首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Epigenetic silencing is one of the mechanisms leading to inactivation of a tumor suppressor gene, either by DNA methylation or histone modification in a promoter regulatory region. Mitogen inducible gene 6 (MIG-6), mainly known as a negative feedback inhibitor of the epidermal growth factor receptor (EGFR) family, is a tumor suppressor gene that is associated with many human cancers. To determine if MIG-6 is inactivated by epigenetic alteration, we identified a group of human lung cancer and melanoma cell lines in which its expression is either low or undetectable and studied the effects of methylation and of histone deacetylation on its expression. The DNA methyltransferase (DNMT) inhibitor 5-aza-2'-deoxycytidine (5-aza-dC) induced MIG-6 expression in melanoma cell lines but little in lung cancer lines. By contrast, the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) induced MIG-6 expression in lung cancer lines but had little effect in melanoma lines. However, the MIG-6 promoter itself did not appear to be directly affected by either methylation or histone deacetylation, indicating an indirect regulatory mechanism. Luciferase reporter assays revealed that a short segment of exon 1 in the MIG-6 gene is responsible for TSA response in the lung cancer cells; thus, the MIG-6 gene can be epigenetically silenced through an indirect mechanism without having a physical alteration in its promoter. Furthermore, our data also suggest that MIG-6 gene expression is differentially regulated in lung cancer and melanoma.  相似文献   

3.
4.
5.
SIR2-like proteins have been implicated in a wide range of cellular events including chromosome silencing, chromosome segregation, DNA recombination and the determination of life span. We report here the molecular and functional characterization of a SIR2-related protein from the protozoan parasite Trypanosoma brucei, which we termed TbSIR2RP1. This protein is a chromosome-associated NAD-dependent enzyme which, in contrast to other known proteins of this family, catalyses both ADP-ribosylation and deacetylation of histones, particulary H2A and H2B. Under- or overexpression of TbSIR2RP1 decreased or increased, respectively, cellular resistance to DNA damage. Treatment of trypanosomal nuclei with a DNA alkylating agent resulted in a significant increase in the level of histone ADP-ribosylation and a concomitant increase in chromatin sensitivity to micrococcal nuclease. Both of these responses correlated with the level of TbSIR2RP1 expression. We propose that histone modification by TbSIR2RP1 is involved in DNA repair.  相似文献   

6.
Epigenetic regulation by histone methylation and histone variants   总被引:10,自引:0,他引:10  
Epigenetics is the study of heritable changes in gene expression that are not mediated at the DNA sequence level. Molecular mechanisms that mediate epigenetic regulation include DNA methylation and chromatin/histone modifications. With the identification of key histone-modifying enzymes, the biological functions of many histone posttranslational modifications are now beginning to be elucidated. Histone methylation, in particular, plays critical roles in many epigenetic phenomena. In this review, we provide an overview of recent findings that shape the current paradigms regarding the roles of histone methylation and histone variants in heterochromatin assembly and the maintenance of the boundaries between heterochromatin and euchromatin. We also highlight some of the enzymes that mediate histone methylation and discuss the stability and inheritance of this modification.  相似文献   

7.
Suppression of histone deacetylation in vivo and in vitro by sodium butyrate   总被引:14,自引:0,他引:14  
In HeLa cells which have been exposed to 5 mM sodium butyrate for 21 h, the level of histone acetylation is greatly increased as compared to control cells (Riggs, M.G., Whittaker, R.G., Neumann, J.R., and Ingram, V.R. (1977) Nature 268, 462-464). Our experiments indicate that the increase in the relative amounts of multiacetylated forms of histones H4 and H3 following butyrate treatment is the result of an inhibition of histone deacetylase activity.  相似文献   

8.
Blocking histone deacetylation with trichostatin A (TSA) or blocking cytosine methylation using 5-aza-2'-deoxycytosine (aza-dC) can derepress silenced genes in multicellular eukaryotes, including animals and plants. We questioned whether DNA methylation and histone deacetylation overlap in the regulation of endogenous plant genes by monitoring changes in expression of approximately 7800 Arabidopsis thaliana genes following treatment with azadC, TSA, or both chemicals together. RNA levels for approximately 4% of the genes were reproducibly changed 3-fold or more by at least one treatment. Distinct subsets of genes are up-regulated or down-regulated in response to aza-dC, TSA, or simultaneous treatment with both chemicals, with little overlap among subsets. Surprisingly, the microarray data indicate that TSA and aza-dC are often antagonistic rather than synergistic in their effects. Analysis of green fluorescent protein transgenic plants confirmed this finding, showing that TSA can block the up-regulation of silenced green fluorescent protein transgenes in response to aza-dC or a ddm1 (decrease in DNA methylation 1) mutation. Our results indicate that global inhibition of DNA methylation or histone deacetylation has complex, nonredundant effects for the majority of responsive genes and suggest that activation of some genes requires one or more TSA-sensitive deacetylation events in addition to cytosine demethylation.  相似文献   

9.
10.
Yu J  Li Y  Ishizuka T  Guenther MG  Lazar MA 《The EMBO journal》2003,22(13):3403-3410
Nuclear receptor corepressors SMRT (silencing mediator of retinoid and thyroid receptors) and N-CoR (nuclear receptor corepressor) recruit histone deacetylase (HDAC) activity to targeted regions of chromatin. These corepressors contain a closely spaced pair of SANT motifs whose sequence and organization is highly conserved. The N-terminal SANT is a critical component of a deacetylase activation domain (DAD) that binds and activates HDAC3. Here, we show that the second SANT motif functions as part of a histone interaction domain (HID). The HID enhances repression by increasing the affinity of the DAD-HDAC3 enzyme for histone substrate. The two SANT motifs synergistically promote histone deacetylation and repression through unique functions. The HID contribution to repression is magnified by its ability to inhibit histone acetyltransferase enzyme activity. Remarkably, the SANT-containing HID preferentially binds to unacetylated histone tails. This implies that the SMRT HID participates in interpreting the histone code in a feed-forward mechanism that promotes and maintains histone deacetylation at genomic sites of SMRT recruitment.  相似文献   

11.
The yeast SIR2 gene and many of its homologs have been identified as NAD(+)-dependent histone deacetylases. To get a broader view of the relationship between the histone deacetylase activity of Sir2p and its in vivo functions we have mutated eight highly conserved residues in the core domain of SIR2. These mutations have a range of effects on the ability of Sir2p to deacetylate histones in vitro and to silence genes at the telomeres and HM loci. Interestingly, there is not a direct correlation between the in vitro and in vivo effects in some of these mutations. We also show that the histone deacetylase activity of Sir2p is necessary for the proper localiztion of the SIR complex to the telomeres.  相似文献   

12.
Cell-free extracts of methanol-grown Nocardia sp. 239 only show significant dye-linked methanol-oxidizing activity when NAD+ is added to the assay mixture. This activity resides in a multienzyme complex which could be resolved into 3 components, namely the methanol dehydrogenase, NAD-dependent aldehyde dehydrogenase and NADH dehydrogenase. In its dissociated form, the methanol dehydrogenase no longer shows dye reduction and although rises in the absorbance values around 340 nm are seen on addition of methanol plus NAD+ to the enzyme, this is not due to NADH production. However, dye reduction (NAD dependent) could be restored on incubating methanol dehydrogenase with the corresponding NADH dehydrogenase, obtained from the enzyme complex. It is concluded that this novel methanol dehydrogenase transfers the reducing equivalents, derived from methanol, directly to its associated NADH dehydrogenase via a mechanism in which NAD+ and PQQ are involved.  相似文献   

13.
14.
15.
Molecular and Cellular Biochemistry - Neurodegenerative diseases, such as Parkinson’s disease, represent a biggest challenge for medicine, imposing high social and economic impacts. As a...  相似文献   

16.
Many recent studies have demonstrated recruitment of chromatin-modifying enzymes to double-strand breaks. Instead, we wanted to examine chromatin modifications during the repair of these double-strand breaks. We show that homologous recombination triggers the acetylation of N-terminal lysines on histones H3 and H4 flanking a double-strand break, followed by deacetylation of H3 and H4. Consistent with a requirement for acetylation and deacetylation during homologous recombination, Saccharomyces cerevisiae with substitutions of the acetylatable lysines of histone H4, deleted for the N-terminal tail of histone H3 or H4, deleted for the histone acetyltransferase GCN5 gene or the histone deacetylase RPD3 gene, shows inviability following induction of an HO lesion that is repaired primarily by homologous recombination. Furthermore, the histone acetyltransferases Gcn5 and Esa1 and the histone deacetylases Rpd3, Sir2, and Hst1 are recruited to the HO lesion during homologous recombinational repair. We have also observed a distinct pattern of histone deacetylation at the donor locus during homologous recombination. Our results demonstrate that dynamic changes in histone acetylation accompany homologous recombination and that the ability to modulate histone acetylation is essential for viability following homologous recombination.  相似文献   

17.
18.
Chen J  Zhang XQ  Fu JL 《生理科学进展》2001,32(4):362-364
组蛋白乙酰化和脱乙酰化与DNA甲基化有密切的关系,本文介绍了DNA甲基化对组蛋白乙酰化/脱乙酰化影响,组蛋白乙酰化/脱乙酰化对DNA甲基化的影响,以及组蛋白乙酰化/脱乙酰化和DNA甲基化协同效应。  相似文献   

19.
We have utilized sodium butyrate-treated normal human diploid fibroblasts to study core histone hyperacetylation kinetics. We report a small, distinct population of core histone characterized by a very rapid rate of hyperacetylation (t12≈10–15 min for monoacetylated histone H4) compared to the slower rate (t12≈140–200 min for monoacetylated H4) observed for bulk histone. Two rates of core histone deacetylation were also detected and we demonstrated that the rapidly hypermodified histone H4 population was also rapidly deacetylated. The kinetics of histone H4 hyperacetylation and deacetylation in these cells were not significantly altered, regardless of whether cultures were exponentially growing, confluent or arrested in an essentially non-mitotic state.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号