首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparative bioaccumulation pattern and ultra structural changes were studied in Phragmites cummunis, Typha angustifolia and Cyperus esculentus in mixed metals solution of cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb) and zinc (Zn). P. cummunis was observed to be a shoot accumulator for Cr, Fe, Mn, Ni, Pb, and Zn. However, T. angustifolia was found to be a root accumulator for Cd, Cr, Cu, Fe, Ni and Pb. In addition, C. esculentus also accumulated most of the tested heavy metals in the roots, while Mn and Fe were translocated up to leaves. Further, the long term metal treatment showed maximum accumulation of all heavy metals in P. cummunis followed by T. angustifolia and C. esculentus. Among heavy metals, Fe was accumulated maximum, i.e., >1000 microg g(-1) by all three plants. Simultaneously, the adverse effects on biochemical parameters were noted earlier in C. esculentus than T. angustifolia and P. cummunis. Ultra structural observation showed the cellular changes in wetland plants after longer exposure. Results revealed that P. cummunis and T. angustifolia had more potential for tested metals than C. esculentus. This study established that these wetland plants could be used for heavy metals phytoremediation from metal containing industrial wastewater.  相似文献   

2.
Accumulation of different metals and metalloids was assessed in two vegetables radish (Raphanus sativus L.) and spinach (Spinacea oleracea L.) irrigated with domestic wastewater in the peri-urban areas of Khushab City, Pakistan. In general, the metal and metalloid concentrations in radish and spinach were higher at site-II treated with sewage water than those found at site-I treated with canal water. In case of radish at both sites the levels of metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, and Pb) were below the permissible level except those of Mn, Ni, Mo, Cd, and Pb. At both sites, the transfer factor ranged from 0.047–228.3 mg kg?1 with Cr having the highest transfer factor. The metal pollution index in soil was in the following order: As > Fe > Ni > Zn > Cd > Mo > Se > Co > Pb > Mn > Cr > Cu, respectively. While in case of spinach at both sites, the concentrations of metals and metalloids in vegetable samples irrigated with canal and sewage water were observed below the permissible level except Mn, Ni, Zn, Mo, and Pb. At both sites, the transfer factor ranged from 0.038–245.4 mg kg?1 with Cr having the highest transfer factor. The metal pollution index in soil was in the following order: Cd > Ni > Co > Se > Mn > Zn > Mo > Pb > Fe > Cr > As > Cu, respectively.  相似文献   

3.
为探讨油茶(Camellia oleifera)产地土壤和油茶果实中金属元素分布和富集特征,在油茶果实成熟期,对浙江5个油茶产地土壤及油茶果实中金属元素进行污染分析和富集能力评价.结果表明,浙江油茶产地土壤中Pb、Cr、Cd、As、Hg、Ni、Cu和Zn含量低于农用地土壤污染风险筛选值,综合污染等级为安全.个别产区常山...  相似文献   

4.
The bioaccumulation and rhizofiltration potential of P. stratiotes for heavy metals were investigated to mitigate water pollution in the Egyptian wetlands. Plant and water samples were collected monthly through nine quadrats equally distributed along three sites at Al-Sero drain in Giza Province. The annual mean of the shoot biomass was 10 times that of the root. The concentrations of shoot heavy metals fell in the order: Fe < Mn < Cr < Pb < Cu < Zn < Ni < Co < Cd, while that of the roots were: Fe < Mn < Cr < Pb < Zn < Ni < Co < Cu < Cd. The bio-concentration factor (BCF) of most investigated heavy metals, except Cr and Pb, was greater than 1000, while the translocation factor (TF) of most investigated metals, except Pb and Cu, did not exceed one. The rhizofiltration potential (RP) of heavy metals was higher than 1000 for Fe, and 100 for Cr, Pb and Cu. Significant positive correlations between Fe and Cu in water with those in plant roots and leaves, respectively were recorded, which, in addition to the high BCF and RP, indicate the potential use of P. stratiotes in mitigating these toxic metals.  相似文献   

5.
Ciceri  G.  Maran  Ciceri  Martinotti  W.  Queirazza  G. 《Hydrobiologia》1992,(1):501-517
Concentrations of the heavy metals Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn were measured in sea water, suspended matter, sediments and pore water samples collected in a coastal area of the middle Tyrrhenian Sea. Concentration factors between pore water (extracted from the first centimeter of the sediments) and the overlying sea water (taken 30 cm above the sea bed) were less than 1 for Cr, Cu and Pb, 1–10 for Cd and Ni, 10–100 for Fe and Co, 100–1000 for Mn, and 1–100 for Zn.The benthic fluxes of heavy metals at the sediment-water interface were measured directly using in situ benthic chambers and calculated using Fick's first law during two experimental periods, one in 1986 and the other in 1988. The fluxes of Cu, Ni, Pb and Zn varied significantly over time; this appeared to be related to their relatively low ( 10) concentration factors. From the benthic chamber experiments, metals with positive fluxes were in the order: Mn > Fe > Co > Cd, while those with negative fluxes were: Zn > Pb > Ni Cu. Fluxes calculated using Fick's Law were: positive – Mn > Fe > Zn (or Zn > Fe) > Ni > Co > Cd, negative fluxes Pb > Cu > Cr.Measured (benthic chamber) and calculated (Fick's first law) fluxes for Co, Cd, Mn, Pb and Fe were comparable within an order of magnitude, although less agreement was found for Cu, Ni and Zn. Removal of Ni and Zn at the sediment-water interface has been proposed to explain the fact that the measured and calculated fluxes have opposite directions for these metals.  相似文献   

6.
Heavy metal contamination of agricultural soils resulting from rapid industrialization and urbanization is of great concern because of potential health risk due to dietary intake of contaminated vegetables. The present study aims to evaluate the status of heavy metals contamination of agricultural soils and food crops around an urban-industrial region in India. Transfer factor values of Cu, Cr, Pb, Cd, Zn, and Ni from soil to vegetable was estimated. The mean heavy metal concentrations (mg/kg) in agricultural soils (Cu: 17.8, Cr: 27.3, Pb: 29.8, Cd: 0.43, Zn: 87, Mn: 306.6, Fe: 16984, and Ni: 53.8) were within allowable concentrations for Indian agricultural soil. The concentrations of Pb, Cd, Zn, and Ni in crops/vegetables exceeded the World Health Organization/Food and Agriculture Organization safe limits. Relative orders of transfer of metals from soil to edible parts of the crops/vegetables were Cd > Pb > Ni > Zn > Cu > Cr. The enrichment factors of heavy metals in soil indicated minor to moderately severe enrichment for Pb, Cd, and Ni; minor to moderate enrichment for Zn; no enrichment to minor enrichment for Mn; and no enrichment to moderate enrichment for Cu at different sites. Ecological risk index of soil showed considerable contamination in one of the wastewater irrigated sites.  相似文献   

7.
Abstract

Metal fractionation is a powerful tool for studying the mobility, bioavailability and toxicity of metals in sediments and soils. A seven-step sequential extraction technique was used to determine the potential mobility of selected heavy metals (Fe, Mn, Zn, Cu, Pb, Cd and Ni) in the sediments of Lake Naivasha. Results indicate that residual fraction was the most important phase for the elements Fe, Mn, Cu and Zn. However, Pb and Cd are highly enriched in the non-residual phases. Nickel on the other hand was distributed evenly between the non-residual and the residual fractions.

The total concentrations of the heavy metals suggested a decreasing order of iron ?> manganese ? zinc > nickel > copper ? lead > cadmium. However, the detailed sequential extraction data indicated an order of release or mobility of cadmium > lead ? nickel ? zinc > manganese > copper > iron. The high percentage of Cd and Pb in the mobile fractions suggests high bioavailability of these two elements in the study area and maybe a pointer to anthropogenic input of the two elements in the study area.  相似文献   

8.
Metal determination in human tissues is the most common application of biological monitoring for screening, diagnosis and assessment of metal exposures and their risks. Various biopsy-materials may be used. This paper deals with the quantitative determination of Cd, Pb, Cr, Mn, Fe, Ni, Cu, and Zn concentrations in nails of male subjects exposed to these metals alongwith their respective controls, while working in locomotive, carriage and roadways workshops, and lead battery factories. The levels of Cd, Pb, Cr, Mn, Fe, Ni, Cu and Zn in fingernails, assayed by atomic absorption spectrophotometry, were compared with their respective controls by student ‘t’ test. All the obtained values were correlated to the personal and medical history of the subjects under study. Significantly high levels of Cd, Pb, Cr, Fe, Ni, Cu and Zn were present in smokers, compared to nonsmokers. The concentrations of Cd, Pb, Cr, Mn and Fe were not significantly high in vegetarian subjects. It was also observed that there is no contribution of liquor towards nail-metal concentration. Significant correlations were observed between skin disease and Cr, Mn, Fe, Cu; hypertension and Cd, Mn, Cu; mental stress and Cd, Pb, Mn, Ni, Cu, Zn; diabetes and Cr, Mn, Ni; chest pain and Pb; respiratory trouble and Cr, Mn, Fe, Ni, Zn; tuberculosis and Zn; acidity and Cd; and ophthalmic problems and Mn, Fe, Ni, and Zn  相似文献   

9.
为探索刺楸对受污染土壤重金属的富集和修复效应, 以南京栖霞山的乡土树种刺楸及其根际周边土壤为研究对象, 截取其根基部年轮盘及根际土壤样本, 采用ICP-AES法测定年轮及土壤样本中重金属(Cu、Cd、Cr、Mn、Ni、Pb、Zn)元素含量。结果表明: 栖霞山样地中的土壤受Mn、Pb和Zn污染最为严重, 存在Cu、Cd、Mn、Pb、Zn元素的高度复合污染, Cd、Cr、Cu、Ni、Zn在土壤和年轮中存在相关性, Mn和Pb则没有表现出明显的相关性; 刺楸修复受Cd、Mn、Pb、Zn污染的土壤效果并不显著, 更适用于Cr、Cu、Ni污染的土壤修复; 鉴于Cu元素含量变化特征, 刺楸也可以作为反映当地污染历史的记录载体; 刺楸年轮中的重金属元素之间存在交互作用, 其中Cd与Zn元素含量高度相关(r=0.984, p<0.01), 在刺楸年轮吸收重金属元素的过程中, Cu与Cd、Cr、Mn、Zn元素具有协同作用, Mn元素对其他元素有一定的拮抗作用。  相似文献   

10.
Selected trace metals were analyzed in human malignant and nonmalignant (benign) breast tissue samples by the flame atomic absorption spectrophotometric method. In malignant tissues, dominant mean concentrations were revealed by Na, K, Ca, Mg, Fe, Zn, and Al at 927, 552, 231, 61.7, 36.5, 18.3, and 8.94 microg/g, respectively, while the mean metal levels in benign tissues were 903, 435, 183, 63.3, 24.7, 14.5, and 10.1 microg/g, respectively. Average concentrations of Cd, Co, Cr, Cu, Fe, Mn, K, Ca, and Zn were noted to be significantly higher in the malignant tissues compared with the benign tissues. Significantly strong correlations (r > 0.50) in malignant tissues were observed between Mn and Co, Mn and Cd, Cd and Cr, Fe and Mn, Cd and Co, Fe and Co, Mg and Pb, Cd and Fe, Mg and Ni, Pb and Ni, Ni and Sr, and Fe and Pb, whereas, Cd and Co, Cd and Mn, Co and Mg, Co and Mn, Cu and Mn, Co and Ni, Mg and Ni, Cd and Cu, Cd and Ni, Ca and Mg, Mn and Pb, Cu and Ni, Fe and Ni, Cd and Mg, Co and Cu, Cr and Na, and Cd and Cr revealed strong and significant relationships in benign tissues at p < 0.001. Principal component analysis of the metals data yielded six principal components for malignant tissues and five principal components for benign tissues, with considerably different loadings, duly supported by cluster analysis. The study revealed a considerably different pattern of distribution and mutual correlations of trace metals in the breast tissues of benign and cancerous patients.  相似文献   

11.
Total metal analysis and metal speciation of sand fraction of Nigerian oil sands were done to extract and partition heavy metals into six operationally defined fractions in order to assess environmental and health implications of the oil sand development. Soxhlet extraction of bitumen from the oil sand was done using toluene. Traces of water and extracting solvent were removed at 70°C from the sand fraction using oven. Elemental analysis was performed by Atomic Absorption Spectrophotometry. The heavy metals except Cu have low Pollution index values. Negative geo-accumulation index was obtained for the metals except Cu, indicating that the oil sands were uncontaminated with the metals. Strong and significant positive correlations existed between Fe/Pb, Zn/Cu, Cd/Pb, Ni/Cd, Ni/Pb, Cd/Fe, Ni/Fe and Cr/Zn, while strong and significant negative correlations existed between Mn/Pb and As/Mn, indicating common sources or chemical similarities and vice versa. T-test results indicated significant differences between the concentrations of the metals. Cross-plot analysis showed strong positive correlation between the sand fraction and Nigerian bitumen. Speciation analysis indicated highest and lowest indices of metal mobility for Zn and Pb, respectively. This study concluded that the sand fraction may not pose any environmental risks from elemental point of view.  相似文献   

12.
Abstract

The purpose of the study was to acquire the source and evaluate the risk posed by heavy metals in road dust of steel industrial city (Anshan), Liaoning, Northeast China. Potential ecological risk index (RI), pollution index (PI) and geo-accumulation index (Igeo) were applied to evaluate the heavy metal pollution level, and the carcinogenic risk (RI) and hazard index (HI) were calculated to estimate the human health risk. The geographic information system maps clearly reveal the hot spots of heavy metal spatial distribution. Principle component analysis (PCA) and cluster analysis (CA) classified heavy metals into three groups. The metal Zn and Pb originate from the traffic emission, while Cd, Cr, Fe, Mn, Ni and Sb primarily come from industrial activities. These two pathways were the major source of heavy metals pollution by positive matrix factorization (PMF). The Igeo and PI values of heavy metals were decreased in the following order: Cd?>?Sb?>?Zn?>?Fe?>?Pb?>?Cu?>?Cr?>?Sn?>?Mn?>?Ni. The RI index showed the heavy metals were moderate to very high potential ecological risk. The HI values for children and adults presented a decreasing order of Cr?>?Pb?>?Ni?>?Cu?>?Cd?>?Zn. The HI also predicted a possibility of non-carcinogenic risk for children living in urban areas in comparison with adults.  相似文献   

13.
The present investigation was carried out to evaluate the levels of metals and metalloids in okra (Abelmoschus esculentus) irrigated with city wastewater. Soil and vegetable samples from two different sites irrigated with wastewater were wet-digested and analyzed. Arsenic (As) was found higher at both sites and Cr was many-fold lower at both sampling sites. Among all heavy metals, Mn and Zn were abundant. Highest value of coefficient factor was found for Cr and the lowest for Cd. The high transfer value was recorded for Cu at site-I and for Ni at site-II. Copper and Se showed negative and significant correlations between soil and vegetable, whereas Mn, Zn, As, Cd, Cr, and Ni showed positive but non-significant correlations. Pollution load index in this vegetable was found to be higher for Cd and lower for Cu. Health risk index at site-I was in the order of As > Mn > Mo > Pb > Cd > Ni > Zn > Se > Fe > Co > Cr > Cu, whereas the same order was observed at site-II of the sampling locations. Thus, the health risks of metals through ingestion of vegetables were of great concern in the study area.  相似文献   

14.
The Gulf of Paria receives heavy metal input from urban runoff, industrial and agricultural activity, sewage and domestic wastes: both from the west coast and from inland areas of Trinidad. Non-residual concentrations of nine metals, as well as total mercury concentrations, were used to determine spatial distributions of heavy metals in sediments in the Gulf of Paria. Surficial sediment samples were collected at 37 stations, which included the mouths of 11 major rivers that flow into the Gulf of Paria. Stations were sampled twice during the wet season (July 1998 and November/ December 1998) and twice during the dry season (March 1999 and April 1999). Sediments were analyzed for aluminium (Al), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), lead (Pb), manganese (Mn), nickel (Ni), zinc (Zn) and mercury (Hg). Total Organic Carbon (TOC) and grain size analyses were also performed on the sediments. Principal component analysis showed that sediments from river mouths subject to greatest land use and anthropogenic input, were distinct from other sediments in the Gulf of Paria. This was due to higher Pb, Zn, Cu and Hg concentrations (3.53-73.30 microg g(-1), 45.8-313.9 microg g(-1), 8.43-39.71 microg g(-1) and 0.03-0.10 microg g(-1), respectively). Sediments further from the coast were also distinct due to their higher Al, Fe, Cr and Mn concentrations (1.37-3.16 mg g(-1), 9.51-18.91 mg g(-1) , 17.22-28.41 microg g(-1) and 323.6-1,564.2 microg g(-1), respectively). Cd and Pb were higher in the wet season while Ni was higher in the dry season. Pb, Zn, Cu and Hg were correlated with each other and with TOC. Correlation was also observed between Al, Fe, Cr, Mn and Ni. Al, Fe, Cr and Mn were correlated with percentage clay in sediments. The results suggest that Pb, Zn, Cu and Hg are preferentially removed by organic matter, which settles at the river-mouths, while Al, Fe, Cr, Mn, and Ni become associated with clay minerals and are transported away from the coast.  相似文献   

15.
This study was conducted to investigate heavy metal contamination in agricultural soils and their transfer in a soil-potato system. A total of 59 pairs of potato and soil samples, representing different locations were collected from Hamedan, western Iran and subjected to heavy metals analysis. Average concentrations of Cd, Cu, Fe, Mn, Ni, Pb, and Zn were 1.2, 13.1, 161.4, 13.2, 3.2, 19.5, and 41.5 mg kg?1 dry weight in potato tubers, respectively. A sequence of decreasing plant transfer factors values: Cd > Pb > Cu > Zn > Ni ≥ Mn > Fe was obtained. Furthermore, the health risk index (HRI) values were within the safe limit (<1) except for Cd and Pb. HRI values for Cd and Pb were higher than 1, indicating potential health risk, especially for children. The results indicated that daily intakes of Cd and Pb in potato in the study area may present a future hazard.  相似文献   

16.
Heavy metals in the site received industrial effluents were investigated to assess the pollution levels, distribution of metal among solid-phase fractions and possible metal sources. The soil samples at different depths of 0–5, 5–25 and 25–50 cm were collected and analyzed for Fe, Mn, Cd, Zn, Cu, Ni and Pb. Among all metals, Cd content was not detected in all soil samples. The average contents of Pb and Zn are higher than the corresponding values of common range in earth crust. Meanwhile, the maximum contents of Cu and Zn are higher than those of Dutch optimum value but lower that the Dutch protection act target value. The maximum contents of Cu, Pb and Zn are higher than the average shale value. The most investigated heavy metals are mostly found in the potentially labile pool (>50.0%) including metal bound to carbonate, Fe/Mn oxides, or organically fractions. Enrichment factor (EF) in combination with multivariate analysis including principal component analysis (PCA) and hierarchical cluster analysis (HCA) suggest that Mn and Ni associated with Fe in the soil samples were primarily originated from lithogenic sources. Pb was largely derived only from anthropogenic source, while Cu and Zn in the soil samples were controlled by the mixed natural and anthropogenic sources. These results suggest that discharging the industrial effluents into dumping site increased pollution level of Pb, Zn and Cu as well as enhanced their potentially labile pool that may be responsible for occurring potential toxic impacts on environmental quality.  相似文献   

17.
Cheung  Y. H.  Wong  M. H.  Tam  N. F. Y. 《Hydrobiologia》1989,(1):377-383
Seeds of thirteen edible plant species were tested for their response to heavy metals during their early development. It was found that a short-term root elongation test of six days could be used to evaluate the degree of toxicity of aqueous samples containing heavy metals. Shoot elongation was found to be less sensitive to metals than root elongation.The seeds were sown in pots containing freshwater sand to which known concentrations of metal solutions were added. The relative toxicity of the three metals, copper, nickel and zinc, followed the pattern of Ni > Cu > Zn.Results on the relative toxicity of Zn : Cu: Ni to various plant species indicated that the ratios were species-specific. The Zn equivalent concept of Zn : Cu : Ni = 1 : 2 : 8 could not be applied to all the plant species tested.The root growth of seeds of Brassica parachinensis (flowering Chinese cabbage) placed on filter papers in petri dishes to which metal solutions were added were tested. The sensitivity ranking of the metals tested was found to be as follows: Ni > Cd > Cu > Al > Fe > Zn > Pb > Mn > Ag. There was no significant difference (p > 0.05) in percentage reduction in root elongation among the four different repeated trials.  相似文献   

18.
Lake Taihu is one of the most contaminated lakes in China. Surface sediment data show that the northern area of the Lake has the worst heavy metals pollution, and high heavy metal concentrations were attributed to discharge of untreated and partially treated industrial waste water from cities to the north of the lake. To study geochemical features and pollution history of heavy metals, total content and chemical fractionations of Cu, Fe, Mn, Ni, Pb, and Zn were analyzed for core sediments from western Lake Taihu using the speciation extraction procedure, proposed by the Commission of the European Communities Bureau of Reference (BCR), together with grain size and organic carbon measurements. Results show that sediments are composed of organic-poor clayey-fine silts for Cores MS and DLS, and have similar geochemical features shown by heavy metals. Cu, Fe, Ni, and Zn mainly are associated with the residue fraction, Mn is concentrated in the exchangeable-carbonate and residue fractions, and Pb is concentrated in the Fe–Mn oxide fraction and organic-sulfide fraction. The fractions of Ni, Pb, and Zn bound to Fe–Mn oxide show significant correlations with Mn from the Fe–Mn oxide fraction, and the organic-sulfide fractions of Cu, Mn, Ni, Pb, and Zn are correlated with TOC. The increase of Cu, Mn, Ni, Pb and Zn content and percentage of extractable fractions in the upper layers of the sediments are correlated with anthropogenic input of heavy metals due to rapid industrial development. This coincides with rapid economic development in the Taihu basin since late 1970s. Heavy metals in the surface sediments have certain potential biological toxicity as shown by the higher SEM/AVS ratio.  相似文献   

19.
Trace elements are essential components of biological structures, but alternatively, they can be toxic at concentrations beyond those necessary for their biological functions. Changes in the concentration of essential trace elements and heavy metals may affect acute hemorrhagic stroke. The aim of this study was to measure serum levels of essential trace elements [iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), and magnesium (Mg)] and heavy metals [cobalt (Co), cadmium (Cd), and lead (Pb)] in patients with acute hemorrhagic stroke. Twenty-six patients with acute hemorrhagic stroke and 29 healthy controls were enrolled. Atomic absorption spectrophotometry (UNICAM-929) was used to measure serum Fe, Cu, Pb, Cd, Zn, Co, Mn and Mg concentrations. Serum Cd, Pb and Fe levels were significantly higher in patients with acute hemorrhagic stroke than controls (p < 0.001), while serum Cu, Zn, Mg and Mn levels were significantly lower (all p < 0.001). However, there was no significant difference between the groups with respect to serum Co levels (p > 0.05). We first demonstrate increased Cd, Pb, and Fe levels; and decreased Cu, Zn, Mg, and Mn levels in patients with acute hemorrhagic stroke. These findings may have diagnostic and prognostic value for acute hemorrhagic stroke. Further studies are required to elucidate the roles of trace elements and heavy metals in patients with acute hemorrhagic stroke.  相似文献   

20.
We studied the relationships between testate amoeba communities and heavy metal (Pb, Cd, Zn, Ni, Cu, Mn, and Fe) concentrations in the moss Barbula indica sampled at 29 sites in and around the city of Hanoi (Vietnam). Our first approach was to compare the heavy metal concentrations and testate amoeba variables between the city (zone 1) and the surrounding (zone 2). Mean moss concentrations of Pb, Cd, Zn, Ni, and Cu were significantly higher and testate amoeba species richness and abundance were significantly lower in zone 1 and the abundance of eight taxa differed significantly between the two zones. We then studied the correlation between heavy metals and testate amoebae. Species richness and abundance were correlated negatively to Pb concentration. Shannon H′ was negatively correlated to both Pb and Cd. The abundance of several species was negatively correlated with Pb, Cd, Zn, and Ni; however, at the community level, Pb emerged as the only significant variable in a redundancy analysis. Our results suggest that testate amoebae are sensitive to and may be good bioindicators for heavy metal pollution, especially lead. Further research is needed to understand the causal relationships underlying the observed patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号