首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of solvent conditions on the refolding of bovine serum albumin was studied. The rate and extent of refolding was affected by the type of monovalent salt used in the medium. While NaCl and NaBr promoted refolding, NaClO4 and NaSCN decreased the rate and extent of refolding at 0.2 M concentration. In this respect the relative order in which various anions influenced the refolding process followed the lyotropic series Cl-, Br-, I-, ClO4-, SCN-. Urea exhibited two opposite effects on the refolding of albumin: whereas at low concentrations urea increased the extent of refolding, at concentrations above 2.0 M the rate and extent of refolding were dramatically decreased. Addition of ethanol to the medium greatly decreased the refolding even at concentrations as low as 4% (v/v). The effects of these various additives on the refolding behavior of serum albumin is interpreted in terms of subtle changes in the structure of water. It is also shown that, while such changes in the solvent structure affected the rate and extent of refolding, they did not affect the pathway of refolding.  相似文献   

2.
Sun C  Yang J  Wu X  Huang X  Wang F  Liu S 《Biophysical journal》2005,88(5):3518-3524
The interaction of bovine serum albumin (BSA) with cationic surfactant cetylpyridinium bromide (CPB) in aqueous solution (pH 7.00) was studied quantitatively with ultraviolet (UV)-visible, far-UV, and near-UV circular dichroism, fluorescence, small angle x-ray scattering, and nuclear magnetic resonance measurement. It was found that CPB at low and high concentrations could induce the unfolding and refolding of BSA, respectively. We suggest that in the unfolding process, there existed BSA-CPB complex with the "necklace and bead" structure in which the unfolded BSA wrapped around CPB micelles, and that the hydrophobic interaction between the complexes led to the formation of large aggregates. The aromatic headgroup of CPB interacted with the tryptophan residues of BSA, resulting in the aromatic ring stacking between BSA and CPB. During the refolding process, the BSA molecule was penetrated into the rod micelle of CPB and the hydrophobic moiety of the BSA molecule was exposed outside while its hydrophilic part was hidden inside, thereby disrupting the aromatic ring stacking.  相似文献   

3.
Sasahara K  Demura M  Nitta K 《Proteins》2002,49(4):472-482
The equilibrium and kinetic folding of hen egg-white lysozyme was studied by means of circular dichroism spectra in the far- and near-ultraviolet (UV) regions at 25 degrees C under the acidic pH conditions. In equilibrium condition at pH 2.2, hen lysozyme shows a single cooperative transition in the GdnCl-induced unfolding experiment. However, in the GdnCl-induced unfolding process at lower pH 0.9, a distinct intermediate state with molten globule characteristics was observed. The time-dependent unfolding and refolding of the protein were induced by concentration jumps of the denaturant and measured by using stopped-flow circular dichroism at pH 2.2. Immediately after the dilution of denaturant, the kinetics of refolding shows evidence of a major unresolved far-UV CD change during the dead time (<10 ms) of the stopped-flow experiment (burst phase). The observed refolding and unfolding curves were both fitted well to a single-exponential function, and the rate constants obtained in the far- and near-UV regions coincided with each other. The dependence on denaturant concentration of amplitudes of burst phase and both rate constants was modeled quantitatively by a sequential three-state mechanism, U<-->I<-->N, in which the burst-phase intermediate (I) in rapid equilibrium with the unfolded state (U) precedes the rate-determining formation of the native state (N). The role of folding intermediate state of hen lysozyme was discussed.  相似文献   

4.
Some intramolecular peculiarities of the structure of the blood albumin serum of some mammals were studied by means of probe luminescence polarization, phase fluorimetry, and solubilization. It has been shown that microviscosity of the "universal" hydrophobic nucleus where N-phenylnaphtylamine is localized is much above that in the surface regions of the protein globule filled with the probe I-anilinonaphtalene-8-sulphonate (ANS). High values of microviscosity of universal nuclei and surface hydrophobic regions were found in the albumins of man and guinea pig. In protein molecules of rabbit and bull lower microviscosity of probe surroundings was recorded both for the nucleus and peripheral surface regions. Rat albumin had higher microviscosity of ANS localization sites, while the density of the hydrophobic nucleus was comparatively low. At the same time an opposite phenomenon was observed in pig albumin preparations.  相似文献   

5.
The sequence of events in the refolding pathway of barnase has been analysed to search for general principles in protein folding. There appears to be a correlation between burying hydrophobic surface area and early folding events. All the regions that fold early interact extensively with the beta-sheet. These interactions involve predominantly hydrophobic interactions and the burial of very extensive hydrophobic areas in which multiple, close, hydrophobic-hydrophobic contacts are established around a central group of aliphatic residues. There is no burial of hydrophilic residues in these regions; those that are partly screened from the solvent make hydrogen bonds. All the regions or interactions that are made late in the folding pathway do not make extensive contacts with the beta-sheet. Their buried hydrophobic regions lack a central hydrophobic residue or residues around which other hydrophobic residues pack. Further, in some of these regions there is an extensive burial of hydrophilic residues. The results are consistent with one of the earlier events in protein folding being the local formation of native-like secondary structure elements driven by local hydrophobic surface burial. A possible candidate for an initiation site is a beta-hairpin between beta-strands 3 and 4 that is conserved in the microbial ribonuclease family. A comparison of structures in this family shows that those regions that can be superimposed, or have sequence homology, correspond to elements of structure that are formed and interact with each other early in the folding pathway, suggesting that some of these residues could be involved in directing the folding process. The data on barnase combined with results from other laboratories suggest the following tentative conclusions for the refolding of small monomeric proteins. (1) The refolding pathway is, at least in part, sequential and of compulsory order. (2) Secondary structure formation is driven by local hydrophobic surface burial and precedes the formation of most tertiary interactions. These elements are then stabilized and sometimes elongated by tertiary interactions. It is plausible that there are stop signals encoded in the linear sequence that prevent the elongation of isolated secondary structure elements in solution to a larger extent than is found in the folded protein. (3) Many tertiary interactions are not very constrained in the intermediate but become more and more defined as the hydrophobic cores consolidate, loop structures form and the configuration of surface residues takes place. The interactions between different elements of secondary structure are the last ones to be consolidated while the interactions within the secondary structure elements are consolidated earlier.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The effects of crowding agents, polyethylene glycol (PEG 20K), Dextran 70, and bovine serum albumin, on the denaturation of homotetrameric D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) in 0.5 M guanidine hydrochloride and the reactivation of the fully denatured enzyme have been examined quantitatively. Increasing the concentration of PEG 20K to 225 mg/ml decreases the rate constant of slow phase of GAPDH inactivation to 5% but with no change for the fast phase. Chaperone GroEL assists GAPDH refolding greatly and shows even higher efficiency under crowding condition. Crowding mainly affects refolding steps after the formation of the dimeric folding intermediate.  相似文献   

7.
Equilibrium and kinetic studies of the guanidine hydrochloride induced unfolding-refolding of dimeric cytoplasmic creatine kinase have been monitored by intrinsic fluorescence, far ultraviolet circular dichroism, and 1-anilinonaphthalene-8-sulfonate binding. The GuHCl induced equilibrium-unfolding curve shows two transitions, indicating the presence of at least one stable equilibrium intermediate in GuHCl solutions of moderate concentrations. This intermediate is an inactive monomer with all of the thiol groups exposed. The thermodynamic parameters obtained by analysis using a three-state model indicate that this intermediate is similar in energy to the fully unfolded state. There is a burst phase in the refolding kinetics due to formation of an intermediate within the dead time of mixing (15 ms) in the stopped-flow apparatus. Further refolding to the native state after the burst phase follows biphasic kinetics. The properties of the burst phase and equilibrium intermediates were studied and compared. The results indicate that these intermediates are similar in some respects, but different in others. Both are characterized by pronounced secondary structure, compact globularity, exposed hydrophobic surface area, and the absence of rigid side-chain packing, resembling the "molten globule" state. However, the burst phase intermediate shows more secondary structure, more exposed hydrophobic surface area, and more flexible side-chain packing than the equilibrium intermediate. Following the burst phase, there is a fast phase corresponding to folding of the monomer to a compact conformation. This is followed by rapid assembly to form the dimer. Neither of the equilibrium unfolding transitions are protein concentration dependent. The refolding kinetics are also not concentration dependent. This suggests that association of the subunits is not rate limiting for refolding, and that under equilibrium conditions, dissociation occurs in the region between the two unfolding transitions. Based upon the above results, schemes of unfolding and refolding of creatine kinase are proposed.  相似文献   

8.
The effect of temperature and hydration on phosphorescence of chromatophores and on saturation curves of ESR spectra of spin labels covalently bound to human serum albumin was studied. It has been shown that at 90-260 degrees K albumin hydration results in intensification of motions of hydrophobic parts with low frequencies (vc less than or equal to 10(3) s-1) and does not affect the motions of hydrophobic and surfacial parts with high frequency.  相似文献   

9.
Cyclodextrins (CDs) possess hydrophobic surfaces, which probably shield the hydrophobic surfaces of denatured proteins and prevent the direct interactions between the surfaces which are believed to be responsible for protein aggregation during refolding process. This probability was evaluated by studying the refolding process of denatured alpha-amylase in the presence and absence of alpha-CD, as a dilution additive agent. Our data indicate that in the presence of 100 mM alpha-CD in the refolding buffer, the extent of aggregation reduces by almost 90%. Spectrofluorometric analysis of the refolding intermediate(s) also indicates that the tertiary structure of the refolded alpha-amylase, in the presence of alpha-CD, is very similar to the tertiary structure of the native protein. However, this similarity was distorted upon addition of exogenous hydrophobic (aliphatic or aromatic) amino acids to the refolding buffer, meaning that the hydrophobic interactions between alpha-CD and the denatured protein play significant role in preventing aggregate formation. In addition, by weakening the extent of these hydrophobic interactions by adding polarity-reducing agent (e.g. ethylene glycol) to the refolding buffer, more aggregates were formed. In contrast, strengthening these interactions by enhancing the ionic strength of the refolding buffer made these hydrophobic interactions very strong. Therefore, alpha-CD could not depart from the protein/alpha-CD complex, as it usually does during the process of refolding. As a result, more aggregates were formed in the presence of alpha-CD compared to the corresponding control samples.  相似文献   

10.
The refolding of iodoacetic acid-blocked human serum albumin (HSA) was studied using a modified competitive inhibition ELISA. A maximum of 89% native activity was detected 24 hours after initiating refolding using an albumin concentration of 600 micrograms/mL. The presence of both monomer and polymer HSA was studied using native polyacrylamide gel electrophoresis of thiol-blocked HSA samples. Monomer HSA was not detected until 2.5 hours after initiating refolding. Fractionated polymer and monomer HSA from a sample trapped at 72 hours after initiating refolding was determined to have 40% and 87% native activity respectively. Both polymer and monomer HSA fractions contribute to the overall immunological activity detected by the ELISA, at various times. The ELISA assay was able to detect the changing HSA conformation associated with refolding of totally reduced HSA.  相似文献   

11.
The refolding of four disulfide lysozyme (at pH 5.2, 20 degrees C) involves parallel pathways, which have been proposed to merge at a near-native state. This species contains stable structure in the alpha- and beta-domains but lacks a functional active site. Although previous experiments have demonstrated that the near-native state is populated on the fast refolding pathway, its relevance to slow refolding molecules could not be directly determined from previous experiments. In this paper, we describe experiments that investigate the effect of added salts on the refolding pathway of lysozyme at pH 5.2, 20 degrees C. We show, using stopped flow tryptophan fluorescence, inhibitor binding, and circular dichroism (CD), that the rate of formation of native lysozyme on the slow refolding track is significantly reduced in solutions of high ionic strength in a manner dependent on the position of the anion in the Hofmeister series. By contrast, the rate of evolution of hydrogen exchange (HX) protection monitored by electrospray ionization mass spectrometry (ESI MS) is unchanged under the refolding conditions studied. The data show, therefore, that at high ionic strengths beta-domain stabilization and native state formation on the slow refolding pathway become kinetically decoupled such that the near-native state becomes significantly populated. Thus, by changing the energy landscape with the addition of salts new insights into the relevance of intermediate states in lysozyme refolding are revealed.  相似文献   

12.
The kinetics of renaturation of bovine carbonic anhydrase II (CAII) were studied from 4 degrees to 36 degrees, at the relatively high [CAII] of 4 mg/mL. Following dilution to 1 M guanidinium chloride, aggregate formation is very rapid and reduces the formation of active enzyme. The CAII activity yield at 150 min, 20 degrees (approximately 60%), is greater than that at either 4 degrees or 36 degrees. However, if refolding is conducted at 4 degrees, aggregation is reduced dramatically and 37% yield is obtained at 120 min. If the solution is then rapidly warmed to 36 degrees, the yield rises rapidly to 95% at 150 min. This is an example of the "temperature leap" tactic. These results can be understood on the basis of two slow-folding intermediate whose kinetics have been studied. Only the first of these forms aggregates. Kinetic simulations show that, at 4 degrees, the first intermediate is depleted after 120 min, and the second intermediate rapidly isomerizes to active enzyme on warming. A series of experiments was conducted where the initial (120 min) folding temperature was systematically varied, followed by a "leap" to 36 degrees for 30 additional minutes. With initial incubations from 4 degrees to 12 degrees, the final yield is > 90%, drops rapidly from 12 degrees to 20 degrees, and decreases more gradually to approximately 45% at 36 degrees. The overall results qualitatively fit the simple idea of ordinary temperature-accelerated reactions in competition with hydrophobic aggregation, which is strongly suppressed in the cold. Qualifications are discussed for the temperature-leap approach to find application in refolding other proteins.  相似文献   

13.
Specifically purified antibody to either domain I, domain III, or to subregions of domains I or III of serum albumin was added to refolding mixtures containing reduced serum albumin but no other refolding catalyst. It was found that the refolding of reduced albumin was greatly enhanced by the presence of specific antibody in the refolding mixture, that this enhancement was restricted to that domain for which the added antibody was directed, and that antibody-mediated enhancement of refolding in the NH2-terminal portion of each domain was delayed as compared to that seen in the COOH-terminal portion of each domain. Thus, an apparent COOH-terminal to NH2-terminal pathway of refolding within each domain was observed, which is consistent with the proposed evolutionary pathway of the albumin molecule and also consistent with the proposed presence of a nucleation center in the COOH-terminal double disulfide loop of each domain.  相似文献   

14.
A hydrophobic cluster forms early in the folding of dihydrofolate reductase   总被引:5,自引:0,他引:5  
The rapid kinetic phase that leads from unfolded species to transient folding intermediates in dihydrofolate reductase from Escherichia coli was examined by site-directed mutagenesis and by physicochemical means. The absence of this fluorescence-detected phase in the refolding of the Trp-74Phe mutant protein strongly implies that this early phase in refolding can be assigned to just one of the five Trp residues in the protein, Trp-74. In addition, water-soluble fluorescence quenching agents, iodide and cesium, have a much less significant effect on this early step in refolding than on the slower phases that lead to native and native-like conformers. These and other data imply that an important early event in the folding of dihydrofolate reductase is the formation of a hydrophobic cluster which protects Trp-74 from solvent.  相似文献   

15.
Conformational transitions of HAFP in the pH-range 2-12 were studied by fluorescence spectroscopy, fluorescence polarization measurements, circular dichroism and hydrophobic chromatography in order to compare molecular architecture of HAFP and that of human serum albumin. It was found that HAFP has a remarkably hydrophilic exposed molecular surface at neutral pH and possesses extensive hydrophobic binding sites located in crevices. Conformational changes occur in HAFP in the acid and alkaline pH regions; extensive hydrophobic areas in HAFP are exposed by both acid and alkaline transitions. The alpha-helix contents of HAFP were determined as 67% at pH 7.6, 47% at pH 2.11.  相似文献   

16.
Compatibility is observed in aqueous solutions of serum albumin and pectin (degree of esterification 57%) at pH levels above the isoelectric point of protein. Both the variation in the pH values from 5 to 8 and the increase of ionic strength from 0·1 to 1·0 do not result in phase separation. These facts enable us to conclude that the affinity in this system is of a nonelectrostatic nature. The interaction of serum albumin and pectinate fractions with different degrees of esterification was studied by light scattering. The negative sign of A24 (the second virial coefficient component of the mixture associated with the interaction between different polymer molecules) means that for any degree of esterification there is affinity between pectin and serum albumin. Information concerning excess thermodynamic functions was obtained from the temperature dependence of light scattering. Mixing microcalorimetry was used for precise measurement of enthalpy. The experimental results indicate that thermodynamic compatibility of serum albumin and pectin is controlled by increase of mixing entropy, which mainly stems from dehydration of biopolymer macromolecules during contact formation.  相似文献   

17.
Gao JY  Dubin PL 《Biopolymers》1999,49(2):185-193
Hydrophobic interactions between proteins and amphiphilic polyelectrolytes were studied by frontal analysis continuous capillary electrophoresis (Gao et al., Analytical Chemistry, 1997, Vol. 69, pp. 2945-2951). Binding isotherms were obtained for beta-lactoglobulin and for bovine serum albumin interacting with a series of alternating copolymers of maleic acid and alkyl-vinyl ethers of varying hydrophobicity. Although binding between proteins and copolymers increases with increasing alkyl chain length, a minimum alkyl chain length of 3-4 methylenes is required for significant hydrophobic interactions to occur. These copolymers, like other polyamphiphiles, can form intrapolymer micelles, and the extent of such micellization decreases with increasing degree of carboxylate ionization. Binding results obtained at different pHs suggest that competition exists between intrapolymer micelle formation and protein-polymer hydrophobic interactions.  相似文献   

18.
This paper examines the reversed-phase liquid chromatographic behavior of ribonuclease A (RNase) using an n-butyl chemically bonded phase and a gradient of 10 mM H3PO4 and l-propanol. At a column temperature of 25 degrees C, a broad band followed by an overlapped late-eluting sharp peak is observed. As the temperature is raised, the sharp peak grows at the expense of the broad band until at 37 degrees C, only a single narrow-eluting band is found. Using an absorbance ratio of A288/A254, it is demonstrated that the broad band represents a folded or native state of RNase and the late-eluting band a denatured state. Based on postcolumn absorbance ratio changes in the denatured state as a function of time and the known behavior of the protein, reversible refolding or renaturation is proposed to take place in solution. RNase is denatured upon adsorbing to the bonded phase, and upon migration down the column, reversible refolding takes place in the mobile phase. The relaxation time for native state formation is assumed to be comparable to the time spent by RNase in the mobile phase. As temperature is raised, both the native and denatured states exist at equilibrium in solution, thus slowing the refolding process, until at 37 degrees C only the denatured peak appears. Changes in peak shape with flow rate provide further evidence for this model. The use of HCl or H2SO4 instead of H3PO4 yields similar results except that the temperature at which only the denatured peak is observed follows the order of salt stabilization of the native state.  相似文献   

19.
The effect of protein aggregates on the aggregation of d-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) during unfolding and refolding has been studied. The aggregation of GAPDH follows a sigmoid course. The presence of protein aggregates increases the aggregation rate during unfolding and refolding of GAPDH but does not change the extent of aggregation and the final renaturation yield. It is suggested that protein aggregates function as seeds for aggregation via hydrophobic interaction with only GAPDH folding intermediates destined to aggregate and do not affect the distribution between pathways leading to correct folding and aggregation. Moreover, two different proteins do not interfere with each other during their simultaneous refolding together in a buffer. These findings provide insight into a mechanism by which cells prevent protein folding against the interference from aggregation of other proteins.  相似文献   

20.
Patra AK  Udgaonkar JB 《Biochemistry》2007,46(42):11727-11743
The mechanisms of folding and unfolding of the small plant protein monellin have been delineated in detail. For this study, a single-chain variant of the natively two-chain monellin, MNEI, was used, in which the C terminus of chain B was connected to the N terminus of chain A by a Gly-Phe linker. Equilibrium guanidine hydrochloride (GdnHCl)-induced unfolding experiments failed to detect any partially folded intermediate that is stable enough to be populated at equilibrium to a significant extent. Kinetic experiments in which the refolding of GdnHCl-unfolded protein was monitored by measurement of the change in the intrinsic tryptophan fluorescence of the protein indicated the accumulation of three transient partially structured folding intermediates. The fluorescence change occurred in three kinetic phases: very fast, fast, and slow. It appears that the fast and slow changes in fluorescence occur on competing folding pathways originating from one unfolded form and that the very fast change in fluorescence occurs on a third parallel pathway originating from a second unfolded form of the protein. Kinetic experiments in which the refolding of alkali-unfolded protein was monitored by the change in the fluorescence of the hydrophobic dye 8-anilino-1-naphthalenesulfonic acid (ANS), consequent to the dye binding to the refolding protein, as well as by the change in intrinsic tryptophan fluorescence, not only confirmed the presence of the three kinetic intermediates but also indicated the accumulation of one or more early intermediates at a few milliseconds of refolding. These experiments also exposed a very slow kinetic phase of refolding, which was silent to any change in the intrinsic tryptophan fluorescence of the protein. Hence, the spectroscopic studies indicated that refolding of single-chain monellin occurs in five distinct kinetic phases. Double-jump, interrupted-folding experiments, in which the accumulation of folding intermediates and native protein during the folding process could be determined quantitatively by an unfolding assay, indicated that the fast phase of fluorescence change corresponds to the accumulation of two intermediates of differing stabilities on competing folding pathways. They also indicated that the very slow kinetic phase of refolding, identified by ANS binding, corresponds to the formation of native protein. Kinetic experiments in which the unfolding of native protein in GdnHCl was monitored by the change in intrinsic tryptophan fluorescence indicated that this change occurs in two kinetic phases. Double-jump, interrupted-unfolding experiments, in which the accumulation of unfolding intermediates and native protein during the unfolding process could be determined quantitatively by a refolding assay, indicated that the fast unfolding phase corresponds to the formation of fully unfolded protein via one unfolding pathway and that the slow unfolding phase corresponds to a separate unfolding pathway populated by partially unfolded intermediates. It is shown that the unfolded form produced by the fast unfolding pathway is the one which gives rise to the very fast folding pathway and that the unfolded form produced by the slower unfolding pathway is the one which gives rise to the slow and fast folding pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号