首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kdr mutation, conferring resistance to pyrethroid insecticides, has been reported in several West-African populations of Anopheles gambiae S form and in the M form populations from tropical forest of Benin. We report the finding of a single M specimen collected in the rice-field area of Vallée du Kou (Burkina Faso) showing the mutation at the heterozygous state. The monitoring of kdr mutation in An. gambiae forms/species is of paramount importance to implement effective malaria control tools and may greatly improve the knowledge of the relationship between and within An. gambiae populations.  相似文献   

2.
ABSTRACT: Background and methods A longitudinal Anopheles gambiae s.l. insecticide-resistance monitoring programme was established in four sentinel sites in Burkina Faso. For three years, between 2008 and 2010, WHO diagnostic dose assays were used to measure the prevalence of resistance to all the major classes of insecticides at the beginning and end of the malaria transmission season. Species identification and genotyping for target site mutations was also performed and the sporozoite rate in adults determined. RESULTS: At the onset of the study, resistance to DDT and pyrethroids was already prevalent in An. gambiae s.l. from the south-west of the country but mosquitoes from the two sites in central Burkina Faso were largely susceptible. Within three years, DDT and permethrin resistance was established in all four sites. Carbamate and organophosphate resistance remains relatively rare and largely confined to the south-western areas although a small number of bendiocarb survivors were found in all sites by the final round of monitoring. The ace-1R target site resistance allele was present in all localities and its frequency exceeded 20% in 2010 in two of the sites. The frequency of the 1014 F kdr mutation increased throughout the three years and by 2010, the frequency of 1014 F in all sites combined was 0.02 in Anopheles arabiensis, 0.56 in An. gambiae M form and 0.96 in An. gambiae S form. This frequency did not differ significantly between the sites. The 1014 S kdr allele was only found in An. arabiensis but its frequency increased significantly throughout the study (P = 0.0003) and in 2010 the 1014 S allele frequency was 0.08 in An. arabiensis. Maximum sporozoite rates (12%) were observed in Soumousso in 2009 and the difference between sites is significant for each year. CONCLUSION: Pyrethroid and DDT resistance is now established in An. gambiae s.l. throughout Burkina Faso. Results from diagnostic dose assays are highly variable within and between rounds of testing, and hence it is important that resistance monitoring is carried out on more than one occasion before decisions on insecticide procurement for vector control are made. The presence of 1014 S in An. gambiae s.l., in addition to 1014 F, is not unexpected given the recent report of 1014 S in Benin but highlights the importance of monitoring for both mutations throughout the continent. Future research must now focus on the impact that this resistance is having on malaria control in Burkina Faso.  相似文献   

3.
The malaria mosquito Anopheles gambiae s.s. is rapidly becoming a model for studies on the evolution of reproductive isolation. Debate has centered on the taxonomic status of two forms (denoted M and S) within the nominal taxon identified by point mutations in the X-linked rDNA region. Evidence is accumulating that there are significant barriers to gene flow between these forms, but that the barriers are not complete throughout the entire range of their distribution. We sampled populations from across Ghana and southern Burkina Faso, West Africa, from areas where the molecular forms occurred in both sympatry and allopatry. Neither Bayesian clustering methods nor F(ST)-based analysis of microsatellite data found differentiation between the M and S molecular forms, but revealed strong differentiation among different ecological zones, irrespective of M/S status and with no detectable effect of geographical distance. Although no M/S hybrids were found in the samples, admixture analysis detected evidence of contemporary interform gene flow, arguably most pronounced in southern Ghana where forms occur sympatrically. Thus, in the sampled area of West Africa, lack of differentiation between M and S forms likely reflects substantial introgression, and ecological barriers appear to be of greater importance in restricting gene flow.  相似文献   

4.
In West Africa, lineage splitting between the M and S molecular forms of the major Afro-tropical malaria mosquito, Anopheles gambiae (Diptera: Culicidae), is thought to be driven by ecological divergence, occurring mainly at the larval stage. Here, we present evidence for habitat segregation between the two molecular forms in and around irrigated rice fields located within the humid savannahs of western Burkina Faso. Longitudinal sampling of adult mosquitoes emerging from a range of breeding sites distributed along a transect extending from the heart of the rice field area into the surrounding savannah was conducted from June to November 2009. Analysis revealed that the two molecular forms and their sibling species Anopheles arabiensis are not randomly distributed in the area. A major ecological gradient was extracted in relation to the perimeter of the rice fields. The M form was associated with larger breeding sites mostly consisting of rice paddies, whereas the S form and An. arabiensis were found to depend upon temporary, rain-filled breeding sites. These results support hypotheses about larval habitat segregation and confirm the suggestion that the forms have different larval habitat requirements. Segregation appears to be clearly linked to anthropogenic permanent habitats and the community structure they support.  相似文献   

5.
Resistance to pyrethroid insecticides and DDT caused by the kdr gene in the malaria vector Anopheles gambiae Giles s.s. (Diptera: Culicidae) has been reported in several West African countries. To test for pyrethroid resistance in two more countries, we sampled populations of the An. gambiae complex from south-western Ghana and from urban and rural localities in Ogun State, south-west Nigeria. Adult mosquitoes, reared from field-collected larvae, were exposed to the WHO-recommended discriminating dosage of exposure for 1 h to DDT 4%, deltamethrin 0.05% or permethrin 0.75% and mortality was recorded 24 h post-exposure. Susceptibility of An. gambiae s.l. to DDT was 94-100% in Ghana and 72-100% in Nigeria, indicating low levels of DDT resistance. Deltamethrin gave the highest mortality rates: 97-100% in Ghana, 95-100% in Nigeria. Ghanaian samples of An. gambiae s.l. were fully susceptible to permethrin, whereas some resistance to permethrin was detected at 4/5 Nigerian localities (percentage mortalities 75, 82, 88, 90 and 100%), with survivors including both An. arabiensis Patton and An. gambiae s.s. identified by PCR assay. Even so, the mean knockdown time was not significantly different from a susceptible reference strain, indicating absence or low frequency of kdr-type resistance. Such low levels of pyrethroid resistance are unlikely to impair the effectiveness of pyrethroid-impregnated bednets against malaria transmission. Among Nigerian samples of An. gambiae s.l., the majority from two urban localities were identified as An. arabiensis, whereas the majority from rural localities were An. gambiae s.s. These findings are consistent with those of M. Coluzzi et al. (1979). Differences of ecological distribution between molecular forms of An. gambiae s.s. were also found, with rural samples almost exclusively of the S-form, whereas the M-form predominated in urban samples. It is suggested that 'urban island' populations of An. arabiensis and of An. gambiae s.s. M-form in the rainforest belt of West Africa might be appropriate targets for elimination of these malaria vectors by the sterile insect technique.  相似文献   

6.
Disruptive selection mediated by predation on aquatic immature stages has been proposed as a major force driving ecological divergence and fostering speciation between the M and S molecular forms of the African malaria mosquito, Anopheles gambiae. In the dry savannahs of West Africa where both molecular forms co-occur, the S form thrives in temporary pools filled with rainwater, whereas the M form preferentially breeds in permanent freshwater habitats where predator pressure is higher. Here, we explored the proximal mechanisms by which predation may contribute to habitat segregation between molecular forms using progeny of female mosquitoes captured in Burkina Faso. We show that the S form suffers higher predation rates than the M form when simultaneously exposed to the widespread predator, Anisops jaczewskii in an experimental arena. Furthermore, behavioral plasticity induced by exposure to the predator was observed in the M form, but not in the S form, and may partially explain its habitat use and ecological divergence from the S form. We discuss the role of adaptive phenotypic plasticity in allowing successful colonization of a new ecological niche by the M form and highlight further research areas that need to be addressed for a better understanding of the ultimate mechanisms underlying ecological speciation in this pest of major medical importance.  相似文献   

7.
In West Africa, M and S molecular forms of Anopheles gambiae sensu stricto (Diptera: Culicidae) Giles, frequently occur together, although with different population bionomics. The S form typically breeds in rain‐dependant water collections and is present during the rainy season only whereas the M form can thrive all year long in areas with permanent breeding opportunities. In the present study, we explored physiological and developmental trade‐offs at play in laboratory colonies and field populations of the M and S forms that originated from an area of sympatry in Burkina Faso, where M and S larvae exhibit such habitat segregation. In the laboratory, larvae of the M form developed slower than the S form (mean values 9.51 and 8.85 days, respectively, Wilcoxon's test, P < 0.001). Although wing length and dry weight at emergence showed large variations, M females were on average 8% heavier than S females of similar wing length. Higher nutritional reserves (proteins and lipids) in teneral adults explained part of this weight difference, reflecting a better ability of the M form to garner resources at the larval stage. Furthermore, a higher rate of ovarian maturation was observed in the M form after a single bloodmeal. The relevance of these findings for parasite transmission is discussed.  相似文献   

8.
Anopheles gambiae s.s mosquitoes are important vectors of lymphatic filariasis (LF) and malaria in Ghana. To better understand their ecological aspects and influence on disease transmission, we examined the spatial distribution of the An. gambiae (M and S) molecular forms and associated environmental factors, and determined their relationship with disease prevalence. Published and current data available on the An. gambiae species in Ghana were collected in a database for analysis, and the study sites were georeferenced and mapped. Using the An. gambiae s.s sites, environmental data were derived from climate, vegetation and remote-sensed satellite sources, and disease prevalence data from existing LF and malaria maps in the literature. The data showed that An. gambiae M and S forms were sympatric in most locations. However, the S form predominated in the central region, while the M form predominated in the northern and coastal savanna regions. Bivariate and multiple regression analyses identified temperature as a key factor distinguishing their distributions. An. gambiae M was significantly correlated with LF, and 2.5 to 3 times more prevalent in the high LF zone than low to medium zones. There were no significant associations between high prevalence An. gambiae s.s locations and malaria. The distribution of the An. gambiae M and S forms and the diseases they transmit in Ghana appear to be distinct, driven by different environmental factors. This study provides useful baseline information for disease control, and future work on the An. gambiae s.s in Ghana.  相似文献   

9.
Sequence variation at the intron-1 of the voltage-gated sodium channel gene in Anopheles gambiae M- and S-forms from Cameroon was assessed to explore the number of mutational events originating knockdown resistance ( kdr ) alleles. Mosquitoes were sampled between December 2005 and June 2006 from three geographical areas: (i) Magba in the western region; (ii) Loum, Tiko, Douala, Kribi, and Campo along the Atlantic coast; and (iii) Bertoua, in the eastern continental plateau. Both 1014S and 1014F kdr alleles were found in the S-form with overall frequencies of 14% and 42% respectively. Only the 1014F allele was found in the M-form at lower frequency (11%). Analysis of a 455 bp region of intron-1 upstream the kdr locus revealed four independent mutation events originating kdr alleles, here named MS1 -1014F, S1-1014S and S2-1014S kdr- intron-1 haplotypes in S-form and MS3-1014F kdr- intron-1 haplotype in the M-form. Furthermore, there was evidence for mutual introgression of kdr 1014F allele between the two molecular forms, MS1 and MS3 being widely shared by them. Although no M/S hybrid was observed in analysed samples, this wide distribution of haplotypes MS1 and MS3 suggests inter-form hybridizing at significant level and emphasizes the rapid diffusion of the kdr alleles in Africa. The mosaic of genetic events found in Cameroon is representative of the situation in the West–Central African region and highlights the importance of evaluating the spatial and temporal evolution of kdr alleles for a better management of insecticide resistance.  相似文献   

10.
An entomological survey was carried out at 15 sites dispersed throughout the three eco-climatic regions of Burkina Faso (West Africa) in order to assess the current distribution and frequency of mutations that confer resistance to insecticides in An. gambiae s.l. populations in the country. Both knockdown (kdr) resistance mutation variants (L1014F and L1014S), that confer resistance to pyrethroid insecticides, were identified concomitant with the ace-1 G119S mutation confirming the presence of multiple resistance mechanisms in the An. gambiae complex in Burkina Faso. Compared to the last survey, the frequency of the L1014F kdr mutation appears to have remained largely stable and relatively high in all species. In contrast, the distribution and frequency of the L1014S mutation has increased significantly in An. gambiae s.l. across much of the country. Furthermore we report, for the first time, the identification of the ace.1 G116S mutation in An. arabiensis populations collected at 8 sites. This mutation, which confers resistance to organophosphate and carbamate insecticides, has been reported previously only in the An. gambiae S and M molecular forms. This finding is significant as organophosphates and carbamates are used in indoor residual sprays (IRS) to control malaria vectors as complementary strategies to the use of pyrethroid impregnated bednets. The occurrence of the three target-site resistance mutations in both An. gambiae molecular forms and now An. arabiensis has significant implications for the control of malaria vector populations in Burkina Faso and for resistance management strategies based on the rotation of insecticides with different modes of action.  相似文献   

11.
Benin has embraced World Health Organization-recommended preventive strategies to control malaria. Its National Malaria Control Programme is implementing and/or coordinating various actions and conducting evaluation trials of mosquito control strategies. Mosquito control is based on the use of insecticide-treated nets and indoor residual spraying, but the efficacy of these strategies to control malaria vectors is endangered by insecticide resistance. Here, we present the results of a nationwide survey on the status of insecticide susceptibility and resistance in Anopheles gambiae s.l. (Diptera: Culicidae) carried out in Benin in 2006-2007 (i.e. before extensive vector control was undertaken). Overall, our study showed that the S molecular form of An. gambiae s.s. predominates and is widely distributed across the country, whereas the frequency of the M form shows a strong decline with increasing latitude. Susceptibility to DDT, permethrin, carbosulfan and chlorpyrifos-methyl was assessed; individual mosquitoes were identified for species and molecular forms, and genotyped for the kdr and ace-1 loci. Full susceptibility to chlorpyrifos-methyl was recorded and very few samples displayed resistance to carbosulfan. High resistance levels to permethrin were detected in most samples and almost all samples displayed resistance to DDT. The kdr-Leu-Phe mutation was present in all localities and in both molecular forms of An. gambiae s.s. Furthermore, the ace-1(R) mutation was predominant in the S form, but absent from the M form. By contrast, no target modification was observed in Anopheles arabiensis. Resistance in the An. gambiae S molecular form in this study seemed to be associated with agricultural practices. Our study showed important geographic variations which must be taken into account in the vector control strategies that will be applied in different regions of Benin. It also emphasizes the need to regularly monitor insecticide resistance across the country and to adapt measures to manage resistance.  相似文献   

12.
In the field, the kdr mutation, involved in pyrethroid resistance, has been found widely distributed in the Savanna form of Anopheles gambiae s.s., but never in wild populations of the Mopti form or An. arabiensis, even in areas where both occur in sympatry with resistant Savanna populations. Under laboratory conditions, Mopti and Savanna forms were fully able to interbreed and the kdr mutation was transmissible from one form to the other. Both forms appeared to be exposed to pyrethroid selection pressure in the field. The absence of the kdr mutation in the Mopti form and the total lack of Mopti-Savanna heterozygotes in field populations provides further evidence of a pre-copulatory barrier to gene flow between these two forms. Molecular markers, including kdr, are powerful tools for studying population genetics and circulation of resistance genes, and should be used through an integrated approach for a better understanding of the speciation process.  相似文献   

13.
The M and S molecular forms of the African malaria vector Anopheles gambiae (Diptera: Culicidae) are morphologically identical incipient species in which reproductive isolation is incomplete, enabling low-level gene flow between forms. In an attempt to find differences between the M and S forms, sequence variation was studied at loci along the X chromosome in adult female An. gambiae from Angola. A high proportion of M form specimens from Angola (79% of the 456 X chromosomes sampled) were found to contain a 16-bp insertion in intron 4 of the X-linked GPRCCK1 locus, relative to the AgamP3 release of the An. gambiae PEST genome sequence. The insertion was in Hardy-Weinberg equilibrium in Angolan M form populations. The same insertion was found in all S form specimens examined, regardless of where in Africa they were sampled, but was absent from a sample of M form specimens collected in Ghana, Bioko and Mali. In M form specimens from Angola, there was an association between alleles at the GPRCCK1 locus and those at a microsatellite locus, AGXH678, close to the centromere of the X chromosome, with significant linkage disequilibrium between loci separated by 0.472 Mbp (P < 0.033). We show that the insertion results from introgression from the S form into the M form, rather than from the retention of an ancestral character. Gene flow from the S to M form could allow genes of adaptive value to be transferred, including those conferring insecticide resistance and others influencing ecology and behaviour, and thus malaria transmission and control. We discuss factors that may have led to this introgression event.  相似文献   

14.
Both Plasmodium falciparum and Anopheles gambiae show great diversity in Africa, in their own genetic makeup and population dynamics. The genetics of the individual mosquito and parasite are known to play a role in determining the outcome of infection in the vector, but whether differences in infection phenotype vary between populations remains to be investigated. Here we established two A. gambiae s.s. M molecular form colonies from Cameroon and Burkina Faso, representing a local and a foreign population for each of the geographical sites. Experimental infections of both colonies were conducted in Cameroon and Burkina Faso using local wild P. falciparum, giving a sympatric and allopatric vector-parasite combination in each site. Infection phenotype was determined in terms of oocyst prevalence and intensity for at least nine infections for each vector-parasite combination. Sympatric infections were found to produce 25% fewer oocysts per midgut than allopatric infections, while prevalence was not affected by local/foreign interactions. The reduction in oocyst numbers in sympatric couples may be the result of evolutionary processes where the mosquito populations have locally adapted to their parasite populations. Future research on vector-parasite interactions must take into account the geographic scale of adaptation revealed here by conducting experiments in natural sympatric populations to give epidemiologically meaningful results.  相似文献   

15.
The study was carried out to characterize potential larval habitats in the city of Sekondi with the aim of assessing the relative importance of anthropogenic and natural water bodies as larval habitats. Insecticide-resistance status of Anopheles gambiae senso lato in the southwestern part of the coastal savannah zone in Ghana was also assessed against four different classes of insecticides. Larval surveys were carried out in two communities that are separated by a lagoon. Although the lagoon was a potential mosquito larval habitat, we showed that it was not an important mosquito breeding site. The major larval habitats were anthropogenic, resulting from human behavior. Some of the organically polluted breeding sites were inhabited by both An. gambiae s.l. and Culex quinquefasciatus larvae. The data also showed that An. gambiae s.l. has currently developed a strong resistance to DDT and pyrethroid insecticides in southwestern Ghana, where the species was reported to be susceptible about a decade ago. The use of insecticides in households was implicated as a possible cause of the development of resistance among An. gambiae s.l. populations in the area. The management of insecticide resistance among malaria vectors needs urgent attention if insecticide-treated materials can continue to be used for malaria control.  相似文献   

16.
Anopheles gambiae Giles s.s. and Anopheles arabiensis Patton (Diptera: Culicidae) are major vectors of malaria in Nigeria. We used 1115 bp of the mitochondrial COI gene to assess their population genetic structures based on samples from across Nigeria (n = 199). The mtDNA neighbour-joining tree, based on F(ST) estimates, separated An. gambiae M and S forms, except that samples of An. gambiae M from Calabar clustered with all the An. gambiae S form. Anopheles arabiensis and An. gambiae could be combined into a single star-shaped, parsimonious haplotype network, and shared three haplotypes. Haplotype diversity values were high in An. arabiensis and An. gambiae S, and intermediate in An. gambiae M; all nucleotide diversities were relatively low. Taken together, patterns of haplotype diversity, the star-like genealogy of haplotypes, five of seven significant neutrality tests, and the violation of the isolation-by-distance model indicate population expansion in An. arabiensis and An. gambiae S, but the signal was weak in An. gambiae M. Selection is supported as an important factor shaping genetic structure in An. gambiae in Nigeria. There were two geographical subdivisions in An. arabiensis: one included all southern localities and all but two central localities; the other included all northern and two central localities. Re-analysing an earlier microsatellite dataset of An. arabiensis using a Bayesian method determined that there were two distinctive clusters, northern and southern, that were fairly congruent with the mtDNA subdivisions. There was a trend towards decreasing genetic diversity in An. arabiensis from the northern savannah to the southern rainforest that corroborated previous data from microsatellites and polytene chromosomes.  相似文献   

17.
We analysed by gas chromatography-mass spectrometry (GC-MS) and Gas Chromatography-Flame Ionization Detector (GC-FID) the epicuticular lipid profiles of field females of the major Afro-tropical malaria vector, Anopheles gambiae. The samples were collected in three villages in Burkina Faso (West Africa), where An. gambiae M and S molecular forms and An. arabiensis live sympatrically. The aim was to compare the cuticular hydrocarbon (CHC) composition of individual field specimens of these three taxa, to highlight possible differences among them. All the samples analysed by GC-MS (55 individuals and eight pools) were characterized by the same 48 CHCs and 10 oxygenated compounds. The 19 most abundant CHCs were quantified in 174 specimens by GC-FID: quantitative intra-taxon differences were found between allopatric populations of both An. arabiensis and S-form. Inter-taxa quantitative differences in the relative abundances of some hydrocarbons between pairs of sympatric taxa were also found, which appear to be mainly linked to local situations, with the possible exception of diMeC(35) between An. arabiensis and S-form. Moreover, MeC(29) shows some degree of differentiation between S- and M-form in all three villages. Possible causes of these differences are discussed.  相似文献   

18.
The principal vector of malaria in sub-Saharan Africa, Anopheles gambiae is subdivided into two molecular forms M and S. Additionally, several chromosomal forms, characterized by the presence of various inversion polymorphisms, have been described. The molecular forms M and S each contain several chromosomal forms, including the Savanna, Mopti and Forest forms. The M and S molecular forms are now considered to be the reproductive units within A. gambiae and it has recently been argued that a low recombination rate in the centromeric region of the X chromosome has facilitated isolation between these forms. The status of the chromosomal forms remains unclear however. Therefore, we studied genetic differentiation between Savanna S, Forest S, Forest M and Mopti M populations using microsatellites. Genetic differentiation between Savanna S and Forest S populations is very low (F(ST) = 0.0053 +/- 0.0049), even across large distances. In comparison, the Mopti M and Forest M populations show a relatively high degree of genetic differentiation (F(ST) = 0.0406 +/- 0.0054) indicating that the M molecular form may not be a single entity, but could be subdivided into at least two distinct chromosomal forms. Previously it was proposed that inversions have played a role in the origin of species within the A. gambiae complex. We argue that a possible subdivision within the M molecular form could be understood through this process, with the acquisition of inversions leading to the expansion of the M molecular form into new habitat, dividing it into two distinct chromosomal forms.  相似文献   

19.
How often insecticide resistance mutations arise in natural insect populations is a fundamental question for understanding the evolution of resistance and also for modeling its spread. Moreover, the development of resistance is regarded as a favored model to study the molecular evolution of adaptive traits. In the malaria vector Anopheles gambiae two point mutations (L1014F and L1014S) in the voltage-gated sodium channel gene, that confer knockdown resistance (kdr) to DDT and pyrethroid insecticides, have been described. In order to determine whether resistance alleles result from single or multiple mutation events, genotyping of the kdr locus and partial sequencing of the upstream intron-1 was performed on a total of 288 A. gambiae S-form collected from 28 localities in 15 countries. Knockdown resistance alleles were found to be widespread in West Africa with co-occurrence of both 1014S and 1014F in West-Central localities. Differences in intron-1 haplotype composition suggest that kdr alleles may have arisen from at least four independent mutation events. Neutrality tests provided evidence for a selective sweep acting on this genomic region, particularly in West Africa. The frequency and distribution of these kdr haplotypes varied geographically, being influenced by an interplay between different mutational occurrences, gene flow and local selection. This has important practical implications for the management and sustainability of malaria vector control programs.  相似文献   

20.
A longitudinal entomological study was carried out from 1999 to 2001 in Lena, a humid savannah village in the western region of Burkina Faso in order to establish malaria vector bionomics and the dynamics of malaria transmission. In the first year, malaria transmission was mainly due to An. gambiae s.s., but during the two later years was due to An. funestus, which were observed in high frequency towards the end of the rainy season. PCR identification of samples of An. gambiae s.1. showed 93% to be An. gambiae s.s. and 7% An. arabiensis. An. funestus constituting more than 60% of the vectors were identified in PCR as An. funestus s.s. The persistence of intense vectorial activity in this village was probably due to the road building in a swampy area creating a semi-permanent swamp that provided large sites for larval mosquitoes. These swampy sites seemed to be more favorable for An. funestus than for An. gambiae s.s. Thus, land development must be monitored and subjected to planning to minimize vector proliferation. Such a system of planning could lead to the restriction or even elimination of the swamp that is the source of larvae developing in the heart of the village.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号