首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In frogs' isolated urinary bladders, contribution of cytosolic guanylate cyclase and cGMP-dependent protein kinase to regulation of osmotic permeability was studied. ODQ (25-100 microM), an inhibitor of cytosolic guanylate cyclase induced an increase of vasotocin-activated osmotic permeability but had no effect on the hormone-activated transepithelial urea transport. In isolated mucosal epithelial cells ODQ (50 microM) decreased the concentration of intracellular cGMP. In these cells L-NAME (0.5 nM), an inhibitor of NO synthase, also decreased the level of cGMP whereas cAMP was significantly increased. 8-pCPT-cGMP (25 and 50 microM), a permeable cGMP analogue which selectively activates protein kinase G, inhibited vasotocin-induced increase of water transport along osmotic gradient indicating that protein kinase G is involved in regulation of water reabsorption. The data obtained show that NO/cGMP signalling system in the frog urinary bladder appears to be a negative modulator of vasotocin-activated increase of osmotic permeability.  相似文献   

2.
Basing on macro- microscopical investigation of the urinary bladder in 94 persons, died at the period of birth up to old years and by the time of death having not any disease of the urinary apparatus, structure and topography of the lymphoid nodules, their amount, density of distribution in the mucous membrane of various parts of the organ have been studied. The germinative centers in the lymphoid nodules of the urinary bladder are not revealed. The external appearance of the nodules is not the same; some have clear contours others have no clearly manifested borders. We call them prenodules. The lymphoid nodules are situated near to each other without any definite order. And only near the ureteral openings they are always revealed in a small amount, in the area of the triangle; they are oriented, as a rule, from the ureteral openings towards the exit from the urinary bladder. The amount of the lymphoid nodules in the organ's wall varies (at an average) from 18, in newborns, up to 415, in adolescents, and up to 129, in old persons. Distribution density of the lymphoid nodules in the fundal area of the urinary bladder is somewhat greater, than in its superior parts. The size of the lymphoid nodules during all age periods is not more than 900 mcm.  相似文献   

3.
It is well known that ammonium ion excretion is increased during metabolic acidosis in mammals. The purpose of this study was to determine whether we could isolate from human urine during metabolic acidosis a factor that would stimulate NH+4 and/or H+ excretion in toad urinary bladder. Extracts of urine from six human subjects collected during NH4Cl-induced acidosis were prepared. These extracts were tested for their effect on NH+4 excretion in hemibladders mounted between plastic chambers. The extracts significantly increased NH+4 excretion in the toad urinary bladder. We found no effect on H+ excretion by these extracts. This ammoniuretic activity was not present in the urine when the same individuals were in metabolic alkalosis. We conclude that during metabolic acidosis a humoral factor is present which stimulates the excretion of NH+4. The factor could act as a permease in the bladder cell or as a stimulator of an NH+4 transport system.  相似文献   

4.
The transport physiology of the urinary bladder of both the freshwater rainbow trout (Oncorhychus mykiss) and the marine gulf toadfish (Opsanus beta) was characterized with respect to urea, and the suitability of the urinary bladder as a model for renal urea handling was investigated. Through the use of the in vitro urinary bladder sac preparation urea handling was characterized under control conditions and in the presence of pharmacological agents traditionally used to characterize urea transport such as urea analogues (thiourea, acetamide), urea transport blockers (phloretin, amiloride), and hormonal stimulation (arginine vasotocin; AVT). Na(+)-dependence and temperature sensitivity were also investigated. Under control conditions, the in vitro trout bladder behaved as in vivo, demonstrating significant net reabsorption of Na(+), Cl(-), water, glucose, and urea. Bladder urea reabsorption was not affected by pharmacological agents and, in contrast to renal urea reabsorption, was not correlated to Na(+). However, the trout bladder showed a threefold greater urea permeability compared to artificial lipid bilayers, a prolonged phase transition with a lowered E(a) between 5 degrees C and 14 degrees C, and differential handling of urea and analogues, all suggesting the presence of a urea transport mechanism. The in vitro toadfish bladder did not behave as in vivo, showing significant net reabsorption of Na(+) but not of Cl(-), urea, or water. As in the trout bladder, pharmacological agents were ineffective. The toadfish bladder showed no differential transport of urea and analogues, consistent with a low permeability storage organ and intermittent urination. Our results, therefore, suggest the possibility of a urea transport mechanism in the urinary bladder of the rainbow trout but not the gulf toadfish. While the bladders may not be suitable models for renal urea handling, the habit of intermittent urination by ureotelic tetrapods and toadfish seems to have selected for a low permeability storage function in the urinary bladder.  相似文献   

5.
In Bufo bufo urinary bladder an urea facilitated transport has been localised on the luminal membrane. The transport fulfils the criteria for such a mechanism, i.e. is saturable and is inhibited by phloretin, a specific inhibitor for urea transport. Similarly to that of Bufo marinus and Rana esculenta the luminal membrane of Bufo bufo urinary bladder shows an ADH stimulated facilitated transport. Experiments wtih Amphotericin B, serosal phloretin (with and without ADH), have demonstrated the presence of a facilitated urea transport localised on basolateral membrane. Urea uptake on the isolated epithelial cells of Bufo bufo urinary bladder shows a characteristic feature, different from molecules passively transported such as glycerol yet inhibited by phloretin. Allegedly with urea, water flows in to the cells by a dragging or osmotic effect.  相似文献   

6.
Principal similarities between molecular pathways providing the enhancement of water and urea reabsorption under the action of argininvasotocin (AVT) in amphibian urinary bladder suggest that prostaglandin E2 (PGE2) could be a negative regulator of urea transport. To analyse this hypothesis, the role of PGE2 in regulation of urea transport was studied in isolated frog (Rana temporaria L.) urinary bladder. The urea permeability (Pu) was determined from the rate of efflux of (14) Curea from mucosal to serosal solution in isoosmotic conditions. The water permeability was measured in separate experiments in presence of an osmotic gradient. In contrast to water permeability, we were unable to demonstrate any inhibitory effect of 10-1000 nM PGE2 on AVT-stimulated urea transport using a variety of protocols. It was found that basolateral PGE2 exposure (10 nM-1 microM) caused an increase in Pu with no effect on osmotic water flow. The PGE2 effect was markedly inhibited by phloretin, a specific inhibitor of urea transporter. Sulprostone, an EP1/EP3 prostaglandin E2 receptor agonist, had no effect on Pu suggesting the contribution of EP2/EP4 receptor subtypes. In presence of osmotic water flow, the AVT-induced urea transport was significantly higher. This water flow-dependent urea permeability was inhibited by PGE2 although the inhibitory effect was less pronounced in comparison to the action of PGE2 on osmotic water flow. On the basis of these results we can make a conclusion that PGE2 has different role in regulation of water and urea transport in the frog urinary bladder. PGE2 could be considered as a stimulator of urea transport and an inhibitor of osmotic water flow activated by the AVT. The ability of PGE2 to regulate various types of cAMP-dependent transport by different mechanisms seems to be based on the presence of multiple basolateral PGE2 receptor subtypes in amphibian osmosis-regulatory epithelium.  相似文献   

7.
Lithium transport across the urinary bladder of Bufo marinus has been studied by means of the short-circuit current technique, as well as unidirectional ion flux measurements. Exposure to lithium of the epithelial (mucosal) surface of this preparation led to a slow, progressive decrease of ion transport, with increasing discrepancy between short-circuit current and lithium influx; in fact there was still an appreciable lithium influx across bladder exposed to amiloride even though short-circuit current was suppressed. Ohmic conductance and sodium efflux barely increased under these circumstances. Upon replacement of lithium by sodium on the epithelial side, the preparations recovered slowly indeed, and residual lithium could be detected in bladder tissue for more than 2 hr while the rate of sodium extrusion at the basal-lateral cell border was slowed down. Recovery from exposure to lithium was accelerated by vasopressin and amphotericin, both of which facilitate sodium entry at the apical border of the epithelium. Thus the lasting deleterious influence of lithium on sodium transport might result from the fact that this ion, once trapped in the cytoplasm, closes the sodium channels.  相似文献   

8.
Mechanisms of action of arginine-vasopressin (AVP) on water transport across the wall of urinary bladder of the frog R. temporaria L. and the outer membrane of the amoeba A. proteus were considered. AVP and its functional analogs were added to the basolateral and apical surfaces of the frog urinary bladder membrane and to the amoeba outer surface. In amoeba the AVP effect was evaluated from action on frequency of contractions of contractile vacuole that represents its organ of water—electrolyte homeostasis. It was shown that the system of signal transduction from the apical AVP receptors differed considerably from that located on the basolateral membrane and had a marked similarity with the system of signal transduction from AVP-sensitive structures on the outer membrane of amoeba. The urinary bladder apical membrane as well as the amoeba outer membrane has a mixed type of sensitivity to AVP with unidirectional (not antagonistic like on the basolateral membrane) involvement of systems coupled to receptors of the V1 and V2 type. We suggest that the system of signal transduction from apical AVP receptors corresponds to the earlier stage of evolutionary development.  相似文献   

9.
The intraorganic veins of the human urinary bladder have been studied in a vast sectional material. The veins within the organ make an enormous multilayered plexus which is differently organized in various layers of its wall. Abundant anastomoses, multiplicated ways for outflow from every layer, manifested interactions between the venous plexuses are specific for the intraorganic venous bed of the urinary bladder. The structures for an active regulating the hemomicrocirculatory blood stream are widely presented in the urinary bladder. In its every tunic certain specific morpho-functional features for organization and adaptation of the intraorganic venous bed are revealed.  相似文献   

10.
The urinary bladder of euryhaline teleost is an important osmoregulatory organ which absorbs Na+, Cl-, and water from urine. Using patch clamp technique, single stretch-activated channels, which were permeable to K+ and Na+ (PNa/PK approximately 0.75) and had conductances of 55 and 116 pS, were studied. In excised, inside-out patches which were voltage-clamped in the physiological range of membrane potential, the single-channel open probability (Po) was low (approximately 0.02), and increased to a maximum of 0.9 with applied pipette suction. Single-channel conductance also increased with suction. The channels showed adaptation to applied suction and relaxed to a steady-state activity about 20 seconds after application of suction. The Po increased up to 0.9 with strong membrane depolarization (Vm = 0 to +80 mV); however, there was little dependence of Po on membrane potential in the physiological range. The kinetic data suggest that there is one conducting state and at least two non-conducting states of the channel. The open-time constant increased with suction but remained unchanged with membrane potential (Vm = -70 to +60 mV). The mean closed-time of the channel decreased with suction and membrane depolarization. These results demonstrate the presence of a non-selective monovalent cation channel which may be involved in cell volume regulation in the goby urinary bladder. Additionally, this channel may function as an enhancer of Na+ influx and K+ efflux across the bladder cell as part of transepithelial ion transport if it is located in apical membrane.  相似文献   

11.
Although mammalian urinary tract epithelium (urothelium) is generally considered impermeable to water and solutes, recent data suggest that urine constituents may be reabsorbed during urinary tract transit and storage. To study water and solute transport across the urothelium in an in vivo rat model, we instilled urine (obtained during various rat hydration conditions) into isolated in situ rat bladders and, after a 1-h dwell, retrieved the urine and measured the differences in urine volume and concentration and total quantity of urine urea nitrogen and creatinine between instilled and retrieved urine in rat groups differing by hydration status. Although urine volume did not change >1.9% in any group, concentration (and quantity) of urine urea nitrogen in retrieved urine fell significantly (indicating reabsorption of urea across bladder urothelia), by a mean of 18% (489 mg/dl, from an instilled 2,658 mg/dl) in rats receiving ad libitum water and by a mean of 39% (2,544 mg/dl, from an instilled 6,204 mg/dl) in water-deprived rats, but did not change (an increase of 15 mg/dl, P = not significant, from an instilled 300 mg/dl) in a water-loaded rat group. Two separate factors affected urea nitrogen reabsorption rates, a urinary factor related to hydration status, likely the concentration of urea nitrogen in the instilled urine, and a bladder factor(s), also dependent on the animal's state of hydration. Urine creatinine was also absorbed during the bladder dwell, and hydration group effects on the concentration and quantity of creatinine reabsorbed were qualitatively similar to the hydration group effect on urea transport. These findings support the notion(s) that urinary constituents may undergo transport across urinary tract epithelia, that such transport may be physiologically regulated, and that urine is modified during transit and storage through the urinary tract.  相似文献   

12.
Cell volume regulation in frog urinary bladder   总被引:5,自引:0,他引:5  
We have studied the problem of cell volume homeostasis in toad and frog urinary bladder by using electrophysiological measurements and an optical measure of cell volume. After osmotically induced swelling, urinary bladder cells spontaneously regulate their volume through a net loss of potassium, chloride, and water. During inhibition of sodium transport by amiloride the cells swell to the same extent as controls, but the volume-regulatory process is blocked. Electrophysiological results under isosmotic conditions indicate that basolateral membrane resistance increases simultaneously with the amiloride-induced rise in apical membrane resistance during transport inhibition. These independent observations indicate that inhibition of apical membrane sodium entry results in a secondary decrease in basolateral membrane potassium permeability. When cells are exposed to calcium-free, hyposmotic Ringer's solution, cell volume regulation is blocked; subsequent addition of the calcium ionophore A23187 is ineffective in restoring the regulatory process. The ionophore does induce volume regulation, however, in amiloride-inhibited, osmotically swollen cells in the presence of external calcium. Calcium thus seems to control basolateral membrane potassium permeability and may be the intracellular mediator of apical and basolateral membrane interactions.  相似文献   

13.
Summary The present study investigated whether the hydrophobic properties (wettability) of the luminal surface of the toad urinary bladder might play a role in modulating water transport across this epithelium. In the absence of vasopressin (ADH), water transport across the tissue was low, while luminal surface hydrophobicity (water contact angle) was relatively high. Following stimulation by ADH, water transport increased and surface hydrophobicity decreased. The addition of indomethacin to inhibit ADH-induced prostaglandin synthesis did not reduce these actions of ADH. In an attempt to alter water transport in this tissue, a liposomal suspension of surface-active phospholipids was administered to the luminal surface. This addition had no detectable influence on the low basal rates of water transport, but blocked the ADH-induced stimulation of water transport. We suggest that surface-active phospholipids on the toad bladder luminal membrane may contribute to the hydrophobic characteristics of this tissue. ADH may act to decrease surface hydrophobicity, facilitating the movement of water molecules across an otherwise impermeable epithelium. This surface alteration may be associated with the appearance of water channels in the apical membrane.  相似文献   

14.
15.
The functional role and molecular mechanisms of action of prostaglandin E2 (PGE2) in the regulation of water osmotic permeability in osmoregulatory epithelia (mammalian collecting tubules and amphibian urinary bladder) are considered. The paper describes the modern classification of PGE2 receptors, their distribution along a nephron and receptor-coupled intracellular second messenger systems. The mechanism of the inhibitory action of PGE2 on the antidiuretic hormone-induced enhancement of water osmotic permeability is analyzed. Special attention is given to the role of PGE2 as an auto- or paracrine regulator of water osmotic permeability in the phenomenon of ADH-independent increase of water permeability observed in an isolated amphibian urinary bladder in replacements of the surrounding serous solution. It is concluded that the osmoregulatory epithelium is not only a place of the maximum level of PGE2 synthesis in the kidney but is also characterized by a great diversity of PGE2 receptor subtypes: EP1, EP2, EP3 and EP4 have been revealed in the mammalian collecting tubules. Such a diversity of PGE2 receptors is in a good agreement with different functional effects of PGE2 in the osmoregulatory epithelium. The data considered suggest that PGE2 is not less important in the regulation of water and ion transport in the osmoregulatory epithelium than antidiuretic hormone.  相似文献   

16.
Several classes of tricyclic antidepressants inhibit the action of antidiuretic hormone (ADH) and cyclic adenine monophosphate (cAMP) on osmotic water flow across toad urinary bladder without any effect on sodium transport. This finding suggests that calmodulin is involved in the hydroosmotic action of ADH (and of serosal hypertonicity), possibly in inducing exocytosis at the luminal border of vesicles rich in water channels.  相似文献   

17.
It was found that acetylcholine (ACh) at the concentration of 10(-3) M inhibited ADH-stimulated water transport through the wall of amphibian urinary bladder. This effect was suggested to be caused by an interaction of ACh with acetylcholinesterase (AChE) rather than by a stimulation of the M- or N-cholinoreceptor. The inhibitory action of ACh was completely suppressed in the presence of various AChE inhibitors (physostigmine, proserine, armine, Gd-42, acridine-iodmethylate), while an inhibitor of butyrylcholinesterase (BuChE), AD-4, failed to affect it. In accord with this observation the activity of AChE (but not of BuChE) was demonstrated in the urinary bladder epithelium. Since, in addition to the hydrosmotic effects of pituitrine, 8-arginine-vasopressin or oxytocin, ACh blocked also effects of forskolin or cyclic AMP, one may conclude that it acts at some post-cyclic AMP production stage. AChE-dependent inhibition of the ADH-stimulated water transport decreased significantly when the serosal pH was raising from 7.2 to 8.0, but was augmented by serosal acidification (pH 6.8), whereas such pH alterations did not affect the activity of the epithelium AChE. The effect of ACh under consideration was suppressed by adding amiloride (10(-4) M) to the serosal solution. Similarly, the ACh effect was blocked by an inhibitor of Ca-dependent K+ channels, 4-aminopyrdine, which in addition prevented the inhibition of the ADH-stimulated water transport by the serosal acidification. It was noteworthy that some other K+ channel blockers (Ba2+, Cs+, tetraethylammonium, apamine, quinine) did not affect either the water transport or the antipituitrine effect of ACh. In conclusion, we suggest that the inhibitory action of ACh on the ADH-stimulated water transport in the urinary bladder is mediated through the intracellular acidification resulting from ACh interaction with AChE. It is unlikely that the acidification is merely a consequence of the ACh hydrolysis, rather the ACh-AChE interaction induces directly an increase in the proton conductivity of the basolateral membrane of the urinary bladder epithelium.  相似文献   

18.
We measured the effects of oxytocin on capacitance and hydroosmotic water flow in the urinary bladder of the toad Bufo marinus and the skins of Rana pipiens and Rana temporaria. Oxytocin increased capacitance in all these tissues but stimulated hydroosmotic water flow only in the urinary bladder. We also measured the effects of oxytocin and PMA on the capacitance and hydroosmotic water flow of the toad urinary bladder. Both agents produced increases in membrane capacitance that were additive, however, PMA produced a stimulation of water flow that was only a fraction of that caused by oxytocin. Comparison of the effects of PMA and insulin in toad urinary bladder showed that in contrast with PMA, insulin did not increase membrane capacitance in this tissue. Moreover, insulin stimulated Isc in the urinary bladder while PMA produced an inhibition of variable magnitude. These results suggest that: (1) oxytocin can promote the fusion with the apical membrane of cytoplasmic membranes with or without water channels; (2) oxytocin and PMA stimulate the fusion with the apical membrane of cytoplasmic membranes originating in different pools; membranes in each pool have different water permeabilities and their insertion is controlled by different signals; (3) PMA and insulin act through different mechanisms in the toad urinary bladder.  相似文献   

19.
Chemical analysis of kidney tissue from jerboa (Jaculus orientalis) during hibernation shows that the cortico-papillary gradient of Na+ ions is strongly reduced, whereas that of urea is completely suppressed. During the spontaneous rise in body temperature which occurs as the animal comes out of hibernation, the accumulation of Na+ in the papilla then in the medullary zones begins to increase from 25-30 degrees C body temperature, before the appearance of a urea gradient. This confirms the hypothesis that urea accumulation in the kidney medulla is coupled to active transport of sodium. This active transport may be partially dependent upon circulating ADH, circulating levels of which increase with increasing body temperature. Glomerular filtration in normothermic jaculus orientalis is 696 +/- 155 microliter . min-1 and urinary flow is relatively low in this desert species at 1.12 +/- 0.18 microliter . min-1. During hibernation at a body temperature between 7 and 8 degrees C glomerular filtration and urinary flow are not measurable. Glomerular filtration appears (51 microliter . min-1 at 26 degrees C) and increases at a temperature range where systemic blood pressure has already attained a normal level. This indicates that the reestablishment of glomerular filtration may be linked to intra-renal vasomotor events as is suggested by measurement of plasma renin activity during the coming out of hibernation.  相似文献   

20.
It is well known that ammonium ion excretion is increased during metabolic acidosis in mammals. The purpose of this study was to determine whether we could isolate from human urine during metabolic acidosis a factor that would stimulate NH4+ and/or H+ excretion in toad urinary bladder. Extracts of urine from six human subjects collected during NH4Cl-induced acidosis were prepared. These extracts were tested for their effect on NH4+ excretion in hemibladders mounted between plastic chambers. The extracts significantly increased NH4+ excretion in the toad urinary bladder. We found no effect on H+ excretion by these extracts. This ammoniuretic activity was not present in the urine when the same individuals were in metabolic alkalosis. We conclude that during metabolic acidosis a humoral factor is present which stimulates the excretion of NH4+. The factor could act as a permease in the bladder cell or as a stimulator of an NH4+ transport system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号