首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 79 毫秒
1.
《Free radical research》2013,47(4):565-576
Abstract

The study of Alzheimer's disease neuropathology has been intimately associated with the field of oxidative stress for nearly 20 years. Indeed, increased markers of oxidative stress have been associated with this neurodegenerative condition, resulting from oxidation of lipids, proteins and nucleic acids. Increased nuclear and mitochondrial DNA oxidation are observed in Alzheimer's disease, stemming from increased reactive oxygen species attack to DNA bases and from the impairment of DNA repair mechanisms. Moreover, mitochondrial DNA is found to be more extensively oxidized than nuclear DNA. This review is intended to summarizes the most important cellular reactive oxygen species producers and how mitochondrial dysfunction, redox-active metals dyshomeostasis and NADPH oxidases contribute to increased oxidative stress in Alzheimer's disease. A summary of the antioxidant system malfunction will also be provided. Moreover, we will highlight the mechanisms of DNA oxidation and repair. Importantly, we will discuss evidence relating the DNA repair machinery and accumulated DNA oxidation with Alzheimer's disease.  相似文献   

2.
The study of Alzheimer's disease neuropathology has been intimately associated with the field of oxidative stress for nearly 20 years. Indeed, increased markers of oxidative stress have been associated with this neurodegenerative condition, resulting from oxidation of lipids, proteins and nucleic acids. Increased nuclear and mitochondrial DNA oxidation are observed in Alzheimer's disease, stemming from increased reactive oxygen species attack to DNA bases and from the impairment of DNA repair mechanisms. Moreover, mitochondrial DNA is found to be more extensively oxidized than nuclear DNA. This review is intended to summarizes the most important cellular reactive oxygen species producers and how mitochondrial dysfunction, redox-active metals dyshomeostasis and NADPH oxidases contribute to increased oxidative stress in Alzheimer's disease. A summary of the antioxidant system malfunction will also be provided. Moreover, we will highlight the mechanisms of DNA oxidation and repair. Importantly, we will discuss evidence relating the DNA repair machinery and accumulated DNA oxidation with Alzheimer's disease.  相似文献   

3.
Alzheimer disease (AD) and Parkinson disease (PD) are the two most common age-related neurodegenerative diseases characterized by prominent neurodegeneration in selective neural systems. Although a small fraction of AD and PD cases exhibit evidence of heritability, among which many genes have been identified, the majority are sporadic without known causes. Molecular mechanisms underlying neurodegeneration and pathogenesis of these diseases remain elusive. Convincing evidence demonstrates oxidative stress as a prominent feature in AD and PD and links oxidative stress to the development of neuronal death and neural dysfunction, which suggests a key pathogenic role for oxidative stress in both AD and PD. Notably, mitochondrial dysfunction is also a prominent feature in these diseases, which is likely to be of critical importance in the genesis and amplification of reactive oxygen species and the pathophysiology of these diseases. In this review, we focus on changes in mitochondrial DNA and mitochondrial dynamics, two aspects critical to the maintenance of mitochondrial homeostasis and function, in relationship with oxidative stress in the pathogenesis of AD and PD.  相似文献   

4.

Background

DNA and RNA oxidations have been linked to diseases such as cancer, arteriosclerosis, neurodegeneration and diabetes. The prototype base modification studied is the 8-hydroxylation of guanine. DNA integrity is maintained by elaborate repair systems and RNA integrity is less studied but relies mainly on degradation.

Scope of review

DNA and RNA oxidations are measured by very similar techniques. The scope of this review is to highlight the preferred methods of measurement of oxidized nucleic acid metabolites, to highlight novel findings particularly in RNA oxidation, and to present the interpretation of the measurements.

Major conclusions

Tissue levels are snap-shots of the level in a specific organ or cell system and reflect the balance between formation rate and elimination rate (repair), and must be interpreted as such. Urinary excretion is a global measure of oxidative stress in an organism and is therefore best suited for situations or diseases where large parts or the entire organism is stressed by oxidation. It represents the body average rate by which either RNA or DNA is oxidized and is interpreted as oxidative stress. Oxidations of RNA and DNA precursors have been demonstrated and the quantitative importance is debated.

General significance

Careful experimental designs and appropriate choice of methodology are paramount for correct testing of hypotheses related to oxidative stress, and pitfalls are plentiful. There is accumulating evidence that DNA oxidation is associated with disease, particularly cancer, and recent evidence points at an association between RNA oxidation and neurodegenerative diseases and diabetes. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.  相似文献   

5.
Alzheimer disease (AD) is a progressive dementia affecting a large proportion of the aging population. The histopathological changes in AD include neuronal cell death, formation of amyloid plaques and neurofibrillary tangles. There is also evidence that brain tissue in patients with AD is exposed to oxidative stress (e.g., protein oxidation, lipid oxidation, DNA oxidation and glycoxidation) during the course of the disease. Advanced glycation endproducts (AGEs) are present in amyloid plaques in AD, and its extracellular accumulation may be caused by an accelerated oxidation of glycated proteins. AGEs participate in neuronal death causing direct (chemical) and indirect (cellular) free radical production and consequently increase oxidative stress. The development of drugs for the treatment of AD that breaks the vicious cycles of oxidative stress and neurodegeneration offer new opportunities. These approaches include AGE-inhibitors, antioxidants and anti-inflammatory substances, which prevent free radical production.Key words: ageing, advanced glycation endproducts, Alzheimer disease, amyloid, oxidative stress  相似文献   

6.
Extensive literature exists supporting a role for mitochondrial dysfunction and oxidative damage in the pathogenesis of Alzheimer disease. Mitochondria are a major source of intracellular reactive oxygen species and are themselves particularly vulnerable to oxidative stress. It has been recently shown that the immunoreactivity of lipoic acid and cytochrome oxidase-1, two mitochondrial markers, is increased in the cytoplasm of pyramidal neurons in Alzheimer disease cases compared with controls. Furthermore, lipoic acid was found to be strongly associated with granular structures and, by ultrastructure analysis, shown to be localized in mitochondria, cytosol and, importantly, in organelles identified as autophagic vacuoles. Lipoic acid was also found associated with the electron dense core of lipofuscin in the brains of Alzheimer disease cases but not in controls, whereas cytochrome oxidase-1 immunoreactivity was limited to mitochondria and cytosol in both Alzheimer and control cases. These data suggest that mitochondria are key targets of increased autophagic degradation in Alzheimer disease. The study of autophagy in Alzheimer disease could clarify the mechanisms underlying this neurodegenerative disorder and, eventually, help in the development of new therapeutic strategies.  相似文献   

7.
Oxidative stress has been associated with the onset and progression of mild cognitive impairment (MCI) and Alzheimer disease (AD). AD and MCI brain and plasma display extensive oxidative stress as indexed by protein oxidation, lipid peroxidation, free radical formation, DNA oxidation, and decreased antioxidants. The most abundant endogenous antioxidant, glutathione, plays a significant role in combating oxidative stress. The ratio of oxidized to reduced glutathione is utilized as a measure of intensity of oxidative stress. Antioxidants have long been considered as an approach to slow down AD progression. In this review, we focus on the elevation on glutathione through N-acetyl-cysteine (NAC) and γ-glutamylcysteine ethyl ester (GCEE) as a potential therapeutic approach for Alzheimer disease. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.  相似文献   

8.
Mammalian mitochondria contain several 16.5 kb circular DNAs (mtDNA) encoding electron transport chain proteins. Reactive oxygen species formed as byproducts from oxidative phosphorylation in these organelles can cause oxidative deamination of cytosine and lead to uracil in mtDNA. Upon mtDNA replication, these lesions, if unrepaired, can lead to mutations. Until recently, it was thought that there was no DNA repair in mitochondria, but lately there is evidence that some lesions are efficiently repaired in these organelles. In the study of nuclear DNA repair, the in vitro repair measurements in cell extracts have provided major insights into the mechanisms. The use of whole-cell extract based DNA repair methods has revealed that mammalian nuclear base excision repair (BER) diverges into two pathways: the single-nucleotide replacement and long patch repair mechanisms. Similar in vitro methods have not been available for the study of mitochondrial BER. We have established an in vitro DNA repair system supported by rat liver mitochondrial protein extract and DNA substrates containing a single uracil opposite to a guanine. Using this approach, we examined the repair pathways and the identity of the DNA polymerase involved in mitochondrial BER (mtBER). Employing restriction analysis of in vitro repaired DNA to map the repair patch size, we demonstrate that only one nucleotide is incorporated during the repair process. Thus, in contrast to BER in the nucleus, mtBER of uracil in DNA is solely accomplished by single-nucleotide replacement.  相似文献   

9.
Asbestos causes asbestosis and various malignancies by mechanisms that are not clearly defined. Here, we review the accumulating evidence showing that asbestos is directly genotoxic by inducing DNA strand breaks (DNA-SB) and apoptosis in relevant lung target cells. Although the exact mechanisms by which asbestos causes DNA damage and apoptosis are not firmly established, some of the implicated mechanisms include the generation of iron-derived reactive oxygen species (ROS) as well as reactive nitrogen species (RNS), alteration in the mitochondrial function, and activation of the death receptor pathway. We focus on the accumulating evidence implicating ROS. DNA repair mechanisms have a key role in limiting the extent of DNA damage. Recent studies show that asbestos activates DNA repair enzymes such as apurinic/apyrimidinic endonuclease (APE) and poly (ADP-ribose) polymerase (PARP). Asbestos-induced neoplastic transformation may result in the setting where DNA damage overwhelms DNA repair in the face of a persistent proliferative signal. Strategies aimed at limiting asbestos-induced oxidative stress may reduce DNA damage and, as such, prevent malignant transformation.  相似文献   

10.
11.
Mild cognitive impairment (MCI) occurs during the predementia stage of Alzheimer disease (AD) and is characterized by a decline in cognitive abilities that frequently represents a transition between normal cognition and AD dementia. Its pathogenesis is not well understood. Here, we demonstrate the direct consequences and potential mechanisms of oxidative stress and mitochondrial dynamic and functional defects in MCI-derived mitochondria. Using a cytoplasmic hybrid (cybrid) cell model in which mitochondria from MCI or age-matched non-MCI subjects were incorporated into a human neuronal cell line depleted of endogenous mitochondrial DNA, we evaluated the mitochondrial dynamics and functions, as well as the role of oxidative stress in the resultant cybrid lines. We demonstrated that increased expression levels of mitofusin 2 (Mfn2) are markedly induced by oxidative stress in MCI-derived mitochondria along with aberrant mitochondrial functions. Inhibition of oxidative stress rescues MCI-impaired mitochondrial fusion/fission balance as shown by the suppression of Mfn2 expression, attenuation of abnormal mitochondrial morphology and distribution, and improvement in mitochondrial function. Furthermore, blockade of MCI-related stress-mediated activation of extracellular signal-regulated kinase (ERK) signaling not only attenuates aberrant mitochondrial morphology and function but also restores mitochondrial fission and fusion balance, in particular inhibition of overexpressed Mfn2. Our results provide new insights into the role of the oxidative stress–ERK–Mfn2 signal axis in MCI-related mitochondrial abnormalities, indicating that the MCI phase may be targetable for the development of new therapeutic approaches that improve mitochondrial function in age-related neurodegeneration.  相似文献   

12.
Oxidative DNA damage processing in nuclear and mitochondrial DNA   总被引:5,自引:0,他引:5  
Bohr VA  Dianov GL 《Biochimie》1999,81(1-2):155-160
Living organisms are constantly exposed to oxidative stress from environmental agents and from endogenous metabolic processes. The resulting oxidative modifications occur in proteins, lipids and DNA. Since proteins and lipids are readily degraded and resynthesized, the most significant consequence of the oxidative stress is thought to be the DNA modifications, which can become permanent via the formation of mutations and other types of genomic instability. Many different DNA base changes have been seen following some form of oxidative stress, and these lesions are widely considered as instigators for the development of cancer and are also implicated in the process of aging. Several studies have documented that oxidative DNA lesions accumulate with aging, and it appears that the major site of this accumulation is mitochondrial DNA rather than nuclear DNA. The DNA repair mechanisms involved in the removal of oxidative DNA lesions are much more complex than previously considered. They involve base excision repair (BER) pathways and nucleotide excision repair (NER) pathways, and there is currently a great deal of interest in clarification of the pathways and their interactions. We have used a number of different approaches to explore the mechanism of the repair processes, to examine the repair of different types of oxidative lesions and to measure different steps of the repair processes. Furthermore, we can measure the DNA damage processing in the nuclear DNA and separately, in the mitochondrial DNA. Contrary to widely held notions, mitochondria have efficient DNA repair of oxidative DNA damage.  相似文献   

13.
Alzheimer disease (AD) is an age-related neurodegenerative disorder, characterized histopathologically by the presence of senile plaques (SP), neurofibrillary tangles and synapse loss in selected brain regions. Positron emission tomography (PET) studies of glucose metabolism revealed decreased energetics in brain of subjects with AD and arguably its earliest form, mild cognitive impairment (MCI), and this decrease correlated with brain structural studies using MRI. The main component of senile plaques is amyloid beta-peptide (Aβ), a 40–42 amino acid peptide that as oligomers is capable of inducing oxidative stress under both in vitro and in vivo conditions and is neurotoxic. In the mitochondria isolated from AD brain, Aβ oligomers that correlated with the reported increased oxidative stress markers in AD have been reported. The markers of oxidative stress have been localized in the brain regions of AD and MCI that show pathological hallmarks of this disease, suggesting the possible role of Aβ in the initiation of the free-radical mediated process and consequently to the build up oxidative stress and AD pathogenesis. Using redox proteomics our laboratory found a number of oxidatively modified brain proteins that are directly in or are associated with the mitochondrial proteome, consistent with a possible involvement of the mitochondrial targeted oxidatively modified proteins in AD progression or pathogenesis. The precise mechanistic link between mitochondrial oxidative damage and role of oligomeric Aβ has not been explicated. In this review, we discuss the role of the oxidation of mitochondria-relevant brain proteins to the pathogenesis and progression of AD.  相似文献   

14.
Factors contributing to the outcome of oxidative damage to nucleic acids   总被引:9,自引:0,他引:9  
Oxidative damage to DNA appears to be a factor in cancer, yet explanations for why highly elevated levels of such lesions do not always result in cancer remain elusive. Much of the genome is non-coding and lesions in these regions might be expected to have little biological effect, an inference supported by observations that there is preferential repair of coding sequences. RNA has an important coding function in protein synthesis, and yet the consequences of RNA oxidation are largely unknown. Some non-coding nucleic acid is functional, e.g. promoters, and damage to these sequences may well have biological consequences. Similarly, oxidative damage to DNA may promote microsatellite instability, inhibit methylation and accelerate telomere shortening. DNA repair appears pivotal to the maintenance of genome integrity, and genetic alterations in repair capacity, due to single nucleotide polymorphisms or mutation, may account for inter-individual differences in cancer susceptibility. This review will survey these aspects of oxidative damage to nucleic acids and their implication for disease.  相似文献   

15.
阿尔茨海默病的一个重要病理特征是胞外β淀粉样蛋白沉积形成的老年斑,β淀粉样蛋白可以引起氧化损伤以及神经细胞凋亡等。随着研究的深入,在细胞内也发现了β淀粉样蛋白的存在。线粒体是细胞内ATP和活性氧自由基产生的主要部位,在氧化损伤和细胞凋亡过程中起到重要的作用。近年的研究表明,β淀粉样蛋白对线粒体有很重要的作用。该文主要针对这一领域的进展,介绍了阿尔茨海默病中β淀粉样蛋白对线粒体多个生理过程的作用以及这些作用在阿尔茨海默病中产生的影响。  相似文献   

16.
17.
《Autophagy》2013,9(6):614-615
Extensive literature exists supporting a role for mitochondrial dysfunction and oxidative damage in the pathogenesis of Alzheimer disease. Mitochondria are a major source of intracellular reactive oxygen species and are particularly vulnerable to oxidative stress. It has been recently shown that the immunoreactivity of lipoic acid and cytochrome oxidase-1, two mitochondrial markers, is increased in the cytoplasm of pyramidal neurons in Alzheimer disease cases compared with controls. Furthermore, lipoic acid was found to be strongly associated with granular structures and, by ultrastructure analysis, it was shown to be localized in mitochondria, cytosol and, importantly, in organelles identified as autophagic vacuoles. Lipoic acid was also found associated with the electron dense core of lipofuscin in the brains of Alzheimer disease cases but not in controls, whereas cytochrome oxidase-1 immunoreactivity was limited to mitochondria and cytosol in both Alzheimer and control cases. These data suggest that mitochondria are key targets of increased autophagic degradation in Alzheimer disease. The study of autophagy in Alzheimer disease could clarify the mechanisms underlying this neurodegenerative disorder and, eventually, help in the development of new therapeutic strategies.

Addendum to:

Autophagocytosis of Mitochondria is Prominent in Alzheimer Disease

Moreira PI, Siedlak SL, Wang X, Santos MS, Oliveira CR, Tabaton M, Nunomura A, Szweda LI, Aliev G, Smith MA, Zhu X and Perry G

J Neuropathol Exp Neurol 2007; 66:525-32  相似文献   

18.
Central to oxidative damage in Alzheimer disease is the production of metal-catalyzed hydroxyl radicals that damage every category of macromolecule. Studies on redox-competent copper and iron indicate that redox activity in Alzheimer disease resides exclusively within the cytosol of vulnerable neurons and that chelation with deferoxamine or DTPA removes this activity. We have also found that while proteins that accumulate in Alzheimer disease such as tau, amyloid beta, and apolipoprotein E possess metal-binding sites, metal-associated cellular redox activity is more dependent on metal-nucleic acid binding. Consistent with this finding is the large amount of cytoplasmic RNA in pyramidal neurons. Still, the source of metal-catalyzed redox activity is controversial. Heme oxygenase-1, an enzyme that catalyzes the conversion of heme to iron and biliverdin, is increased in Alzheimer disease suggesting increased heme turnover as a source of redox-active iron. Additionally, the role of mitochondria as a potential source of redox-active metals and oxygen radical production is assuming more prominence. In recent studies, we have found that while mitochondrial DNA and cytochrome C oxidase activity are increased in Alzheimer disease, the number of mitochondria is decreased, indicating accelerated mitochondria turnover. This finding, as well as preliminary studies demonstrating a reduction in microtubule density in neurons in Alzheimer disease suggests mitochondrial dysfunction as a potentially inseparable component of the initiation and progression of Alzheimer disease.  相似文献   

19.
Alzheimer disease (AD) is a progressive dementia affecting a large proportion of the aging population. The histopathological changes in AD include neuronal cell death, formation of amyloid plaques and neurofibrillary tangles. There is also evidence that brain tissue in patients with AD is exposed to oxidative stress (e.g., protein oxidation, lipid oxidation, DNA oxidation and glycoxidation) during the course of the disease. Advanced glycation endproducts (AGEs) are present in amyloid plaques in AD, and its extracellular accumulation may be caused by an accelerated oxidation of glycated proteins. AGEs participate in neuronal death causing direct (chemical) and indirect (cellular) free radical production and consequently increase oxidative stress. The development of drugs for the treatment of AD that breaks the vicious cycles of oxidative stress and neurodegeneration offer new opportunities. These approaches include AGE-inhibitors, antioxidants and anti-inflammatory substances, which prevent free radical production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号