首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Summary. We present the results of ultrastructural and immunocytochemical studies of sugar beet microsporocytes during the developmental phase that begins with the first meiotic metaphase and ends with the formation of young tetrads. The most prominent feature noted during this period of microsporogenesis was the presence of numerous cisternae of endoplasmic reticulum which frequently lie perpendicular to the surface of the plasma membrane and eventually fuse to it. Microscopic observations have been combined with the detection of several carbohydrate epitopes representing pectins and arabinogalactan proteins in the primexine and incipient exine. Pectin domains that possess both low and highly methylesterified epitopes, as well as pectin side chains enriched in (1→4)-β-D-galactose residues, are deposited in this young microspore wall. The epitopes of arabinogalactan protein that bind to JIM13, JIM8, and LM2 antibodies are localised within the callose wall surrounding posttelophase tetrads. The possibility of endoplasmic-reticulum involvement in the synthesis, transport, or metabolism of several microspore wall compounds is discussed. Correspondence and reprints: Institute of Plant Breeding and Acclimatization, Powstańców Wielkopolskich 10, 85-090 Bydgoszcz, Poland.  相似文献   

2.
Female sterility associated with the presence of callose in the nucellus at anthesis was studied in an F1 progeny of two alfalfa plants displaying 5 and 81% ovule sterility. Transgressive segregation was observed and 100% sterile plants were obtained. Two of the sterile plants were used for cytological analyses on sectioned and stain-cleared whole ovules, in comparison to a 100% fertile full sib plant. The first sign of sterility was callose deposition in the nucellus cell walls surrounding the sporogenous cells of the young ovules. At the same stage, no trace of callose was present in ovule primordia of the fertile plant. Megaspore mother cells differentiated in both fertile and sterile ovules and meiosis was initiated, as indicated by chromatin patterning typical of a zygotene stage. However, meiosis was never completed in the sterile plants. In the control, callose was deposited around the meiocyte and as sects between the cells of the dyads and tetrads during meiosis, and disappeared after the completion of meiosis; an embryo sac developed and female fertility was normal. In the sterile ovules, some nucellus cells enlarged and callose accumulation continued forming thick deposits. At anthesis, the sterile ovules lacked an embryo sac and showed massive callose accumulation in the nucellus. Male fertility was normal in female-sterile plants, thus a female-specific arrest of sporogenesis appears to be the cause of sterility. Pistil development was aberrant in some sterile genotypes, even with arrested pistil growth in early flower buds.  相似文献   

3.
We have investigated the possible relation between plant cell-wall constituents and the recalcitrance of the cell to regenerate organs and whole plants in vitro. A temporal and spatial expression of several carbohydrate epitopes was observed both within leaf tissue used for protoplast isolation and within new walls reformed by recalcitrant mesophyll protoplasts of sugar beet ( Beta vulgaris L.); these include four pectic epitopes, one xyloglucan (rhamnogalacturonan I) epitope, two carbohydrate motifs of arabinogalactan proteins (AGPs) and callose. The walls of mesophyll cells and newly formed walls of protoplasts were similar with respect to the presence of large amounts of pectins recognized by JIM7 antibodies, the scarcity of JIM5-pectins and the complete absence of LM5-responding pectin molecules. Their main differences were the significantly higher accumulation of LM6-recognizing pectins and the very conspicuous greater accumulation of AGPs and callose in walls deposited by protoplasts than in those synthesized by donor cells.  相似文献   

4.
On squash preparations of anthers from pollen fertile and sterile plants of sweet pepper (Capsicum annuum L. cv. Severka) callose envelopes of microsporocytes, stained specifically with resorcin blue, were investigated microscopically. During normal course of microsporogenesis in fertile plants the envelopes remained intact up to the stage of microspore tetrads. Then callose begins to dissolve, and that from individual microspores towards the envelope periphery. In sterile analogues of the same cultivar the callose breakdown occurred precociously, usually in the course of the second, but sometimes as early as the first meiotic division of PMCs. Having completed meiosis sporadic microsporocytes formed microspore tetrads. Most PMCs contained an undivided four-nucleate protoplast rimmed with a narrow or wider unstained zone of dissolved callose. In certain cases more condensed callose septa pointing to the furrows on the surface of the PMC protoplast were well-observable in this lytic zone, as a residuum of normal mechanism of tetradogenesis.  相似文献   

5.
Study of male sterility in Taiwania cryptomerioides Hayata (Taxodiaceae)   总被引:2,自引:0,他引:2  
Chen SH  Chung NJ  Wang YN  Lee CL  Lee YL  Tsai PF 《Protoplasma》2006,228(1-3):137-144
Summary. A study of male sterility over a period of three consecutive years on a conifer species endemic to Taiwan, Taiwania cryptomerioides Hayata (Taxodiaceae), was done for this article. With the aids of fluorescence and electron microscopic observations, the ontogenic processes in the fertile and sterile microsporangia are compared, using samples collected from Chitou Experimental Forest and Yeou-Shoei-Keng Clonal Orchard of the National Taiwan University, Nantou, Taiwan. The development of male strobili occurred from August to the end of March. Microsporogenesis starts with the formation of the archesporium and ends with the maturation of 2-celled pollen grains within the dehiscing microsporangium. Before meiosis, there was no significant difference in ultrastructure between the fertile and sterile microsporangia. Asynchronous pollen development with various tetrad forms may occur in the same microsporangium of either fertile or sterile strobili. However, a callose wall was observable in the fertile dyad and tetrad, but not in the sterile one. After dissolution of the callose wall, the fertile microspores were released into the locule, while some sterile microspores still retained as tetrads or dyads with intertwining of exine walls in the proximal faces. As a result, there was no well developed lamellated endexine and no granulate ectexine or intine in the sterile microspores. Eventually, the intracellular structures in sterile microspores were dramatically collapsed before anthesis. The present study shows that the abortion in pollen development is possibly attributed to the absence of the callose wall. The importance of this structure to the male sterility of T. cryptomerioides is discussed. Correspondence and reprints: Department of Life Science, National Taiwan University, 106 Taipei, Taiwan.  相似文献   

6.
Arabinogalactan proteins (AGPs), present in cell walls, plasma membranes and extracellular secretions, are massively glycosylated hydroxyproline-rich proteins that play a key role in several plant developmental processes. After stress treatment, microspores cultured in vitro can reprogramme and change their gametophytic developmental pathways towards embryogenesis, thereby producing embryos which can further give rise to haploid and double haploid plants, important biotechnological tools in plant breeding. Microspore embryogenesis constitutes a convenient system for studying the mechanisms underlying cell reprogramming and embryo formation. In this work, the dynamics of both AGP presence and distribution were studied during pollen development and microspore embryogenesis in Brassica napus, by employing a multidisciplinary approach using monoclonal antibodies for AGPs (LM2, LM6, JIM13, JIM14, MAC207) and analysing the expression pattern of the BnAGP Sta 39–4 gene. Results showed the developmental regulation and defined localization of the studied AGP epitopes during the two microspore developmental pathways, revealing different distribution patterns for AGPs with different antigenic reactivity. AGPs recognized by JIM13, JIM14 and MAC207 antibodies were related to pollen maturation, whereas AGPs labelled by LM2 and LM6 were associated with embryo development. Interestingly, the AGPs labelled by JIM13 and JIM14 were induced with the change of microspore fate. Increases in the expression of the Sta 39–4 gene, JIM13 and JIM14 epitopes found specifically in 2–4 cell stage embryo cell walls, suggested that AGPs are early molecular markers of microspore embryogenesis. Later, LM2 and LM6 antigens increased progressively with embryo development and localized on cell walls and cytoplasmic spots, suggesting an active production and secretion of AGPs during in vitro embryo formation. These results give new insights into the involvement of AGPs as potential regulating/signalling molecules in microspore reprogramming and embryogenesis.  相似文献   

7.

Background and Aims

The morphogenesis of lobed mesophyll cells (MCs) is highly controlled and coupled with intercellular space formation. Cortical microtubule rings define the number and the position of MC isthmi. This work investigated early events of MC morphogenesis, especially the mechanism defining the position of contacts between MCs. The distributions of plasmodesmata, the hemicelluloses callose and (1 → 3,1 → 4)-β-d-glucans (MLGs) and the pectin epitopes recognized by the 2F4, JIM5, JIM7 and LM6 antibodies were studied in the cell walls of Zea mays MCs.

Methods

Matrix cell wall polysaccharides were immunolocalized in hand-made sections and in sections of material embedded in LR White resin. Callose was also localized using aniline blue in hand-made sections. Plasmodesmata distribution was examined by transmission electron microscopy.

Results

Before reorganization of the dispersed cortical microtubules into microtubule rings, particular bands of the longitudinal MC walls, where the MC contacts will form, locally differentiate by selective (1) deposition of callose and the pectin epitopes recognized by the 2F4, LM6, JIM5 and JIM7 antibodies, (2) degradation of MLGs and (3) formation of secondary plasmodesmata clusterings. This cell wall matrix differentiation persists in cell contacts of mature MCs. Simultaneously, the wall bands between those of future cell contacts differentiate with (1) deposition of local cell wall thickenings including cellulose microfibrils, (2) preferential presence of MLGs, (3) absence of callose and (4) transient presence of the pectins identified by the JIM5 and JIM7 antibodies. The wall areas between cell contacts expand determinately to form the cell isthmi and the cell lobes.

Conclusions

The morphogenesis of lobed MCs is characterized by the early patterned differentiation of two distinct cell wall subdomains, defining the sites of the future MC contacts and of the future MC isthmi respectively. This patterned cell wall differentiation precedes cortical microtubule reorganization and may define microtubule ring disposition.  相似文献   

8.
The aim of the present study was to describe the occurrence of three pectic epitopes, recognized by JIM7, LM19, and LM5 antibodies, during somatic (SE) and zygotic (ZE) embryogenesis in Arabidopsis thaliana. The epitopes recognized by JIM7 and LM19 antibodies showed different distributions during SE stages. Moreover, in the early stages of somatic embryo development, a cytoplasmic occurrence of LM19 epitope was detected. Distribution of a pectic epitope recognized by LM5 antibody corresponded to a vascular system differentiation pattern. Occurrence of LM5 epitope was the same in both zygotic and somatic embryos and often restricted to newly synthesized walls of two adjacent cells. These data suggest that both low and high methyl-esterified pectins (recognized by LM19 and JIM7 antibodies, respectively) are developmentally regulated during SE stages and (1→4)-β-D-galactan epitope (recognized by LM5 antibody) may play a role in cell cytokinesis.  相似文献   

9.
An extended set of monoclonal antibodies to pectic homogalacturonan   总被引:1,自引:0,他引:1  
Three novel rat monoclonal antibodies, designated LM18, LM19 and LM20, were isolated from screens for binding to Arabidopsis thaliana seed coat mucilage. The binding of these antibodies to mucilage subject to enzyme and high pH pre-treatments and to a series of model homogalacturonan-rich pectins with defined levels of methyl-esterification indicated their recognition of pectic homogalacturonan epitopes. The binding capacities of these monoclonal antibodies to cell walls in sections of tobacco stem pith parenchyma were also differentially sensitive to equivalent treatments with high pH buffers and pectate lyase. The epitopes bound by these antibodies display some similarities and some differences to the epitopes recognized by the previously isolated and established pectic homogalacturonan probes JIM5 and JIM7.  相似文献   

10.
Summary Asclepias speciosa Torr, has latex-containing cells known as nonarticulated laticifers. In stem sections of this species, we have analyzed the cell walls of nonarticulated laticifers and surrounding cells with various stains, lectins, and monoclonal antibodies. These analyses revealed that laticifer walls are rich in (1→4) β-D-glucans and pectin polymers. Immunolocalization of pectic epitopes with the antihomogalacturonan antibodies JIM5 and JIM7 produced distinct labeling patterns. JIM7 labeled all cells including laticifers, while JIM5 only labeled mature epidermal cells and xylem elements. Two antibodies, LM5 and LM6, which recognize rhamnogalacturonan I epitopes distinctly labeled laticifer walls. LM6, which binds to a (l→5) α-arabinan epitope, labeled laticifer walls more intensely than walls of other cells. LM5, which recognizes a (1→4) β-D-galac-tan epitope, did not label laticifer segments at the shoot apex but labeled more mature portions of laticifers. Also the LM5 antibody did not label cells at the shoot apical meristem, but as cells grew and matured the LM5 epitope was expressed in all cells. LM2, a monoclonal antibody that binds to β-D-glucuronic acid residues in arabinogalactan proteins, did not label laticifers but specifically labeled sieve tubes. Sieve tubes were also specifically labeled byRicinus communis agglutinin, a lectin that binds to terminal β-D-galactosyl residues. Taken together, the analyses conducted showed that laticifer walls have distinctive cytochemical properties and that these properties change along the length of laticifers. In addition, this study revealed differences in the expression of pectin and arabinogalactan protein epitopes during shoot development or among different cell types.  相似文献   

11.
The formation of an extracellular matrix surface network (ECMSN), and associated changes in the distribution of arabinogalactan-protein and pectin epitopes, have been studied during somatic embryogenesis (SE) and callogenesis of Trifolium nigrescens Viv. Scanning electron microscopy observations revealed the occurrence of an ECMSN on the surface of cotyledonary-staged somatic embryos as well as on the peripheral, non-regenerating callus cells. The occurrence of six AGP (JIM4, JIM8, JIM13, JIM16, LM2, MAC207) and four pectin (JIM5, JIM7, LM5, LM6) epitopes was analysed during early stages of SE, in cotyledonary-staged somatic embryos and in non-embryogenic callus using monoclonal antibodies. The JIM5 low methyl-esterified homogalacturonan (HG) epitope localized to ECMSN on the callus surface but none of the epitopes studied were found to localize to ECMSN over mature somatic embryos. The LM2 AGP epitope was detected during the development of somatic embryos and was also observed in the cell walls of meristematic cells from which SE was initiated. The pectic epitopes JIM5, JIM7, LM5 and LM6 were temporally regulated during SE. The LM6 arabinan epitope, carried by side chains of rhamnogalacturonan-I (RG-I), was detected predominantly in cells of embryogenic swellings, whilst the LM5 galactan epitope of RG-I was uniformly distributed throughout the ground tissue of cotyledonary-staged embryoids but not detected at the early stages of SE. Differences in the distribution patterns of low and high methyl-esterified HG were detected: low ester HG (JIM5 epitope) was most abundant during the early steps of embryo formation and highly methyl-esterified form of HG (JIM7 epitope) became prevalent during embryoid maturation.  相似文献   

12.
  • The distribution of homogalacturonans (HGAs) displaying different degrees of esterification as well as of callose was examined in cell walls of mature pavement cells in two angiosperm and two fern species. We investigated whether local cell wall matrix differentiation may enable pavement cells to respond to mechanical tension forces by transiently altering their shape.
  • HGA epitopes, identified with 2F4, JIM5 and JIM7 antibodies, and callose were immunolocalised in hand‐made or semithin leaf sections. Callose was also stained with aniline blue. The structure of pavement cells was studied with light and transmission electron microscopy (TEM).
  • In all species examined, pavement cells displayed wavy anticlinal cell walls, but the waviness pattern differed between angiosperms and ferns. The angiosperm pavement cells were tightly interconnected throughout their whole depth, while in ferns they were interconnected only close to the external periclinal cell wall and intercellular spaces were developed between them close to the mesophyll. Although the HGA epitopes examined were located along the whole cell wall surface, the 2F4‐ and JIM5‐ epitopes were especially localised at cell lobe tips. In fern pavement cells, the contact sites were impregnated with callose and JIM5‐HGA epitopes. When tension forces were applied on leaf regions, the pavement cells elongated along the stretching axis, due to a decrease in waviness of anticlinal cell walls. After removal of tension forces, the original cell shape was resumed.
  • The presented data support that HGA epitopes make the anticlinal pavement cell walls flexible, in order to reversibly alter their shape. Furthermore, callose seems to offer stability to cell contacts between pavement cells, as already suggested in photosynthetic mesophyll cells.
  相似文献   

13.
We examined callase activity in anthers of sterile Allium sativum (garlic) and fertile Allium atropurpureum. In A. sativum, a species that produces sterile pollen and propagates only vegetatively, callase was extracted from the thick walls of A. sativum microspore tetrads exhibited maximum activity at pH 4.8, and the corresponding in vivo values ranged from 4.5 to 5.0. Once microspores were released, in vitro callase activity peaked at three distinct pH values, reflecting the presence of three callase isoforms. One isoform, which was previously identified in the tetrad stage, displayed maximum activity at pH 4.8, and the remaining two isoforms, which were novel, were most active at pH 6.0 and 7.3. The corresponding in vivo values ranged from pH 4.75 to 6.0. In contrast, in A. atropurpureum, a sexually propagating species, three callase isoforms, active at pH 4.8-5.2, 6.1, and 7.3, were identified in samples of microsporangia that had released their microspores. The corresponding in vivo value for this plant was 5.9. The callose wall persists around A. sativum meiotic cells, whereas only one callase isoform, with an optimum activity of pH 4.8, is active in the acidic environment of the microsporangium. However, this isoform is degraded when the pH rises to 6.0 and two other callase isoforms, maximally active at pH 6.0 and 7.3, appear. Thus, factors that alter the pH of the microsporangium may indirectly affect the male gametophyte development by modulating the activity of callase and thereby regulating the degradation of the callose wall.  相似文献   

14.
The composition of guard cell walls in sugar beet leaves (Beta vulgaris L.) was studied by using histochemical staining and immunocytochemical detection of cell wall antigens. The findings were compared with those in the walls of epidermal and mesophyll cells. Probing of leaf sections with monoclonal antibodies against pectins, terminal fucosyl residues linked alpha-(1-->2) to galactose, beta-(1-->3)-glucans and arabinogalactan-proteins revealed several specific features of guard cells. Pectic epitopes recognized by JIM7 were homogeneously distributed in the wall, whereas pectins recognized by JIM5 were not found in the walls themselves, but were abundant in the cuticular layer. Large amounts of molecules bearing terminal fucose were located predominantly in ventral and lateral guard cell walls. Much smaller amounts were detected in dorsal walls of these cells, as well as in the walls of pavement and mesophyll cells. Conspicuous accumulation of these compounds was observed in the vicinity of the guard cell plasmalemma, whereas labelling was scarce in the areas of the wall adjacent to the cell surface. The presence of callose clearly marked the ventral wall between the recently formed, very young guard cells. Callose also appeared in some mature walls, where it was seen as punctate deposits that probably reflected a specific physiological state of the guard cells. Large amounts of arabinogalactan-proteins were deposited within the cuticle, and smaller amounts of these proteoglycans were also detected in other tissues of the leaf. The histochemical and immunocytochemical structure of the guard cell wall is discussed in the light of its multiple functions, most of which involve changes in cell size and shape.  相似文献   

15.
The distribution of several arabinogalactan protein and pectic epitopes were studied during organogenesis in androgenic callus of wheat. In cell wall of mature and degenerating parenchyma cells, the arabinogalactan epitopes JIM4, JIM14, JIM16 or LM2 were expressed differently according to the cells location. LM2 was observed also in meristematic cells of regenerated shoot buds and leaves. Anti-pectin JIM7 labelled the wall of meristematic cells but fluorescence was strongest in outer walls of surface cells of callus and shoot buds coated by extracellular matrix surface network (ECMSN). During leaves growth the ECMSN disappeared, and JIM7 fluorescence decreased. JIM5 epitope was abundant in the cell walls lining the intercellular spaces of callus parenchyma and in tricellular junctions within regenerated buds and leaves.  相似文献   

16.
Valeriana scandens presents perfect and pistillate flowers, the latter with sterile anthers. The species is composed of two varieties with different ploidy; V. scandens var. scandens (2n = 28) and V. scandens var. candolleana (2n = 56), both of which occur in RS, Brazil. Crosses between these varieties may give rise to hybrids with pollen sterility. In this study, we analyzed the microsporogenesis and microgametogenesis of sterile and fertile anthers, and also investigate whether pollen sterility is caused by an irregular meiotic process. Developmental analysis using light microscopy and scanning electron microscopy showed that sterile anthers develop similarly to fertile anthers until the end of meiosis. After this stage, sterile tetrads do not separate as a consequence of exine fusion between adjacent microspores, which is similar to sterile pollen of Brassica ms-cdl1 mutants. In addition, vacuolated immature pollen grains degenerate after separation. The cytogenetic analysis of the microspore mother cell (MMC) showed that the diploid population of V. scandens var. scandens (2n = 28) has pollen sterility that is not caused by a cytogenetic disturbance. The MMCs analyzed from prophase I to tetrad stage showed a regular meiotic process, indicating the phenotype of V. scandens sterile pollen is a postmeiotic process formed by fusion of exine between opposite microspores.  相似文献   

17.
This paper presents a detailed report on the developmental progresses of the microsporangium and its microspores in Azolla filiculoides Lam., and shows the morphologicaI structures of the respective developmental stares with the aid of scanning electron photographs. The entire developmental progress may be divided into six stages: ( 1 ) The microspore mother cell initiating stage The microsporangium initial on the placenta of the sporocarp gave rise a sporogenous cell, and then divided four times to form sixteen microspore mother cells; (2) The meiotic stage–The microspore mother cells initiated meiosis inside their calIose walls. The radial and inner tangential walls of the tapetum were dissolved at the same time and followed by the formation of a sporoplasmodium; (3) The microspore shrinking Ⅰ–After the callose walls of tetrads was dissolved, those microspores that just released from the callose walls shrunk intensely and became spherical later again. The sporoderm of microspores was principally synthesized in this stage, and the volume of microspores became evidently increased. The microspores then gradually moved to the periphery of the sporoplasmodium; (4) The microspore shrinking Ⅱ-Each microspore formed a large vacuole and gave rise the second contraction. The periphery of the sporoplasmodium was gradually dissolved; (5) The massulae forming stage–The sporoplasmodium was dissolved successivelly, and the undissolvable granules and organelle membrane residues. became aggregated into the compartmental layer, and the microsporangium was divided into several large vesicles, each vesicle will form a massulae; (6) The microspore germinating stage–The ,natured microspores inside the massulae each gave rise an androgonial initial which divided two times to form four antherozoid mother cells and then gave rise the antherozoids. The relationships between the various morphological structures and their functions in the microsporangium developmental progress have breify discussed. In addition, our viewpoints have compared with those of previous investigations.  相似文献   

18.
To elucidate the possible roles of pectins during the growth of angiosperm pollen, we studied the distribution and changes in the properties of pectin in the pollen grains and tubes of Camellia japonica, Lilium longiflorum, and five other species at different growth stages by immunoelectron microscopy with monoclonal antibodies JIM5, against de-esterified pectin, and JIM7, against esterified pectin. We also studied the localization of arabinogalactan proteins, which are regarded as pectin-binding proteins, with monoclonal antibodies JIM13 and LM2, against arabinogalactan proteins. Similar results were obtained for all species: JIM5 labeled the intine and part of the callose layer in germinated pollen grains, and labeled the outer layer of the tube wall, the Golgi vesicles, and the callose plug in the pollen germinated in vitro, but did not label any part of immature pollen grains. In contrast, JIM7 labeled the intine of both immature and mature pollen grains, labeled the Golgi vesicles around the Golgi bodies, and strongly labeled the outer layer of the cell wall and the Golgi vesicles in the tube tip region. On the other hand, the distribution of arabinogalactan proteins detected with JIM13 was different for each species, and does not suggest a close relationship between pectin and arabinogalactan proteins. LM2 scarcely reacted with the specimens. We discuss the contribution of pectins to tube wall formation and fertilization and deduce a mechanism of callose plug formation.  相似文献   

19.
芝麻(Sesamum indicum)核雄性不育系ms86-1姊妹交后代表现为可育、部分不育(即微粉)及完全不育(简称不育)3种类型。不同育性类型的花药及花粉粒形态差异明显。Alexander染色实验显示微粉植株花粉粒外壁为蓝绿色, 内部为不均一洋红色, 与可育株及不育株花粉粒的染色特征均不相同。为探明芝麻微粉发生机理, 在电子显微镜下比较观察了可育、微粉、不育类型的小孢子发育过程。结果表明, 可育株小孢子母细胞减数分裂时期代谢旺盛, 胞质中出现大量脂质小球; 四分体时期绒毡层细胞开始降解, 单核小孢子时期开始出现乌氏体, 成熟花粉时期花粉囊腔内及花粉粒周围分布着大量乌氏体, 花粉粒外壁有11–13个棱状凸起, 表面存在大量基粒棒, 形成紧密的覆盖层。不育株小孢子发育异常显现于减数分裂时期, 此时胞质中无脂质小球出现, 细胞壁开始积累胼胝质; 四分体时期绒毡层细胞未见降解; 单核小孢子时期无乌氏体出现; 成熟花粉时期花粉囊腔中未发现正常的乌氏体, 存在大量空瘪的败育小孢子, 外壁积累胼胝质, 缺乏基粒棒。微粉株小孢子在减数分裂时期可见胞质内有大量脂质小球, 四分体时期部分绒毡层发生变形, 单核小孢子时期有部分绒毡层开始降解; 绒毡层细胞降解滞后为少量发育进程迟缓的小孢子提供了营养物质, 部分小孢子发育为正常花粉粒; 这些花粉粒比较饱满, 表面有少量颗粒状突起, 但未能形成覆盖层, 花粉囊腔中及小孢子周围存在少量的乌氏体。小孢子形成的育性类型与绒毡层降解是否正常有关。  相似文献   

20.
We have used fluorescent, confocal laser and transmission electron microscopy (TEM) to examine cellular organisations, including callose (1,3-beta-glucan) behaviour, in meiotic and early post-meiotic rice anthers. These features are critical for pollen formation and provide information to better understand pollen sterility caused by abiotic stress in rice and other monocotyledonous species. Among organelles during meiosis, abundant plastids, mitochondria and nuclei of the anther cells show distinctive features. Chloroplasts in the endothecium store starch and indicate a potential for photosynthetic activity. During meiosis, the middle layer cells are markedly compressed and at the tetrad stage are either vacuolated or filled with degenerating electron-opaque organelles. Viable mitochondria, stained with Rhodamine 123, are seen in the endothecium and tapetum, but the mitochondria in the middle layer are not stained during meiosis. The radial walls of the tapetum are disorganised and degenerating, indicating the formation of a syncytium; pro-orbicules are located at the locular walls at the tetrad stage. Immunohistochemical studies show that the sporogenous cells are entirely enveloped by a thick callosic layer at early meiosis. Cell plate callose was assembled in a plane between the dyad cells. In the tetrads, however, callose formed only at the centre, showing that the tetrad microspores are not enveloped but separated by callose walls. Thick, undulating electron-opaque walls around the tetrads indicate the beginning of exinous microspore wall differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号