首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In the polyclonal rat pancreatic beta-cell line INS-1, immunoreactive insulin (IRI, insulin and its precursors) and C-peptide (surrogate marker for mature insulin) were quantified after a 1-h incubation at 16.7 mM glucose with or without oleate. Oleate caused a 20% decrease (P 相似文献   

2.
AtT20 (pituitary corticotroph) cells were transfected with either the native or a mutant [AspB10]rat insulin II gene, using a plasmid containing the insulin gene and a neomycin resistance gene under the control of independent constitutive promoters. The cellular immunoreactive insulin (IRI) content ranged from 0.8-440 ng/10(6) cells, with the highest value similar to that found for a rat insulinoma cell line (RIN) and corresponding to approximately 1% that of native pancreatic B-cells. There was a direct correlation between insulin mRNA levels and IRI content and no correlation between mRNA levels and rat insulin II gene copy number. Furthermore, in some lines the insulin II transgene was lost even though the gene encoding neomycin resistance was retained. IRI release was stimulated up to 4-fold by isobutylmethylxanthine in all lines transfected with the native rat insulin II gene, and HPLC analysis showed most IRI as fully processed insulin, with less than 5% as proinsulin. These cells, thus, directed most proinsulin to secretory granules for conversion and regulated release regardless of the absolute amount of IRI expressed. One of the lines transfected with the AspB10 mutant gene (line AA9) released nearly 50% of IRI as proinsulin under basal conditions, with stimulation of insulin, but not proinsulin, release by isobutylmethylxanthine. This confirmed our previous finding of partial diversion of this mutant proinsulin from the regulated to the constitutive pathway. A second line (IC6) expressing the same mutant gene at much higher levels appeared to direct all mutant proinsulin to the regulated pathway, suggesting that for this particular mutant proinsulin, the secretory pathway employed by the transfected cells can be affected by the amount of proinsulin synthesized.  相似文献   

3.
Summary The insulin-producing cell line RINm5F, has been used in short-term experiments to evaluate insulin secretion. We sought to maintain the responsiveness of these cells to stimuli for up to 2 days. We examined the course of new insulin synthesis over this period by measuring at intervals immunoreactive insulin (IRI) in two parts: IRI in the medium (M) and IRI extracted from the cells (C). Control cells were incubated in RPMI 1640/2.8 mM glucose/10% fetal bovine serum/200 μg/ml bacitracin (to prevent insulin degradation). The addition of dibutyryl cAMP 10 mM to the experimental dishes significantly increased total (M+C) IRI at 48 hr to 37% above the insulin content of the control dishes (p<0.01). Theophylline 10 mM increased total (M+C) IRI by 24% over control (p<0.05) after 24 hrs. Glucose, glyceraldehyde, leucine, arginine, glucagon and tolbutamide, other stimulants of insulin production, had no effect. Under the experimental conditions reported here, including the use of bacitracin, IRI synthesis can be studied for up to 48 hr. Portions of this study have been published in abstract form for the 47th Annual Meeting of the American Diabetes Association, Indianapolis, Indiana, 1987. Supported in part by the American Diabetic Association, Maryland Affiliate.  相似文献   

4.
5.
Calcitonin gene-related peptide (CGRP) is a 37-amino acid peptide that is present in peripheral cells of islets and in nerves around and within islets. CGRP can inhibit insulin secretion in vitro and in vivo. Whether the inhibitory action of CGRP is mediated by somatostatin or by nerve terminals is, however, not known. The objective of this study was to examine the effect of CGRP on insulin secretion, using cultured newborn and adult rat islet cells which did not contain nerve terminals. In adult rat islet cells, CGRP (10(-10) to 10(-8) M) significantly inhibited glucose-stimulated and gastric inhibitory polypeptide (GIP)-potentiated insulin secretion, but in newborn rat islet cells, CGRP did not inhibit glucose-stimulated insulin secretion. Inhibition of glucose-stimulated and GIP-potentiated insulin release was dependent on the glucose concentration during the prestimulation period. CGRP did not stimulate release of somatostatin. These findings suggest that rat CGRP can act directly on beta-cells through a specific receptor that is absent in newborn rat beta-cells.  相似文献   

6.
C-peptide immunoreactivity (CPR) levels were measured in dog superior pancreaticoduodenal vein using synthetic dog C-peptide and its antiserum. The basal CPR level was approximately twice as high as the basal immunoreactive insulin (IRI) level on a molar basis. Glucose (10 mg/kg/min) or arginine (250 mg/kg/min) infusion for 5 min into the superior pancreaticoduodenal artery caused a prompt, parallel increase in IRI and CPR. IRI and CPR were closely equimolar at peak secretions. One bolus administration of synthetic neurotensin (10 microgram/kg) into the same artery produced a mild hyperglycemic response and biphasic IRI and CPR responses at 30 min in the vein. The IRI and CPR increases were closely equimolar during the first phase of secretion, but during the second peak a larger increase was found in CPR than IRI. Upon infusion of synthetic substance P (50 ng/kg/min) for 30 min, IRI and CPR concentrations showed a parallel and closely equimolar fall. These results indicate that insulin and C-peptide were released from beta cells in equimolar concentrations.  相似文献   

7.
Secrepan (Eisai Co. Tokyo, Japan) was administered to 9 healthy volunteers and 36 patients with non-insulin dependent diabetes mellitus (NIDDM) to clarify the effect of secretin on the pancreatic B-cell, by determining the changes in blood of insulin (IRI). Whereas IRI in healthy subjects showed a monophasic change, reaching a peak (delta IRI = 43 +/- 7.3 microunits/ml, M +/- SE) 5 min after secretin loading and returning to the basal level in 15 min, NIDDM patients on diet therapy (delta IRI = 40.2 +/- 7.6 microunits/ml) showed no significant difference from the control group, but NIDDM patients on sulfonylurea (SU) (15.5 +/- 2.4 microunits/ml) and those on insulin therapy (5.3 +/- 1.4 microunits/ml), both showed a significant depression in responsiveness. Further, the changes in insulin secretion after atropine administration in healthy subjects and the changes in IRI response to Secrepan in vagotomized patients were also determined. As a result, data which preclude the possibility of association of the vagus nerve and cholinergic nerve with the stimulation of insulin secretion by secretin were obtained, and a direct action of secretin on the cell of islets of Langerhans was suggested. The maximum IRI response after a secretin load had a significant positive correlation with the IRI response after a 75-gm GTT and the content of C-peptide immunoreactivity in 24-hour urine. Therefore, insulin response to a secretin load can be useful in assessing endogenous insulin secretion and provides a pertinent clinical guide for the selection of an appropriate therapy for diabetes mellitus.  相似文献   

8.
To evaluate the role of sphingosine kinase 1 (SphK1) in insulin secretion, we used stable transfection to knock down the expression of the Sphk1 gene in the rat insulinoma INS-1 832/13 cell line. Cell lines with lowered Sphk1 mRNA expression and SphK1 enzyme activity (SK11 and SK14) exhibited lowered glucose- and 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH) plus glutamine-stimulated insulin release and low insulin content associated with decreases in the mRNA of the insulin 1 gene. Overexpression of the rat or human Sphk1 cDNA restored insulin secretion and total insulin content in the SK11 cell line, but not in the SK14 cell line. The Sphk1 cDNA-transfected SK14 cell line expressed significantly less SphK1 activity than the Sphk1 cDNA-transfected SK11 cells suggesting that the shRNA targeting SK14 was more effective in silencing the exogenous rat Sphk1 mRNA. The results indicate that SphK1 activity is important for insulin synthesis and secretion.  相似文献   

9.
The effect of physical training on insulin and glucagon release in perfused rat pancreas was examined in the spontaneously exercised group running in a wheel cage an average of 1.4 km/day for 3 weeks and in the sedentary control group kept in the cage whose rotatory wheel was fixed on purpose. Pancreatic immunoreactive insulin (IRI) responses to glucose and arginine were reduced by 28% and 47.8% respectively in trained rats compared with untrained rats, while IRI content of the pancreas was similar in these two groups. The demonstrated decrease in insulin secretion of the beta-cell of the trained rats, in response to the glucose and arginine stimulations, may be functional in nature. On the other hand, neither pancreatic glucagon immunoreactivity (GI) response to glucose and arginine nor GI content of the pancreas was modified by exercise training. These results demonstrate that exercise training reduces IRI responses to glucose as well as to arginine stimulations, but does not modify any secretory response of pancreatic GI.  相似文献   

10.
Leucine-enkephalin (Leu-Enk) has been shown to be present in endocrine cells of the rat pancreas and may play a role in the modulation of hormone secretion from the islets of Langerhans. Since little is known about the effect of Leu-Enk on insulin and glucagon secretion, it was the aim of this study to determine the role of Leu-Enk on insulin and glucagon secretion from the isolated pancreatic tissue fragments of normal and diabetic rats. Pancreatic tissue fragments of normal and streptozotocin-induced diabetic rats were incubated for 1 h with different concentrations of Leu-Enk (10(-12)-10(-6)M) alone or in combination with either atropine or yohimbine or naloxone. After the incubation period the supernatant was assayed for insulin and glucagon using radioimmunoassay techniques. Leu-Enk (10(-12 )-10(-6)M) evoked large and significant increases in insulin secretion from the pancreas of normal rats. This Leu-Enk-evoked insulin release was significantly (p < 0.05) blocked by atropine, naloxone and yohimbine (all at 10(-6)M). In the same way, Leu-Enk at concentrations of 10(-12)M and 10(-9)M induced significant (p < 0.05) increases in glucagon release from the pancreas of normal rats. Atropine, yohimbine but not naloxone significantly (p < 0.05) inhibited Leu-Enk-evoked glucagon release from normal rat pancreas. In contrast, Leu-Enk failed to significantly stimulate insulin and glucagon secretion from the pancreas of diabetic rats. In conclusion, Leu-Enk stimulates insulin and glucagon secretion from the pancreas of normal rat through the cholinergic, alpha-2 adrenergic and opioid receptor pathways.  相似文献   

11.
Islet-activating protein (IAP) is a substance purified from the culture medium of Bordetella pertussis, and its main action is characterized by the enhancement of secretory response to glucose and other stimuli in pancreatic islet. In this experiment, the effect of IAP on epinephrine-induced secretion of immunoreactive insulin (IRI) and glucagon (IRG) was investigated in normal dogs. Epinephrine suppressed IRI secretion and it had a little increment to IRG secretion in control group, while IRI and IRG secretions were significantly increased by epinephrine in IAP pretreated group. Using beta-blocker (Propranolol) with epinephrine, these increments of IRI and IRG secretions in IAP pretreated group were abolished. However, using alpha-blocker (Phentolamine) with epinephrine, these secretions of IRI and IRG in IAP pretreated group were much more increased than epinephrine alone induced secretions. Blood glucose levels were lower in IAP pretreated group than in control group throughout the loading tests in all of the experiments. These findings suggest that (1) IAP decreases blood glucose level and (2) IAP enhances epinephrine-induced secretion of insulin and glucagon by acceleration of beta-adrenergic effect and by reduction of alpha-adrenergic suppression in dogs.  相似文献   

12.
We have previously demonstrated an impaired insulin response to intraperitoneal glucose and arginine by the transplantable NEDH rat insulinoma. The nature of this tumour B-cell defect has been further studied by investigating the response of insulinoma-bearing rats to intravenous and intragastric glucose. Intravenous glucose failed to stimulate plasma immunoreactive insulin (IRI) above high basal levels (14.5 +/- 1.1 micrograms/L). However, significant elevation of the plasma IRI concentration was observed following an intragastric glucose load (17.1 +/- 1.5 micrograms/L; P less than 0.02). In view of the different effects of oral and intravenous glucose on insulin secretion in the RIN, implicating an involvement of incretin factors from the gut, the response of the tumour to GIP was investigated. Plasma IRI concentrations rose significantly in these animals (20.6 +/- 2.5 micrograms/L at 5 min, P less than 0.02). We conclude that (a) the transplantable rat insulinoma is responsive to GIP, and (b) that whilst the tumour B-cell has lost its insulin responsiveness to hyperglycaemia produced by intraperitoneal or intravenous glucose, it retains its ability to respond to intragastric glucose. This could be due to incretin factors from the gut of which GIP is currently the strongest candidate.  相似文献   

13.
This study was undertaken to evaluate the relative contribution of insulin, proinsulin-like components (PLC) and C-peptide toward plasma levels of immuno reactive insulin (IRI) and C-peptide immunoreactivity (CPR) in the pig and to elucidate the mode of secretion of PLC in the early phase of insulin release. Following the intravenous glucose loads, the concomitant secretion of CPR with that of IRI occured rapidly and the maximum plasma level of IRI was observed at an earlier time than that of CPR. Following the intravenous glucagon injection, the maximum plasma levels of IRI and CPR were observed at the same time in the early phase. After the gel filtration of acid alcohol extracts of plasma in a fasted state, a very small amount of PLC and a small amount of C-peptide as well as a small amount of insulin were detected. The results obtained from the gel filtration of extracts revealed that the increased amounts in IRI and CPR after the injection of glucose or glucagon consisted mostly and respectively of insulin and C-peptide in the pig, because the concentration of PLC increased only slightly in the early phase. In fact, plasma levels of CPR and IRI were essentially and respectively paralleled to those of insulin and C-peptide which were assayed after the gel filtration of extracts. In addition, the slight elevation of PLC in the early phase after these stimulations indicated that PLC was elicited into blood circulation at the same time of the secretion of insulin and C-peptide.  相似文献   

14.
《The Journal of cell biology》1995,131(6):1561-1572
To assess whether connexin (Cx) expression contributes to insulin secretion, we have investigated normal and tumoral insulin-producing cells for connexins, gap junctions, and coupling. We have found that the glucose-sensitive cells of pancreatic islets and of a rat insulinoma are functionally coupled by gap junctions made of Cx43. In contrast, cells of several lines secreting insulin abnormally do not express Cx43, gap junctions, and coupling. After correction of these defects by stable transfection of Cx43 cDNA, cells expressing modest levels of Cx43 and coupling, as observed in native beta-cells, showed an expression of the insulin gene and an insulin content that were markedly elevated, compared with those observed in both wild-type (uncoupled) cells and in transfected cells overexpressing Cx43. These findings indicate that adequate levels of Cx-mediated coupling are required for proper insulin production and storage.  相似文献   

15.
Colony-bred sand rats were fed with rat pellet chow in restricted quantities or ad libitum for 8--10 or 28--31 weeks after weaning. The changes of glucose metabolism were characterized by an intraperitoneal glucose tolerance test. The daily food intake and the average weight gain differed only in the first 5--7 weeks of pellet nutrition. In the impaired glucose tolerance tests of all sand rats the high basal plasma IRI levels were not significantly increased by the grossly enhanced blood glucose concentrations. The insulin secretion of either acutely incubated or for 8 days cultivated isolated pancreatic islets, however, was stimulated already by low (1.7 and 5 mM) glucose concentrations in all diet groups. Otherwise the glucagon secretion of isolated islets was not suppressed by high glucose concentrations. No changes of insulin or glucagon contents of islets were found in the different diet groups. The adipocytes of all animals revealed a complete ineffectiveness of insulin on the glucose utilization to CO2 and triglycerides. The basal glucose conversion to CO2 and glycogen in skeletal muscle and the stimulatory potency of insulin was low and not distinctly different in all groups. In liver glycogen and triglyceride contents as well as gluconeogenic enzyme activities were not influenced by feeding of different quantities of pellet diet at the investigated time points. The time course of the metabolic and clinical alterations demonstrates that the peripheral organs become insensitive to insulin in the first weeks after weaning.  相似文献   

16.
The levels of glucose, immunoreactive insulin and C-peptide were studied in 13 obese patients and 10 control subjects, in basal conditions and after an oral glucose load (OGTT). The IRI and C-peptide levels were higher in the obese patients than in the controls either during fasting or during the OGTT. The C-peptide/IRI ratio decreased after the oral glucose load in both groups studied. However in the obese subjects the values for the C-peptide/IRI ratio were lower than those found in the controls during the same observation period. These results suggest the hypothesis that in the obese patients the high IRI levels which reflect an increased insulin secretion, are, at least in part, due to an early saturation of the hepatic degradation of insulin and/or to a decrease in the specific receptor sites normally present in the cell membranes.  相似文献   

17.
The effect of highly purified gastric inhibitory polypeptide (GIP) on immunoreactive insulin (IRI) secretion in the conscious fasted dog was investigated. Significant increases in IRI release were observed with intravenous administration of three different doses of GIP. These were accompanied by depression in fasting serum-glucose levels. Preliminary studies were undertaken to determine whether this insulinotropic action of GIP could be attributed to a particular segment of the GIP molecule. GIP fragments produced by cleavage with cyanogen bromide and trypsin showed no significant stimulation of IRI release. The possibility that GIP might itself enhance glucose uptake or potentiate insulin-induced glucose uptake was studied with the rat hemidiaphragm preparation. No such effect was observed. In the light of this and other recent work, it is concluded that GIP is a strong candidate for an active principle in the enteroinsular axis.  相似文献   

18.
19.
The effect of streptozotocin (SZ) on the development of small intestinal enzymes in postnatal rat pups was studied. SZ was injected ip on Day 10 and, if necessary, again on Day 12. On Days 15, 18, and 21, one pup from each group (including a vehicle-injected control (C) group) was decapitated under conditions which minimized stress. Plasma glucose, insulin (IRI), and corticosterone were measured, as were pancreatic IRI, liver glycogen, and liver membrane binding of IRI. Small intestinal segments were processed and analyzed for sucrase, lactase, maltase, and ileal acid beta-galactosidase activities. Our results indicate that plasma glucocorticoid levels remained virtually constant in both SZ and C groups, while the ontogenic profiles of sucrase and maltase in SZ rats were shifted toward an earlier appearance and a precocious maturation. Circulating levels of IRI were not reduced significantly by SZ despite the fact that pancreatic IRI was decreased 95%. Jejunal lactase, unlike data reported for diabetic rats, was not affected by SZ diabetes. Also, acid beta-galactosidase was unaltered in the SZ rat pups. It is concluded that possibly the elevated disaccharidases seen in diabetic postnatal rat pups are the direct effect of elevated blood glucose. If so, the SZ rat pup model may be a useful tool with which to study effects of glucose on intestinal enzymes in the absence of changes in plasma insulin.  相似文献   

20.
Human growth-hormone-releasing hormone [(1-44)NH2] (hGHRH) was a potent stimulus for insulin release from rat islets of Langerhans in vitro; the optimum concentration used was 10(-11) M. The dose response curves for hGHRH effects on insulin secretion were notably different in intact islets of Langerhans compared to cultured dispersed islet cells. Pancreatic islets responded to a very low hGHRH concentration (10(-12) M), but at a higher hGHRH concentration (10(-9) M) no stimulation of insulin release was observed. When somatostatin antiserum was included in the incubation medium, hGHRH (10(-9) M) stimulated insulin release from intact islets. In cultured dispersed islet cells, which are principally insulin-secreting B cells, hGHRH directly and potently stimulated insulin release even at a concentration of 10(-9) M. Addition of somatostatin (10(-7), 10(-8) M) significantly reduced the hGHRH-induced insulin-secretory responses of dispersed islet cells. hGHRH (10(-11)-10(-9) M) raised islet cAMP levels; individually, hGHRH and theophylline exerted positive effects on insulin release, their combined effect was greater than that caused by either one. We conclude that hGHRH directly affects insulin secretion in vitro by a cAMP-dependent mechanism, and that the difference in responses of intact islets versus islet cells to increasing concentrations of hGHRH may be related to hGHRH-induced release of somatostatin in intact rat islets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号