 7 days after urine application onwards. Denitrification was the main source of N2O immediately following each urine application. 14 days after the first application, when soil water contents dropped to 15% (v/v) N2O mainly derived from nitrification.Total denitrification losses during the 14 day periods were 7 g N m–2, or 18% of the urine-N applied. Total N2O emission losses were 6.5 and 3 g N m–2, or 16% and 8% of the urine-N applied for the two periods. The minimum estimations of denitrification and N2O emission losses from urine-affected soil were 45 to 55 kg N ha–1 year–1, and 20 to 50 kg N ha–1 year–1, respectively.  相似文献   

6.
The denitrification capacity of sediment from a hypereutrophic lake   总被引:1,自引:0,他引:1  
SUMMARY.
  • 1 In sediment from Wintergreen Lake, Michigan, denitrification was not detectable by the acetylene inhibition method at in situ nitrate concentrations. When nitrate was added to sediment slurries, denitrification capacities up to 18.8μg N g-1 h-1 were measured. The denitrification capacities decreased with increasing sediment depth and distance from shore.
  • 2 The high denitrification capacities in these sediments which under natural conditions had no supply of nitrate and oxygen suggested that denitrifies with alternative mechanisms for anaerobic energy conversion were present. Nitrous oxide was a significant portion of the N-gas produced immediately after the nitrate addition. Small amounts (4–5% of the total N-gas production) of nitric oxide accumulated in the early phase of nitrate reduction. Presumably after depletion of nitrate and nitrite both N2O and NO were further reduced to N2.
  • 3 About 70%r of the added nitrate was denitrified, and the remainder was assumed to have been reduced to ammonium.
  相似文献   

7.
Potential rates of nitrification and denitrification were measured in an oligotrophic sediment system. Nitrification potential was estimated using the CO oxidation technique, and potential denitrification was measured by the acetylene blockage technique. The sediments demonstrated both nitrifying and denitrifying activity. Eh, O2, and organic C profiles showed two distinct types of sediment. One type was low in organic C, had high O2 and Eh, and had rates of denitrification 1,000 times lower than the other which had high organic C, low O2, and low Eh. Potential nitrification and denitrification rates were negatively correlated with Eh. This suggests that environmental heterogeneity in denitrifier and nitrifier populations in oligotrophic sediment systems may be assessed using Eh before sampling protocols for nitrification or denitrification rates are established. There was no correlation between denitrification and nitrification rates or between either of these processes and NH4 + or NO3 concentrations. The maximum rate of denitrification was 0.969 nmole N cm–3 hour–1, and the maximum rate of nitrification was 23.6 nmole cm–3 hour–1, suggesting nitrification does not limit denitrification in these oligotrophic sediments. Some sediment cores had mean concentrations of 6.0 mg O2/liter and still showed both nitrification and denitrification activity.  相似文献   

8.
A model-based approach was recently introduced for measuring riverine denitrification based on measured changes in dissolved N2 concentration during riverine transport (Laursen & Seitzinger, 2002a). Inputs to the model, including water temperature, channel depth, wind velocity, and time-of-travel between sampling locations, vary greatly among natural systems. Simulations were run by varying the values of these inputs and determining rates of N2 accumulation in river water and the detection limits for measuring denitrification using this method. Dinitrogen was found to accumulate most rapidly in streams that were shallow, particularly under conditions of low wind velocity. Dissolved N2 concentrations, modeled in rivers with a diurnal temperature variation of 5 °C and under conditions of no denitrification or 1 mmol N m−2 h−1, showed that sensitivity of the method can vary as temperatures change. Under low wind conditions and in rivers <1m in depth, this method is capable of detecting denitrification rates as low as 30–100 μmol N m−2 h−1. This limit of detection should be adequate to measure in situ rates in many North American streams, particularly in agricultural watersheds. In deeper rivers N2 accumulated more slowly and the method became less sensitive. The results of this study should guide decisions regarding the application of this method based on the specific characteristics of a study reach (channel geometry) and the physical conditions (i.e. wind velocity and water temperature) under which measurements are to be made. The input of N2-enriched groundwater along a study reach can result in N2 accumulation that could be misinterpreted as denitrification. Some knowledge of the inputs of groundwater along a reach should also guide decisions regarding the application of this method.  相似文献   

9.
Nitrogen cycling and dynamic analysis of man made larch forest ecosystem   总被引:2,自引:0,他引:2  
Liu  Shirong 《Plant and Soil》1995,(1):391-397
Nitrogen cycling process and dynamic change over 2 years were studied in 21-year-old planted dahurian larch (Lurix gmelinii (Rupr) Rupr.) in the eastern part of northern China. N concentrations in the plants varied by tissue, age, position in tree and season. In the aboveground components the N concentration was highest in foliage, followed by live branches, bolebark and bolewood. The organic N concentrations in undergrowth and herbs were higher than that in larch tree. The total amount of N accumulated in the larch ecosystem was 13167 kg.ha-1, in which the percentages of N storage in soil, living plants, dead standing and litter were 94.7%, 2.8%, 0.1% and 2.4%, respectively. The uptake of N by vegetation was 56 kg.ha-1.y-1, in which the retention and return were 24 kg.ha-1.y-1 and 32 kg. ha-1 y-1, respectively. Precipitation provided 13 kg.ha-1.y-1 of N, while N loss via runoff was 4 kg.ha-1.y-1 and therefore, the net gain of N by ecosystem was 9 kg.ha-1.y-1.The simulation of N dynamic change showed that an increase in the age of stand was accompanied by a concomitant increase in N storage in the forest floor, whereas N flux from forest floor organic matter into soil would decrease, and consequently, growth rate of larch stands would reduce owing to the inadequacy of available N in the soil. The prediction indicated that the degradation of soil fertility in larch plantation might occur under continuous cropping. The study implied that release rate of N from litter into soil was the key factor in determining and regulating N cycling in larch plantation.The understory minor vegetation in the larch stand plays an important role in speeding up N cycling. The timely thinning is needed to improve growth and development of shrubs and herbs, and to avert the potential soil degradation. The mixed stand of larch with either a certain proportion of broad-leaved or a moderately well developed understory vegetation should be encouraged.  相似文献   

10.
Denitrification is known as an important pathway for nitrate loss in agroecosystems. It is important to estimate denitrification fluxes to close field and watershed N mass balances, determine greenhouse gas emissions (N2O), and help constrain estimates of other major N fluxes (e.g., nitrate leaching, mineralization, nitrification). We compared predicted denitrification estimates for a typical corn and soybean agroecosystem on a tile drained Mollisol from five models (DAYCENT, SWAT, EPIC, DRAINMOD-N II and two versions of DNDC, 82a and 82h), after first calibrating each model to crop yields, water flux, and nitrate leaching. Known annual crop yields and daily flux values (water, nitrate-N) for 1993–2006 were provided, along with daily environmental variables (air temperature, precipitation) and soil characteristics. Measured denitrification fluxes were not available. Model output for 1997–2006 was then compared for a range of annual, monthly and daily fluxes. Each model was able to estimate corn and soybean yields accurately, and most did well in estimating riverine water and nitrate-N fluxes (1997–2006 mean measured nitrate-N loss 28 kg N ha?1 year?1, model range 21–28 kg N ha?1 year?1). Monthly patterns in observed riverine nitrate-N flux were generally reflected in model output (r 2 values ranged from 0.51 to 0.76). Nitrogen fluxes that did not have corresponding measurements were quite variable across the models, including 10-year average denitrification estimates, ranging from 3.8 to 21 kg N ha?1 year?1 and substantial variability in simulated soybean N2 fixation, N harvest, and the change in soil organic N pools. DNDC82a and DAYCENT gave comparatively low estimates of total denitrification flux (3.8 and 5.6 kg N ha?1 year?1, respectively) with similar patterns controlled primarily by moisture. DNDC82h predicted similar fluxes until 2003, when estimates were abruptly much greater. SWAT and DRAINMOD predicted larger denitrification fluxes (about 17–18 kg N ha?1 year?1) with monthly values that were similar. EPIC denitrification was intermediate between all models (11 kg N ha?1 year?1). Predicted daily fluxes during a high precipitation year (2002) varied considerably among models regardless of whether the models had comparable annual fluxes for the years. Some models predicted large denitrification fluxes for a few days, whereas others predicted large fluxes persisting for several weeks to months. Modeled denitrification fluxes were controlled mainly by soil moisture status and nitrate available to be denitrified, and the way denitrification in each model responded to moisture status greatly determined the flux. Because denitrification is dependent on the amount of nitrate available at any given time, modeled differences in other components of the N cycle (e.g., N2 fixation, N harvest, change in soil N storage) no doubt led to differences in predicted denitrification. Model comparisons suggest our ability to accurately predict denitrification fluxes (without known values) from the dominant agroecosystem in the midwestern Illinois is quite uncertain at this time.  相似文献   

11.
Denitrification in the top and sub soil of grassland on peat soils   总被引:2,自引:0,他引:2  
Denitrification is an important process in the nitrogen (N) balance of intensively managed grassland, especially on poorly drained peat soils. Aim of this study was to quantify the N loss through denitrification in the top and sub soil of grassland on peat soils. Sampling took place at 2 sites with both control (0 N) and N fertilised (+ N) treatments. Main difference between the sites was the ground water level. Denitrification was measured on a weekly basis for 2 years with a soil core incubation technique using acetylene (C2H2) inhibition. Soil cores were taken from the top soil (0–20 cm depth) and the sub soil (20–40 cm depth) and incubated in containers for 24 hours. The denitrification rate was calculated from the nitrous oxide production between 4 and 24 hours of incubation. Denitrification capacities of the soils and the soil layers were also determined.The top soil was the major layer for denitrification with losses ranging from 9 to 26 kg N ha–1 yr–1 from the O N treatment. Losses from the top soil of the + N treatment ranged from 13 to 49 kg N ha–1 yr–1. The sub soil contributed, on average, 20% of the total denitrification losses from the 0–40 layer. Losses from the 0–40 cm layer were 2 times higher on the + N treatment than on the O N treatment and totalled up to 70 kg N ha–1 yr–1. Significant correlation coefficients were found between denitrification activity on the one hand, and ground water level, water filled pore space and nitrate content on the other, in the top soil but not in the sub soil. The denitrification capacity experiment showed that the availability of easily decomposable organic carbon was an important limiting factor for the denitrification activity in the sub soil of these peat soils.  相似文献   

12.
Net nitrogen (N) mineralization in situ and N mineralization potential (N0) over one complete year (1986–1987) were examined for a conventionally managed silage cornfield that received at least 235 kg fertilizer N ha-1. Net N mineralization at the site, measured by sequential in situ polyethylene-bag incubations, totaled –54 kg N ha-1 yr-1, and –31 kg N ha-1 over the May-to-August growing season. Nitrogen mineralization potential of the soil organic matter (SOM), measured by laboratory anaerobic incubations, was positive uniformly and varied with month of sample collection. The soil gained 72 kg inorganic N ha-1 from April to October, principally because of a fall manuring, only 7 kg N ha-1 from April to September. The in situ incubations, likely more representative of the balance between N mineralization and immobilization under N-fertilized conditions, suggest that SOM at the site is accumulating N.Contribution from the Department of Forestry and Wildlife Management, University of Massachusetts, Amherst, MA 01003, USA.Contribution from the Department of Forestry and Wildlife Management, University of Massachusetts, Amherst, MA 01003, USA.  相似文献   

13.
Denitrification is a major mechanism for nitrogen removal from nitrogen-rich waters, but it requires oxygen-poor conditions. We assessed denitrification rates in nitrate-rich but also oxygen-rich river water during its stay in a floodplain. We measured diurnal oxygen fluctuations in floodwater along the river Rhine, and carried out an experiment to assess denitrification rates during day, evening and night. Denitrification in floodwater and flooded sediment were measured, comparing activity of periphyton and sediment from agricultural grasslands and reedbeds. Floodwater along the river Rhine was oxygen-saturated (> 10 mg O2/L) during the day, but oxygen largely disappeared during the night (0.4–0.8 mg O2/L). Independent of oxygen concentrations, denitrification in surface water alone hardly occurred. In flooded sediments, however, denitrification rates were much higher (1.1–1.5 mg N m–2 h–1), particularly at dark and oxygen-poor conditions (nighttime). In the experimental jars, reedbed-periphyton bacteria achieved similar denitrification rates as bacteria in sediment, but overall periphyton denitrification was of minor importance when calculated per square meter. Apart from oxygen levels, maximum denitrification appeared to be regulated by nitrate diffusion from water into the sediment, as the maximum quantity of N denitrified in the sediment equalled the quantity of N lossed from the surface water. Assessed 24-hr denitrification rates in the flooded floodplains (c. 15 mg N m–2 d–1) were similar in grasslands and reedbeds, and were rather low compared to rates in other floodplains.  相似文献   

14.
Wetland ecosystems in agricultural areas often become progressively more isolated from main water bodies. Stagnation favors the accumulation of organic matter as the supply of electron acceptors with water renewal is limited. In this context it is expected that nitrogen recycling prevails over nitrogen dissipation. To test this hypothesis, denitrification rates, fluxes of dissolved oxygen (SOD), inorganic carbon (DIC) and nitrogen and sediment features were measured in winter and summer 2007 on 22 shallow riverine wetlands in the Po River Plain (Northern Italy). Fluxes were determined from incubations of intact cores by measurement of concentration changes or isotope pairing in the case of denitrification. Sampled sites were eutrophic to hypertrophic; 10 were connected and 12 were isolated from the adjacent rivers, resulting in large differences in nitrate concentrations in the water column (from <5 to 1,133 μM). Benthic metabolism and denitrification rates were investigated by two overarching factors: season and hydrological connectivity. SOD and DIC fluxes resulted in respiratory quotients greater than one at most sampling sites. Sediment respiration was coupled to both ammonium efflux, which increased from winter to summer, and nitrate consumption, with higher rates in river-connected wetlands. Denitrification rates measured in river-connected wetlands (35–1,888 μmol N m?2 h?1) were up to two orders of magnitude higher than rates measured in isolated wetlands (2–231 μmol N m?2 h?1), suggesting a strong regulation of the process by nitrate availability. These rates were also significantly higher in summer (9–1,888 μmol N m?2 h?1) than in winter (2–365 μmol N m?2 h?1). Denitrification supported by water column nitrate (DW) accounted for 60–100% of total denitrification (Dtot); denitrification coupled to nitrification (DN) was probably controlled by limited oxygen availability within sediments. Denitrification efficiency, calculated as the ratio between N removal via denitrification and N regeneration, and the relative role of denitrification for organic matter oxidation, were high in connected wetlands but not in isolated sites. This study confirms the importance of restoring hydraulic connectivity of riverine wetlands for the maintenance of important biogeochemical functions such as nitrogen removal via denitrification.  相似文献   

15.
The shallow, brackish (11–18% salinity) Roskilde Fjord represents a eutrophication gradient with annual averages of chlorophyll, ranging from 3 to 25 mg chl a m–3. Nutrient loadings in 1985 were 11.3–62.4 g N m–2 yr–1 and 0.4–7.3 g P m–2 yr–1. A simple one-layer advection-diffusion model was used to calculate mass balances for 7 boxes in the fjord. Net loss rates varied from –32.2 to 17.9 g P m–2 yr–1 and from –3.3 to 66.8 g N m–2, corresponding to 74% of the external P-loading and 88% of the external N-loading to the entire estuary.Gross sedimentation rates measured by sediment traps were between 7 and 52 g p m–2 yr–1 and 50 and 426 g N M–2 yr–1, respectively. Exchangeable sediment phosphorus varied in annual average between 2.0 and 4.8 g P m–2 and exchangeable sediment nitrogen varied from 1.9 to 33.1 g N m–1. Amplitudes in the exchangeable pools followed sedimentation peaks with delays corresponding to settling rates of 0.3 m d–1. Short term nutrient exchange experiments performed in the laboratory with simultaneous measurements of sediment oxygen uptake showed a release pattern following the oxygen uptake, the changes in the exchangeable pools and the sedimentation peaks.The close benthic-pelagic coupling also exists for the denitrification with maxima during spring of 5 to 20 mmol N m–2 d–1. Denitrification during the nitrogen-limited summer period suggests dependence on nitrification. Comparisons with denitrification from other shallow estuaries indicate a maximum for denitrification in estuaries of about 250 µmol N m–2 h–2 achieved at loading rates of about 25–125 g N m–2 yr–1.  相似文献   

16.
Measurements of denitrification, nitrification and nitrogen fixation rates were made alongside with measuring of chemical and physical properties in sublittoral sediments of the South China Sea near the coast of Vietnam. Studied sediments were suboxic (Eh was positive as a rule), had 0.18–1.5 % of organic carbon, 0.004–0.135 % of total nitrogen and 3-12 % of total iron. The numbers of denitrifying and nitrate-reducing bacteria were as high as millions and hundreds of millions cells per gram wet weight of sediment matter, respectively. The processes of nitrification and denitrification were not spearated spacely. The nitrification was measured in both superficial layer and in a 10-cm sediment column. There were indirect evidences suggesting possibility of anaerobic ammonium oxidation. Denitrification was detectable in the sediments from two sites of sampling; maximal value was 86.2 μmoles N m−2h−1. The denitrification potential determined at 1 mM nitrate decreased regularly from the upper to lower layers. Its values in the different sediments ranged from 134 to 532 μmoles N m−2h−1. Nitrogen fixation (from 4.8 to 86μmoles N m−2h−1) was close to that found in similar sediments in temperate waters in summer, and was not a significant source of nitrogen. It was comparable with diffusion of ammonium from sedimnts.  相似文献   

17.
Denitrification processes were measured by the acetylene-blockage technique under changing flood conditions along the aquatic/terrestrial transition zone on the Amazon floodplain at Lago Camaleão, near Manaus, Brazil. In flooded sediments, denitrification was recorded after the amendment with NO 3 (100 mol liter–1) throughout the whole study period from August 1992 to February 1993. It ranged from 192.3 to 640.7 mol N m–2 h–1 in the 0- to 5-cm sediment layer. Without substrate amendment, denitrification was detected only during low water in November and December 1992, when it occurred at a rate of up to 12.2 mol N m–2 h–1 Higher rates of denitrification at an average rate of 73.3 mol N m–2 h–1 were measured in sediments from the shallow lake basin that were exposed to air at low water. N2O evolution was never detected in flooded sediments, but in exposed sediments, it was detected at an average rate of 28.3 mol N m–2 h–1 during the low-water period. The results indicate that under natural conditions there is denitrification and hence a loss in nitrogen from the Amazon floodplain to the atmosphere. Rates of denitrification in flooded sediments were one to two orders of magnitude smaller than in temperate regions. However, the nitrogen removal of exposed sediments exceeded that of undisturbed wetland soils of temperate regions, indicating a considerable impact of the flood pulse on the gaseous turnover of nitrogen in the Amazon floodplain.  相似文献   

18.
Standard metabolic rates (SMR) were measured empirically for carmine shiner Notropis percobromus and common shiner Luxilus cornutus to develop SMR models that predict metabolic responses of each species under thermal conditions observed in the wild. SMR increased significantly with body mass and rising water temperature, ranging from 0.05 mg O2 h−1 at 10°C to 0.89 mg O2 h−1 at 20°C for N. percobromus weighing 0.6–2.5 g and from 0.11 mg O2 h−1 at 10°C to 0.98 mg O2 h−1 at 20°C for L. cornutus weighing 0.8–6.6 g. SMR models significantly differed between sympatric species on account of differences in model intercepts (RA) and temperature coefficients (RQ), however, the allometric relationships between mass and SMR did not significantly differ between species. Known distribution of N. percobromus and L. cornutus includes the Birch River located in Manitoba, Canada, where N. percobromus is listed as Endangered. Little is known about the physiology of N. percobromus or the species' ability to acclimate or adapt to different environmental conditions. While size differences between species contributed, in part, to differences in SMR predictions for Birch River populations, SMR trends (< 2 mg O2 h−1) for individuals weighing 1 g were similar for both species across daily temperatures. Respirometry experiments contributed to developing species-specific SMR models and inform on the effect of natural and anthropogenic stressors, namely water temperature, on the conservation of N. percobromus in this ecosystem.  相似文献   

19.
Agronomic studies were conducted to examine the effect of fertilizer N on black point incidence in Fielder soft white spring wheat (Triticum aestivum L. em Thell.). Black point incidence rose with increases in the amount of N supplied either as fertilizer applied during the growing season in irrigation water or as soil N, specifically nitrate, from fertilizer N application in previous years. A comparison of four different irrigation regimes demonstrated that black point incidence was highest under frequent irrigation (irrigate to field capacity at 75% available moisture) and lowest under conventional irrigation (irrigate to field capacity at 50% available soil moisture). In each irrigation regime, disease incidence increased as N rates were raised from 0 to 120 kg ha-1. A residual fertilizer-N study demonstrated in 1985 and 1986 that black point incidence generally rose with increasing levels of nitrogen from either preplant applications in the spring or soil nitrate from the previous year. However, additions of fertilizer N were shown to slightly reduce black point incidence at soil nitrate levels above 150 kg ha-1. A two-year fertilizer N study demonstrated that in treatments receiving the same amount (90 kg ha-1) of fertilizer N, the amount broadcast as a preplant treatment versus the amount applied in irrigation water in a fertigation treatment had no effect on black point incidence, but all fertilized treatments had significantly higher levels of disease than the unfertilized check.Contribution no. 3879016  相似文献   

20.
15N abundances of current needles of Norway spruce collected during 23 yrs of a forest fertilization experiment were studied in order to follow ecosystem gains and losses of N. Unlabelled ammonium nitrate at four rates (N0–N3), phosphorus at three rates (P0–P2), and potassium plus other elements including micronutrients at two rates (K0–K1), had been applied to plots in a complete factorial design. Nitrogen had been applied annually at average rates of 0, 34, 68 and 102 kg N ha-1 yr-1. Tree growth had responded positively to additions of N, but the response was remarkably more positive to the N2P2K1 treatment. In N1 treatments, δ15N (‰) declined over time. This was consistent with an earlier study, and should reflect a change in 15N abundance towards that of fertilizer N (minus discrimination during uptake), which in turn means accretion of most of the N added. As in the earlier study, in which N3 plots lost most of the N added, the present N3 plots showed an increasing δ15N (‰). This pattern was not significantly affected by additions of P and K plus other elements, although a weak negative effect of P on N accretion was indicated, i.e. there was a tendency δ15N (‰) to be higher when P was added. This, and another recent result based on an N budget, shows that so-called revitalization fertilization may well increase growth of trees, but also promotes losses of N from the ecosystem. As in the previous study, a decline in δ15N (‰) on control plots provided evidence of contamination. Given a removal of 100 kg N ha-1 at stem harvest and a leaching of 2 kg N ha-1 yr-1, our data on 15N suggest that a load of 9 kg N ha-1 yr-1 would saturate the ecosystem after 100 years. This load is only about twice the annual deposition at the site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号