首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The kinetics of Na+ efflux from Escherichia coli RA 11 membrane vesicles taking place along a favorable Na+ concentration gradient are strongly dependent on the generation of an electrochemical proton gradient. An energy-dependent acceleration of the Na+ efflux rate is observed at all external pHs between 5.5 and 7.5 and is prevented by uncoupling agents. The contributions of the electrical potential (delta psi) and chemical potential (delta pH) of H+ to the mechanism of Na+ efflux acceleration have been studied by determining the effects of (a) selective dissipation of delta psi and delta pH in respiring membrane vesicles with valinomycin or nigericin and (b) imposition of outwardly directed K+ diffusion gradients (imposed delta psi, interior negative) or acetate diffusion gradients (imposed delta pH, interior alkaline). The data indicate that, at pH 6.6 and 7.5, delta pH and delta psi individually and concurrently accelerate the downhill Na+ efflux rate. At pH 5.5, the Na+ efflux rate is enhanced by delta pH only when the imposed delta pH exceeds a threshold delta pH value; moreover, an imposed delta psi which per se does not enhance the Na+ efflux rate does contribute to the acceleration of Na+ efflux when imposed simultaneously with a delta pH higher than the threshold delta pH value. The results strongly suggest that the Na+-H+ antiport mechanism catalyzes the downhill Na+ efflux.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The effects of imposed proton motive force on the kinetic properties of the alkalophilic Bacillus sp. strain N-6 Na+/H+ antiport system have been studied by looking at the effect of delta psi (membrane potential, interior negative) and/or delta pH (proton gradient, interior alkaline) on Na+ efflux or H+ influx in right-side-out membrane vesicles. Imposed delta psi increased the Na+ efflux rate (V) linearly, and the slope of V versus delta psi was higher at pH 9 than at pH 8. Kinetic experiments indicated that the delta psi caused a pronounced increase in the Vmax for Na+ efflux, whereas the Km values for Na+ were unaffected by the delta psi. As the internal H+ concentration increased, the Na+ efflux reaction was inhibited. This inhibition resulted in an increase in the apparent Km of the Na+ efflux reaction. These results have also been observed in delta pH-driven Na+ efflux experiments. When Na(+)-loaded membrane vesicles were energized by means of a valinomycin-induced inside-negative K+ diffusion potential, the generated acidic-interior pH gradients could be detected by changes in 9-aminoacridine fluorescence. The results of H+ influx experiments showed a good coincidence with those of Na+ efflux. H+ influx was enhanced by an increase of delta psi or internal Na+ concentration and inhibited by high internal H+ concentration. These results are consistent with our previous contentions that the Na+/H+ antiport system of this strain operates electrogenically and plays a central role in pH homeostasis at the alkaline pH range.  相似文献   

3.
Bavaricin MN, a bacteriocin produced by Lactobacillus bavaricus MN, reached titres of 2000 AU ml-1 in APT broth maintained at pH 6.0, 30°C in a batch fermenter. Levels of bavaricin MN at pH 5.5 and 6.5 were lower despite comparable levels of producer cells. The addition of 3.0 g l-1 beef extract to APT broth resulted in increases in both the growth rate of the culture and the production of bavaracin MN. The titre of bavaricin MN in batch fermenters controlled at pH 6.0 in APT broth plus 3 g l-1 beef extract reached 3200 AU ml-1 at 30°C. This level was reduced to 800 AU ml-1 by 76 h. Glucose-limited continuous culture of Lact. bavaricus MN under the same conditions resulted in an increase in the titre of bavaricin MN to 6400 AU ml-1. This level was maintained, independent of growth rate, for 345 h. Growth rates of 0.205, 0.118, 0.169 and 0.058 h-1 were examined.  相似文献   

4.
The basal proton motive force (PMF) levels and the influence of the bacteriocin nisin on the PMF were determined in Listeria monocytogenes Scott A. In the absence of nisin, the interconversion of the pH gradient (Z delta pH) and the membrane potential (delta psi) led to the maintenance of a fairly constant PMF at -160 mV over the external pH range 5.5 to 7.0. The addition of nisin at concentrations of greater than or equal to 5 micrograms/ml completely dissipated PMF in cells at external pH values of 5.5 and 7.0. With 1 microgram of nisin per ml, delta pH was completely dissipated but delta psi decreased only slightly. The action of nisin on PMF in L. monocytogenes Scott A was both time and concentration dependent. Valinomycin depleted only delta pH, whereas nigericin and carbonyl cyanide m-chlorophenylhydrazone depleted only delta psi, under conditions in which nisin depleted both. Four other L. monocytogenes strains had basal PMF parameters similar to those of strain Scott A. Nisin (2.5 micrograms/ml) also completely dissipated PMF in these strains.  相似文献   

5.
The Na+/H+ antiporter of Bacillus alcalophilus was studied by measuring 22Na+ efflux from starved, cyanide-inhibited cells which were energized by means of a valinomycin-induced potassium diffusion potential, positive out (delta psi). In the absence of a delta psi, 22Na+ efflux at pH 9.0 was slow and appreciably inhibited by N-ethylmaleimide. Upon imposition of a delta psi, a very rapid rate of 22Na+ efflux occurred. This rapid rate of 22Na+ efflux was competitively inhibited by Li+ and varied directly with the magnitude of the delta psi. Kinetic experiments with B. alcalophilus and alkalophilic Bacillus firmus RAB indicated that the delta psi caused a pronounced increase in the Vmax for 22Na+ efflux. The Km values for Na+ were unaffected by the delta psi. Upon imposition of a delta psi at pH 7.0, a retardation of the slow 22Na+ efflux rate at pH 7.0 was caused by the delta psi. This showed that inactivity of the Na+/H+ antiporter at pH 7.0 was not secondary to a low delta psi generated by respiration at this pH. Indeed, 22Na+ efflux activity appeared to be inhibited by a relatively high internal proton concentration. By contrast, at a constant internal pH, there was little variation in the activity at external pH values from 7.0 to 9.0; at an external pH of 10.0, the rate of 22Na+ efflux declined. This decline at typical pH values for growth may be due to an insufficiency of protons when a diffusion potential rather than respiration is the driving force. Non-alkalophilic mutant strains of B. alcalophilus and B. firmus RAB exhibited a slow rate of 22Na+ efflux which was not enhanced by a delta psi at either pH 7.0 or 9.0.  相似文献   

6.
The H(+)-ATPase from chloroplasts (CF0F1) was isolated, purified and reconstituted into liposomes from phosphatidylcholine/phosphatidic acid. A transmembrane pH difference, delta pH, and a transmembrane electric potential difference, delta psi, were generated by an acid/base transition. The rate of ATP synthesis was measured at constant delta pH and constant delta psi as a function of temperature between 5 degrees C and 45 degrees C. The activation energy was 55 kJ mol-1. CF0F1 was coreconstituted with bacteriorhodopsin at a molar ratio of approximately 1:170 in the same type of liposomes. Illumination of the proteoliposomes leads to proton transport into the vesicles generating a constant delta pH = 1.8. The dependence of the rate of ATP synthesis on ADP concentration was measured with CF0F1 in the oxidized state, E(ox), and in the reduced state, E(red). The results can be described by Michaelis-Menten kinetics with the following parameters: Vmax = 0.5 s-1, Km = 8 microM for E(ox) and Vmax = 2.0 s-1, Km = 8 microM for E(red).  相似文献   

7.
The energy dependence of gamma-aminobutyric acid (GABA) uptake was characterized in rat brain synaptic vesicles and in proteoliposomes reconstituted with a new procedure from vesicular detergent extracts. The proteoliposomes displayed high ATP-dependent GABA uptake activity with properties virtually identical to those of intact vesicles. GABA uptake was similar at chloride concentrations of 0 and 150 mM, i.e. conditions under which either the membrane potential (delta psi) or the pH difference (delta pH) predominates. Delta psi was gradually dissipated by increasing the concentration of SCN-. GABA uptake was reduced by 10 mM SCN-, showing less sensitivity to delta psi reduction than glutamate uptake but more than dopamine uptake. Dissipation of delta pH with NH+4 abolished GABA uptake at pH 7.3, whereas no significant inhibition occurred at pH 6.5. In contrast, dopamine uptake was inhibited more strongly, even at pH 6.5, and glutamate uptake was not reduced in either condition. We conclude that GABA uptake is driven by both components of the proton electrochemical gradient, delta pH and delta psi, and that this is different from the uptake of both dopamine and glutamate, which is more strongly dependent on delta pH and delta psi, respectively. Thus, our data suggest that GABA uptake is electrogenic and occurs in exchange for protons.  相似文献   

8.
The pH dependence of transport of the neutral amino acids L-serine and L-alanine by membrane vesicles of Streptococcus cremoris have been studied in detail. The rates of four modes of facilitated diffusion (e.g., influx, efflux, exchange, and counterflow) of L-serine and L-alanine increase with increasing H+ concentration. Rates of artificially imposed electrical potential across the membrane (delta psi)-driven transport of L-serine and L-alanine show an optimum at pH 6 to 6.5. Under similar conditions, delta psi- and pH gradient across the membrane (delta pH)-driven transport of L-leucine is observed within the pH range studied (pH 5.5 to 7.5). The effect of ionophores on the uptake of L-alanine and L-serine has been studied in membrane vesicles of S. cremoris fused with proteoliposomes containing beef heart mitochondrial cytochrome c oxidase as a proton motive force (delta p)-generating system (Driessen et al., Proc. Natl. Acad. Sci. USA 82:7555-7559, 1985). An increase in the initial rates of L-serine and L-alanine uptake is observed with decreasing pH, which is not consistent with the pH dependency of delta p. Nigericin, an ionophore that induced a nearly complete interconversion of delta pH into delta psi, stimulated both the rate and the final level of L-alanine and L-serine uptake. Valinomycin, an ionophore that induced a collapse of delta psi with a noncompensating increase in delta pH, inhibited L-alanine and L-serine uptake above pH 6.0 more efficiently than it decreased delta p. Experiments which discriminate between the effects of the internal pH and the driving force (delta pH) on solute transport indicate that at high internal pH the transport systems for L-alanine and L-serine are inactivated. A unique relation exists between the internal pH and the initial rate of uptake of L-serine and L-alanine with an apparent pK of 7.0. The rate of L-alanine and L-serine uptake decreases with increasing internal pH. The apparent complex relation between the delta p and transport of L-alanine and L-serine can be explained by a regulatory effect of the internal pH on the activity of the L-serine and L-alanine carriers.  相似文献   

9.
The relationship between the magnitude of the transmembrane electrical potential and the uptake of [14C]gentamicin was examined in wild-type Staphylococcus aureus in the logarithmic phase of growth. The electrical potential (delta psi) and the pH gradient across the cell membrane were determined by measuring the equilibrium distribution of [3H]tetraphenyl-phosphonium and [14C]acetylsalicylic acid, respectively. Incubation in the presence of the H+-ATPase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD) led to an increase in delta psi with no measurable effect on the pH gradient at external pHs ranging from 5.0 to 6.5, and the effect on delta psi was DCCD concentration dependent. In separate experiments, gentamicin uptake and killing were studied in the same cells under identical conditions. At pH 5.0 (delta psi = -140 mV), no gentamicin uptake occurred. In the presence of 40 and 100 microM DCCD, delta psi was increased to -162 and -184 mV, respectively, and gentamicin uptake was observed in a manner that was also dependent on the DCCD concentration. At pH 6.0 (delta psi = -164 mV), gentamicin uptake occurred in the absence of the carbodiimide but was enhanced in a concentration-dependent fashion by 40 and 100 microM DCCD (delta psi = -174 and -216 mV, respectively). In all cases increased gentamicin uptake was associated with an enhanced bactericidal effect. The results indicate that initiation of gentamicin uptake requires a threshold level of delta psi (-155 mV) and that above this level drug uptake is directly dependent on the magnitude of delta psi.  相似文献   

10.
N Murakami  T Konishi 《Biochimie》1988,70(6):819-826
Membrane vesicles from Halobacterium halobium create a large, inside negative membrane potential (delta psi) and small, inside alkaline pH gradient (delta pH) by illumination in 3 M NaCl. delta psi was the major component of a proton electrochemical potential (delta microH+) over a pH range from 5 to 8. After DCCD treatment of the vesicles, delta psi was replaced by delta pH due to the inhibition of the intrinsic delta pH----delta psi transformation process: delta psi formation in light is markedly retarded and an inversely large delta pH is established at these pHs. DCCD-caused changes in delta psi and delta pH were completely restored to the control level by the addition of monensin, an electroneutral Na+/H+ exchanger. The ratio of DCCD-caused change in delta pH and delta psi was identical to that of monensin-recovered delta psi and delta pH. The delta psi/delta pH ratio was approximately 0.8, that is, 100 mV of delta pH was transformed into 78 mV of delta psi. The present results indicate that the intrinsic activity of the DCCD-sensitive delta pH----delta psi transformation is mediated by an electroneutral Na+/H+ exchange.  相似文献   

11.
The influence of ammonium and urea on the components of the proton electrochemical potential (delta p) and de novo synthesis of ATP was studied with Bacillus pasteurii ATCC 11859. In washed cells grown at high urea concentrations, a delta p of -56 +/- 29 mV, consisting of a membrane potential (delta psi) of -228 +/- 19 mV and of a transmembrane pH gradient (delta pH) equivalent to 172 +/- 38 mV, was measured. These cells contained only low amounts of potassium, and the addition of ammonium caused an immediate net decrease of both delta psi and delta pH, resulting in a net increase of delta p of about 49 mV and de novo synthesis of ATP. Addition of urea and its subsequent hydrolysis to ammonium by the cytosolic urease also caused an increase of delta p and ATP synthesis; a net initial increase of delta psi, accompanied by a slower decrease of delta pH in this case, was observed. Cells grown at low concentrations of urea contained high amounts of potassium and maintained a delta p of -113 +/- 26 mV, with a delta psi of -228 +/- 22 mV and a delta pH equivalent to 115 +/- 20 mV. Addition of ammonium to such cells resulted in the net decrease of delta psi and delta pH without a net increase in delta p or synthesis of ATP, whereas urea caused an increase of delta p and de novo synthesis of ATP, mainly because of a net increase of delta psi. The data reported in this work suggest that the ATP-generating system is coupled to urea hydrolysis via both an alkalinization of the cytoplasm by the ammonium generated in the urease reaction and a net increase of delta psi that is probably due to an efflux of ammonium ions. Furthermore, the findings of this study show that potassium ions are involved in the regulation of the intracellular pH and that ammonium ions may functionally replace potassium to a certain extent in reducing the membrane potential and alkalinizing the cytoplasm.  相似文献   

12.
Measurements were made of the difference in the electrochemical potential of protons (delta-mu H+) across the membrane of vesicles restituted from the ATPase complex (TF0.F1) purified from a thermophilic bacterium and P-lipids. Two fluorescent dyes, anilinonaphthalene sulfonate (ANS) and 9-aminoacridine (9AA) were used as probes for measuring the membrane potential (delta psi) and pH difference across the membrane (delta pH), respectively. In the presence of Tris buffer the maximal delta psi ans no delta pH were produced, while in the presence of the permeant anion NO-3 the maximal delta pH and a low delta psi were produced by the addition of ATP. When thATP concentration was 0.24 mm, the delta psi was 140-150 mV (positive inside) in Tris buffer, and the delta pH was 2.9-3.5 units (acidic inside) in the presence of NO-3. Addition of a saturating amount of ATP produced somewhat larger delta psi and delta pH values, and the delta -muH+attained was about 310mV. By trapping pH indicators in the vesicles during their reconstitution it was found that the pH inside the vesicles was pH 4-5 during ATP hydrolysis. The effects of energy transfer inhibitors, uncouplers, ionophores, and permeant anions on these vesicles were studied.  相似文献   

13.
Adenosine 5'-triphosphate (ATP) synthesis energized by an artificially imposed protonmotive force (delta p) in adenosine 5'-diphosphate-loaded membrane vesicles of Escherichia coli was investigated. The protonmotive force is composed of an artificially imposed pH gradient (delta pH) or membrane potential (deltapsi), or both. A delta pH was established by a rapid alteration of the pH of the assay medium. A delta psi was created by the establishment of diffusion potential of K+ in the presence of valinomycin. The maximal amount of ATP synthesized was 0.4 to 0.5 nmol/mg of membrane protein when energized by a delta pH and 0.2 to 0.3 nmol/mg of membrane protein when a delta psi was imposed. Simultaneous imposition of both a delta pH and delta psi resulted in the formation of greater amounts of ATP (0.8 nmol/mg of membrane protein) than with either alone. The amount of ATP synthesized was roughly proportional to the magnitude of the artificially imposed delta p. Although p-chloromercuribenzoate, 2-heptyl-4-hydroxyquinoline-N-oxide, or NaCN each inhibits oxidation of D-lactate, and thus oxidative phosphorylation, none inhibited ATP synthesis driven by an artificially imposed delta p. Membrane vesicles prepared from uncA or uncB strains, which are defective in oxidative phosphorylation, likewise were unable to catalyze ATP synthesis when energy was supplied by an artificially imposed delta p.  相似文献   

14.
Bassilana M  Damiano E  Leblanc G 《Biochemistry》1984,23(22):5288-5294
Modifications of the kinetic properties of the Escherichia coli (RA11) Na(+) - H(+) antiport system by imposed pH gradients (deltapH, interior alkaline) and membrane potential(delta(psi), interior negative) were studied by looking at the accelerating effects of deltapH and delta on downhill Na(+) efflux from membrane vesicles incubated at different external pHs. First,variations of the Na(+) efflux rate ( VNa) as a function of imposed delta pH appear to be strongly dependent on the external pH value.The individual VN, vs. deltapH relationships observed between pH 5.5 and pH 6.6 are all nonlinear and indicate the existence of a threshold deltapH above which V(Na) increases steeply as the deltapH magnitude increases; threshold deltapH values progressively decrease as the pH is raised from 5.5 to 6.6. In contrast, at or above neutrality, V(Na) acceleration is linearly related to deltapH amplitude. Strikingly, it is shown that the deltapH-dependent variations in the Na(+) efflux rate measured in vesicles incubated at different external pHs can be accounted for by variations of internal pH; the observed relationship suggests that a high internal H(+) concentration inhibits the Na(+) -H(+) antiport activity.This inhibition results from a drastic increase in the apparent K(m), of the Na(+) efflux reaction as the internal H(+) concentration increases. On the other hand, imposed Δ increases the Na(+) efflux rate linearly by a selective modification of the V(max) value of the Na(+) efflux. Together, these data indicate that the internal H(+) concentration controls the Na(+)-H(+) antiport activity and that the chemical and electrical proton gradients affect two different kinetic steps of the Na(+)-H(+) exchange reaction.  相似文献   

15.
The kinetics of the partitioning of lipid vesicles containing acidic phospholipids in aqueous two-phase polymer systems are dependent upon the vesicle size; the larger the vesicles, the more readily they absorb to the interfaces between the two polymer phases and hence are cleared from the top phase as phase separation proceeds. The partitioning of neutral lipid vesicles is principally to the bulk interface and is the same in phase systems of both low and high electrostatic potential difference between the two phases (delta psi). The incorporation of negatively charged lipids has two effects upon partition. First, vesicles with negatively charged lipids exhibit increased bottom phase partitioning in phases of low delta psi due to an enhanced wetting of the charged lipids by the lower phase. Second, the presence of a negatively charged group on the vesicle surface results in increased partition to the interface and top phase in phase systems of high delta psi. Differences observed in the partition of vesicles containing various species of negatively charged lipid thus reflect a competition between these two opposing factors.  相似文献   

16.
D McLaggan  M Keyhan    A Matin 《Journal of bacteriology》1990,172(3):1485-1490
The protonophore-mediated collapse of the large delta pH that acidophiles maintain across their cytoplasmic membranes was augmented by the presence of Cl-, and Cl- influx into the cells occurred evidently in response to the protonophore-induced increase in the inside-positive membrane potential (+ delta psi). In respiring cells, the addition of Cl- but not SO4(2-) salts caused a rapid and precipitous decrease in the + delta psi. A Nernstian relationship between the imposed transmembrane K+ gradient and the valinomycin-induced K+ diffusion potentials was observed when everted membrane vesicles were loaded with K2SO4 or KH2PO4 but not when loaded with KCl or KNO3. Thus, electrogenic Cl- transport occurred in Bacillus coagulans. In addition, a nonelectrogenic temperature-sensitive Cl- transport mechanism, with the net Cl- efflux coefficient (PCl-) ranging from 1.5 x 10(-4) to 6.1 x 10(-6) cm/s, accounted for the massive Cl- efflux from Cl(-)-loaded cells. Thus, B. coagulans, despite its dependence on the + delta psi and therefore the need to exclude anions, apparently possesses specific mechanisms for Cl- permeation. Active cells of B. coagulans prevented Cl- accumulation from attaining an electrochemical equilibrium, maintaining a delta micro Cl- of ca. -63 mV. B. coagulans therefore also possesses an energy-dependent mechanism for Cl- exclusion from the cells.  相似文献   

17.
In vesicles from glucose-grown Pseudomonas putida, L-malate is transported by nonspecific physical diffusion. L-Malate also acts as an electron donor and generates a proton motive force (delta p) of 129 mV which is composed of a membrane potential (delta psi) of 60 mV and a delta pH of 69 mV. In contrast, vesicles from succinate-grown cells transport L-malate by a carrier-mediated system with a Km value of 14.3 mM and a Vmax of 313 nmol X mg protein-1 X min-1, generate no delta psi, delta pH, or delta p when L-malate is the electron donor, and produce an extravesicular alkaline pH during the transport of L-malate. A kinetic analysis of this L-malate-induced proton transport gives a Km value of 16 mM and a Vmax of 667 nmol H+ X mg protein-1 X min-1. This corresponds to a H+/L-malate ratio of 2.1. The failure to generate a delta p in these vesicles is considered, therefore, to be consistent with the induction in succinate-grown cells of an electrogenic proton symport L-malate transport system.  相似文献   

18.
Endocytic vesicles possess an electrogenic proton pump, and measurements of ATPase activity suggest that Cl- may stimulate proton pump activity. This study was undertaken to measure the steady-state pH, potential (delta psi), and total proton electrochemical gradients established by the rat liver multivesicular body (MVB) proton pump and to examine the effects of Cl- (0.5-140 mM) on these gradients. Radiolabeled [( 14C] methylamine and 36Cl-) and fluorescent (fluorescein isothiocyanate-conjugated low density lipoproteins) probes were used to assess internal pH (pHi) and delta psi. In the absence of ATP, pHi averaged 7.37 +/- 0.05 (extracellular pH 7.31 +/- 0.02), and delta psi ranged from -32 to -71 mV; but neither pHi nor delta psi varied consistently with [Cl-]. In the presence of ATP, pHi decreased progressively with increasing [Cl-] to a plateau value of about 5.89 at greater than or equal to 25 mM Cl-, and MVB exhibited an interior positive delta psi that was maximal at the lowest Cl- concentration (+65.5 mV) and decreased as medium Cl- increased. The total ATP-dependent proton electrochemical gradient (proton-motive force (delta p] averaged 118.0 +/- 4.3 mV and did not change in any consistent manner as [Cl-] varied almost 300-fold. However, initial rates of MVB acidification increased with increasing [Cl-]. These studies indicate that: (a) in the absence of ATP, isolated MVB exhibited a negative delta psi, probably a Donnan potential; (b) in the presence of ATP and at a [Cl-] similar to that in hepatocyte cytoplasm (25 mM), MVB pHi was 5.89, and delta psi was +9.6 mV; and (c) over the range of [Cl-] tested, the magnitudes of delta pH and delta psi were inversely related, apparently related to Cl- availability, but the ATP-dependent delta p did not vary. Therefore, it is concluded that Cl- increases the initial rate of vesicle acidification in MVB and also affects the relative chemical and electrical contributions of the steady-state proton pump-determined delta p. Cl-, however, does not alter steady-state delta p.  相似文献   

19.
Yeast plasma membrane vesicles were obtained by the fusion of liposomes with purified yeast membranes by means of the freeze thaw-sonication technique. Beef heart mitochondria cytochrome-c oxidase was incorporated into the vesicles. Addition of substrate (ascorbate/TMPD/cytochrome c) generated a membrane potential negative inside, and an alkaline pH gradient inside the vesicle, that served as the driving force for leucine transport. Both delta pH and delta psi could drive leucine transport. When delta pH was increased in the presence of valinomycin and potassium, at the expense of delta psi, leucine uptake increased by 10%.  相似文献   

20.
Using the distribution of weak acids to measure the pH gradient (delta pH; interior alkaline) and the distribution of the lipophilic cation [3H]tetraphenylphosphonium+ to monitor the membrane potential (delta psi; interior negative), we studied the electrochemical gradient or protons (delta mu- H+) across the membrane of Micrococcus lysodeikticus cells and plasma membrane vesicles. With reduced phenazine methosulfate as electron donor, intact cells exhibited a relatively constant delta mu- H+ (interior negative and alkaline) of -193 mV to -223 mV from pH 5.5 to pH 8.5. On the other hand, in membrane vesicles under the same conditions, delta mu- H+ decreased from a maximum value of -166 mV at pH 5.5 to -107 mV at pH 8.0 and above. This difference is related to a differential effect of external pH on the components of delta mu- H+. In intact cells, delta pH decreased from about -86 mV (i.e., 1.4 units) at pH 5.5 to zero at pH 7.8 and above, and the decreases in delta pH was accompanied by a reciprocal increase in delta psi from -110 mV at pH 5.5 to -211 mV at pH 8.0 and above. In membrane vesicles, the decrease in delta pH with increasing external pH was similar to that described for intact cells; however, delta psi increased from -82 mV at pH 5.5 to only -107 mV at pH 8.0 and above.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号