首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transfer of the glucosyl moiety from uridine diphosphate glucose in the presence of Acetobacter xylinum cell-free extracts led to the formation of a mixture of alkali-soluble and -insoluble cellodextrins. Typical cellulose fibrils could not be detected by electron microscopy in this product. Immediately after release into the medium, cellulose formed by whole cells is in a "prefibrous" form which passes through Millipore filters of 0.45 and 0.8 µ pore diameter. Non-filtrable fibrils arise from this material probably by a process of crystallization involving no extracellular enzymes. Fibrils formed in shaken cell suspensions intertwine and form aggregates visible to the naked eye. In quiet suspensions pellicles are formed which float on the surface. Soluble Na-carboxymethylcellulose (CMC) is incorporated into cellulose fibrils formed in its presence, probably by a process of co-crystallization. Aggregation of fibrils containing CMC is delayed because of electrostatic repulsion between carboxylic groups. The aggregation time depends on the amount of CMC incorporated, its degree of substitution, the pH of the medium, and the ionic strength. The amount of CMC incorporated depends on the relative concentration CMC/cellulose and on the similarity of the CMC and the cellulose molecules i.e. in molecular weight and the number of carboxyl substitutions. Cellulose pellicles formed in the presence of CMC by unshaken cell suspensions consist of crossed, superimposed layers of parallel oriented cellulose fibrils. The same phenomenon is observed when phosphomannan, but not levan, is substituted for CMC. The biogenesis of oriented cellulose fibrils is envisaged as a process comprising the following steps: polymerization of the monomeric precursor, diffusion of the molecule to crystallization sites, crystallization, and orientation. It is proposed that charged polysaccharides play a role similar to that of CMC in affecting the orientation of cellulose fibrils in the plant cell wall.  相似文献   

2.
Acetobacter xylinum生产纤维素的最适培养基成分   总被引:10,自引:0,他引:10  
探索出胶醋杆菌在摇瓶培养最适培养基成分为蛋白胨浓度1.0%、酵母膏0.5%、葡萄糖浓度2.0%、柠檬酸0.115%、乙醇1%、Na2HPO40.5%,pH6.0,160r/min的条件下进行摇瓶培养,细菌纤维素最大产量为7.55g/l。  相似文献   

3.
THE DECOMPOSITION OF CELLULOSE BY AEROBIC BACTERIA   总被引:1,自引:1,他引:0  
  相似文献   

4.
The reconstruction of the nucleolus after mitosis was analyzed by electron microscopy in cultured mammalian (L929) cells in which nucleolar RNA synthesis was inhibited for a 3 h period either after or before mitosis. When synchronized mitotic cells were plated into a concentration of actinomycin D sufficient to block nucleolar RNA synthesis preferentially, nucleoli were formed at telophase as usual. 3 h after mitosis, these nucleoli had fibrillar and particulate components and possessed the segregated appearance characteristic of nucleoli of actinomycin D-treated cells. Cells in which actinomycin D was present for the last 3 h preceding mitosis did not form nucleoli by 3 h after mitosis though small fibrillar prenucleolar bodies were detectable at this time. These bodies subsequently grew in size and eventually acquired a particulate component. It took about a full cell cycle before nucleoli of these cells were completely normal in appearance. Thus, nucleolar RNA synthesis after mitosis is not necessary for organization of nucleoli after mitosis. However, inhibition of nucleolar RNA synthesis before mitosis renders the cell incapable of forming nucleoli immediately after mitosis. If cells are permitted to resume RNA synthesis after mitosis, they eventually regain nucleoli of normal morphology.  相似文献   

5.
Information on the sites of cellulose synthesis and the diversity and evolution of cellulose-synthesizing enzyme complexes (terminal complexes) in algae is reviewed. There is now ample evidence that cellulose synthesis occurs at the plasma membrane-bound cellulose synthase, with the exception of some algae that produce cellulosic scales in the Golgi apparatus. Freeze-fracture studies of the supramolecular organization of the plasma membrane support the view that the rosettes (a six-subunit complex) in higher plants and both the rosettes and the linear terminal complexes (TCs) in algae are the structures that synthesize cellulose and secrete cellulose microfibrils. In the Zygnemataceae, each single rosette forms a 5-nm or 3-nm single “elementary” microfibril (primary wall), whereas rosettes arranged in rows of hexagonal arrays synthesize criss-crossed bands of parallel cellulose microfibrils (secondary wall). In Spirogyra, it is proposed that each of the six subunits of a rosette might synthesize six β-1,4-glucan chains that cocrystallize into a 36-glucan chain “elementary” microfibril, as is the case in higher plants. One typical feature of the linear terminal complexes in red algae is the periodic arrangement of the particle rows transverse to the longitudinal axis of the TCs. In bangiophyte red algae and in Vaucheria hamata, cellulose microfibrils are thin, ribbon-shaped structures, 1–1.5 nm thick and 5–70 nm wide; details of their synthesis are reviewed. Terminal complexes appear to be made in the endoplasmic reticulum and are transferred to Golgi cisternae, where the cellulose synthases are activated and may be transported to the plasma membrane. In algae with linear TCs, deposition follows a precise pattern directed by the movement and the orientation of the TCs (membrane flow). A principal underlying theme is that the architecture of cellulose microfibrils (size, shape, crystallinity, and intramicrofibrillar associations) is directly related to the geometry of TCs. The effects of inhibitors on the structure of cellulose-synthetizing complexes and the relationship between the deposition of the cellulose microfibrils with cortical microtubules and with the membrane-embedded TCs is reviewed In Porphyra yezoensis, the frequency and distribution of TCs reflect polar tip growth in the apical shoot cell.The evolution of TCs in algae is reviewed. The evidence gathered to date illustrates the utility of terminal complex organization in addressing plant phylogenetic relationships.  相似文献   

6.
纤维素分解菌对不同纤维素类物质的分解作用   总被引:39,自引:4,他引:39  
经过CMC平板、滤纸液化和摇瓶培养试验 ,发现 6株菌中 ,产黄纤维单胞菌 (CellulomonasFlav igena)和康氏木霉 (Trichodermakonigii)分解纤维素类物质的能力比较强 ,对来源不同的纤维素类物质分解能力差异很大 ;真菌与细菌一起接种时 ,分解纤维素类物质的速度明显高于其中任何一个单一菌株 ,说明纤维素类物质的分解需要多种微生物的联合作用  相似文献   

7.
本文介绍了微球菌(Micrococcussp)1504胞外脂肪酶的代谢调节模式。发现在发酵培养基中,通过补加长链脂肪酸及其油酯,能提高脂肪酶的生产水平,而中、短链脂肪酸及其酯抑制产酶能力;高浓度的葡萄糖抑制产酶能力;补加不同浓度的橄揽油,适宜补加时间也应不同。水洗细胞脂肪酶的合成受橄榄油和油酸诱导,受葡萄糖和甘油阻遏,并发现脂肪酶的分解代谢阻遏主要发生在转录水平上。  相似文献   

8.
9.
10.
SUMMARY: Suspensions of Salmonella ndolo were dried in vacuo on both cellulose and calcium alginate fibres and recovered without loss. High recoveries were also obtained after the same organism had been dried on cellulose fibres and stored for a period of six months at room temperature.  相似文献   

11.
糙皮侧耳(Pleurotusostreatus)、密粘褶菌(Gloeophyllumtrabeum)、洁丽香菇(Lentinuslepideus)等8株褐腐菌在滤纸上进行固体培养时,在培养初期,纤维素的聚合度均呈现大幅度下降,但不表现失重。培养过程中也未能检测出滤纸酶活力,只有少量内切葡聚糖酶活力。而且这8株菌都具有络合Fd3+和产生羟基自由基·OH的能力。由降解和解聚能力最强的密粘语菌的胞外酶液在SephadexLH-20上分离得到一可络合Fe3+的低分子多肽组分,它与H2O2具有协同降解纤维素的作用,其机制与Fenton's试剂作用相似。Fe2+与H2O2反应生成的·OH可使纤维素氧化断裂,使之成为短小纤维,从而大幅度降低聚合度。  相似文献   

12.
STIMULATION OF BRAIN DOPAMINE SYNTHESIS BY GAMMA-HYDROXYBUTYRATE   总被引:1,自引:1,他引:0  
Abstract— Gamma-hydroxybutyrate administration produces a marked selective increase of brain dopamine in different animal species. Following γ -hydroxybutyrate administration, dopamine accumulated in the basal ganglia of the rat and in the caudate nucleus of the rabbit at a rate which greatly exceeded the normal synthesis rate of the amine in these species. Dopamine accumulation was prevented by α -methyltyrosine. These data indicate that γ -hydroxybutyrate stimulates dopamine synthesis. In addition, γ -hydroxybutyrate increased the homovanillic acid level in the rat basal ganglia to a maximum of about 300 per cent of the normal level indicating that γ -hydroxybutyrate inhibits neither monoamine oxidase nor catechol O -methyltransferase in vivo. The possible mechanisms of dopamine accumulation following γ -hydroxybutyrate administration are discussed.  相似文献   

13.
14.
固定化嗜热脂肪芽孢杆菌合成低聚半乳糖   总被引:7,自引:2,他引:7  
利用海藻酸钙、明胶和壳聚糖为固定化载体包埋嗜热脂肪芽孢杆菌细胞合成低聚半乳糖 (GOS)。通过比较三种方法的酶活力回收、最适反应条件、GOS的得率和和载体机械强度 ,选择明胶作为固定化细胞的载体。反应体系的温度、pH、乳糖浓度、乳糖的转化率和载体的传质阻力对GOS合成有明显影响。在CSTR反应器中水解 60 %乳糖 ,GOS最大得率为31 2 % ,经过 96h( 8批反应 ) ,产物得率为原来的 88%。在空速 0 0 9h- 1条件下 ,利用填充床反应器连续水解乳糖 ,GOS的得率和反应器生产能力分别为 31 5%和 1 7 4g (L·h) ,连续反应1 40h,GOS得率下降 2 0 %。产物经过活性炭柱层柱分离纯化 ,通过13C NMR鉴定四糖的化学结构为 β D Gal ( 1→ 3) D Gal ( 1→ 6) D G ( 1→ 4) D Glu。  相似文献   

15.
从全合成战略与路线,关键反应,保护基应用和立体化学方面对Holton的线性全合成紫杉醇路线进行剖析归纳。  相似文献   

16.
17.
18.
19.
20.
The subcellular distribution of the biosynthetic intermediates of catalase was studied in the livers of rats receiving a mixture of [3H]leucine and [14C]δ-aminolevulinic acid by intraportal injection. Postnuclear supernates were fractionated by a one-step gradient centrifugation technique that separates the main subcellular organelles, partly on the basis of size, and partly on the basis of density. Labeled catalase and its biosynthetic intermediates were separated from the gradient fractions by immunoprecipitation, and the distributions of radioactivity were compared with those of marker enzymes. The results show that catalase protein is synthesized outside the peroxisomes, but rapidly appears in these particles, mostly still in the form of the first hemeless biosynthetic intermediate. Addition of heme and completion of the catalase molecule take place within the peroxisomes. During the first 15 min after [3H]leucine administration, more than half of the newly formed first intermediate was recovered in the supernatant fraction, where it was found to exist as an aposubunit of about 60,000 molecular weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号