首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Very low density lipoproteins ere isolated from plasma of swine by ultracentrifugal flotation. After delipidation, the lipid-free proteins were separated by chromatography on Sephadex G-150 AND DEAE-cellulose. A major apoprotein was isolated and shown to activate cows' milk lipoprotein lipase. Since human very low density lipoproteins also contain an activator protein, designated, apoC-II, we have called the pig protein, pig apoC-II. Pig apoC-II had a molecular weight of approximately 10 000 as determined by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The amino acid composistion showed the absence of histidine, cysteine and tryptophan; there was no evidence for carbohydrate. Treatment of pig apoC-II with carboxypeptidase indicated COOH-terminal serine. Rabbit antisera prepared to the pig protein gave single precipitin lines of complete identity to very low density lipoproteins, apoC-11. Using anti-pig apoC-II, a radioimmunoassay was developed which provides a convenient and reproducible method for measuring 5-1000 ng of apoprotein.  相似文献   

2.
1. Sephadex fraction V, obtained from human serum high density lipoprotein apoprotein (HDL apoprotein) of normal subjects and of patients with abetalipoproteinemia, was resolved by DEAE-cellulose ion exchange column chromatography into several fractions which were defined in terms of amino acid composition, NH2- and COOH-terminsls, sialic acid content, immunologic and electrophoretic properties, and in vitro activation of purified lipoprotein lipase from rat adipose tissue. 2. Fraction V of HDL apoprotein of both normal and abetalipoproteinemic subjects was found to contain polypeptides corresponding to apolipoproteins C-I, C-II, C-III-1, and C-III-2, which had been described previously in very low-density lipoproteins (VLDL). The content of apo C-III-1 in abetalipoproteinemia-HDL was very low, whereas the percentage, by weight, of apo C-I was about twice as high as that in the normal subjects studied. Furthermore, both normal and abetalipoproteinemia-HDL apoprotein contained a previously unreported peptide which had a molecular weight of about 7 000 and electrophoretic, chemical, and immunological properties distinct from those of the known C apolipoproteins. Of all of the peptides comprising fraction V, only apo C-II activated a purified preparation of rat adipose tissue lipoprotein lipase. This was the case for both normal and abetalipoproteinemic subjects.  相似文献   

3.
Apoproteins of the lipoproteins in a nonrecirculating perfusate of rat liver.   总被引:10,自引:0,他引:10  
The apoproteins of serum lipoproteins and of lipoproteins present in a nonrecirculating perfusate of rat liver were compared by immunochemical, gel electrophoretic, and solubility techniques. Serum and perfusate very low density lipoprotein apoprotein composition were not different. No evidence for the presence of a lipoprotein resembling serum low density lipoprotein was obtained. However, the apoprotein composition of circulatory high density lipoprotein was quantitatively different from the secretory product in the density 1.06-1.21 range. As measured by stained sodium dodecyl sulfate gel electrophoretic patterns, the arginine-rich protein was the major secretory apoprotein while the A-I protein was the major apoprotein in circulating high density lipoprotein. A very similar pattern was seen in perfusates of orotic acid-fatty livers. It was concluded that although the liver secrets lipoproteins in the high density class, circulatory high density lipoprotein is largely a product of catabolic processes.  相似文献   

4.
The small molecular weight apolipoproteins of pig very low density lipoprotein were investigated following their separation by gel filtration and ion exchange chromatography. Gel filtration through Sephadex G-200 in 6 M urea, produced essentially the same elution profile to that obtained after filtration of human very low density apolipoprotein. However, separation of the pig Sephadex fraction corresponding to human C proteins on DEAE-cellulose columns revealed the presence of only one major peptide and minor quantities of several others. Some properties of three apparent homogeneous fractions and one heterogeneous DEAE fraction were investigated. Unlike human apoprotein CII apoprotein, none of the pig peptides studied activated cow's milk lipase and sialic acid was not detected in any of the three purified C peptides of pig VLDL. The amino acid compositions of the pig peptides were different to those reported for human C apoproteins. The carboxy terminal residue of the major pig C peptide was shown to be serine. The differences so far revealed between pig and human C peptides need further investigation especially since this animal is regarded as a suitable model for investigating human lipoprotein metabolism and the development of atherosclerosis.  相似文献   

5.
Cholesterol feeding in miniature swine resulted in a hypercholesterolemia with a distinctive hyperlipoproteinemia and the subsequent development of atherosclerosis. Alterations in the type and distribution of plasma lipoproteins induced by cholesterol feeding were as follows: (a) the occurrence of beta-migrating lipoproteins (B-VLDL) as well as very low density lipoproteins in the d less than 1.006 ultracentrifugal fraction; (b) an increased prominence of the intermediate lipoproteins (d = 1.006-1.02); (c) an increased prominence of low density lipoproteins; and (d) the occurrence of a distinctive lipoprotein with alpha mobility which was referred to as HDLc (cholesterol induced). Characterization of the various plasma lipoproteins included chemical composition, size by electron microscopy, and apoprotein content. The B-VLDL resembled the beta-migrating lipoproteins of human Type III hyperlipoproteinemia and contained a prominent protein equivalent to the arginine-rich apoprotein in addition to the B apoprotein, apo-A-I, and the fast-migrating apoproteins (apo-C). The HDLc were rich in cholesterol, ranged in size from 100 to 240 A in diameter, and contained the arginine-rich apoprotein and apo-A0I but lacked the B apoprotein. The arginine-rich apoproteins isolated from B-VLDL and HDLc by gel chromatography were similar in amino acid analyses, with glutamic acid as their amino-terminal residue. The occurrence of a spectrum of cholesterol-rich lipoproteins which contained the arginine-rich apoprotein with the occurrence of accelerated atherosclerosis suggested an interesting, although speculative, association.  相似文献   

6.
The chemical properties of very low density and high density lipoproteins of adult bullfrog serum were determined. This serum contained extremely low levels of both very low density lipoprotein (10-30 mg/100 ml) and high density lipoprotein (5-10 mg/100 ml). The constituents of very low density lipoprotein, on a weight percentage basis, were found to be 48.1% triglyceride, 17.3% cholesterol ester, 8.8% cholesterol, 11.6% phospholipid, and 12% protein. These constituents were also present in high density lipoprotein with weight percentage values of 3.7%, 19.3%, 11.9%, 25.2%, and 36.8%, respectively. The fatty acid compositions of the triglycerides, cholesterol esters, and phosphatidylcholine were quite similar in the very low density lipoprotein and high density lipoprotein. However, shingomyelin fatty acid composition was appreciably different in the two lipoproteins. Disc gel electrophoresis in sodium dodecyl sulfate-polyacrylamide gels produced patterns with one major (approximate molecular weight, 7,000) and several minor bands for the apoprotein of very low density lipoprotein and one major (approximate molecular weight, 28,000) and several minor bands for that of high density lipoprotein.  相似文献   

7.
The denaturing solvent tetramethylurea (TMU) delipidates and quantitatively liberates the apoproteins of human serum high-density lipoprotein (HDL) in soluble form while virtually the whole apoprotein of human lowdensity lipoprotein (LDL) is precipitated. A fraction of the apoprotein of very low density lipoprotein (VLDL) which appears to represent its content of LDL-like protein (apo B) is precipitated by this reagent, while the remaining apoprotein species are liberated in soluble form.The dissociation of the soluble apoproteins from lipid by TMU obviates the need for time-consuming delipidation by organic solvents, permitting immediate electrophoretic analysis in polyacrylamide gels. Bands are observed with mobilities corresponding to those of all the major soluble polypeptide species isolated from serum lipoproteins by ion-exchange chromatography. The apparent distribution of these elements in the different classes of lipoproteins is in agreement with findings of studies employing chromatographic methods. The predominant apoprotein of HDL, which has been identified immunochemically in VLDL, appears to comprise less than 1% of the apoprotein of VLDL from normal serum.  相似文献   

8.
Patas monkey lipoproteins were fractionated into four distinct classes by a combination of ultracentrifugation and Geon-Pevikon block electrophoresis and characterized with respect to their chemical and physical properties. Very low density lipoproteins (VLDL) were isolated at d is less than 1.006, were triglyceride rich, and were in the size range 300-850 A. They were similar in apoprotein content to the VLDL of man, dog, and swine. The Patas monkey low density lipoprotein referred to as LDL-I had beta mobility and a size which ranged from 190 to 240 A in diameter. Their chemical composition and apoprotein content were similar to those of human LDL. A second low density lipoprotein referred to as LDL-II occurred at a density of 1.05-1.085, ranged in size from 190 to 300 A, and contained the B, arginine-rich, and A-I apoproteins. Differences between LDL-I and LDL-II included a higher sialic acid content for LDL-II and lipid to protein ratios of 3.7 and 3.0 for LDL-I and LDL-II, respectively. In addition, the LDL-II, but not LDL-I, reacted immunochemically with antisera prepared to human Lp(a). The physical, chemical, and immunochemical properties indicated that monkey LDL-II were equivalent to the human Lp(a). Patas monkey HDL, equivalent to human HDL, were protein and phospholipid rich and ranged in size from 70 to 100 A in diameter. The two major HDL apoproteins, A-I and A-II, were isolated from apo-HDL by column chromatography. The amino-terminal sequence of Patas A-I showed striking homology to that reported for human, dog, and swing A-I. The amino acid composition of monkey A-II was very similar to that of human A-II; however, unlike human A-II, the monkey apoprotein was shown to exist as a monomer similar to that reported for Rhesus monkey A-II. The similarities between the plasma lipoproteins of the monkey and of man suggest that the Patas monkey would serve as a suitable model for metabolic studies.  相似文献   

9.
Apoproteins of hen's egg yolk very low density lipoprotein has been separated by Sephadex G-200 gel filtration in 0.5% sodium dodecyl sulfate into three categories of proteins termed apoprotein A, apoprotein B and apoprotein C. Apoprotein A fraction consists of several aggregated proteins (linked possibly by -S-S- bridges) as shown by acrylamide gel electrophoresis in the presence of 2-mercaptoethanol. Apoprotein B contains two major protein components, B1 and B2, with molecular weights of 78 000 and 64 000, respectively, and two minor proteins components. Apoprotein C was obtained in a pure form as a low molecular weight, -S-S- linked dimer protein and accounted for about 30% of the total protein. In the monomeric form, apoprotein C has a molecular weight of 9400. Apoprotein A and apoprotein B have similar amino acid composition, except in isoleucine content which is over two times in apoprotein B as compared to apoprotein A. Apoprotein C lacks histidine and is richer in arginine than apoproteins A or B. Apoprotein C has lysine as N-terminal, while apoproteins A and B have predominantly arginine as the N-terminal amino acid. All the three fractions contain carbohydrate residues, apoprotein B being the richest in carbohydrate content. Cold-stored apoproteins A forms a clear gel when dispersed in 0.5% sodium dodecyl sulfate at concentration of above 2 mg/ml, while apoprotein B forms a gel only above 10 mg/ml. Apoprotein C, even at 35 mg/ml, forms a clear solution with no tendency to gel.  相似文献   

10.
1. Very-low-density (VLD), low-density (LD) and high-density (HD) lipoproteins were isolated by sequential ultracentrifugation from the serum of male guinea pigs fed on a diet containing 3--4% fat. The apoproteins of these lipoproteins (apo-VLD, apo-LD and apo-HD lipoproteins) were studied after delipidation with organic solvents or extraction with tetramethylurea. 2. The major apolipoprotein of LD lipoprotein isolated by gel filtration was found to closely resemble apolipoprotein B of human serum in its chemical and physical properties. Electrophoresis in sodium dodecyl sulphate-polyacrylamide gel showed that this apoprotein consisted of a number of polypeptides. 3. Tetramethylurea precipitated an apoprotein from guinea-pig serum lipoproteins that is probably the apolipoprotein B-like component. This apoprotein accounted for about 80% of the apo-LD lipoprotein, about 55% of the apo-VLD lipoprotein and about 50% of the apo-HD lipoprotein. 4. The distribution of apolipoproteins soluble in tetramethylurea was determined by densitometric scanning of stained polyacrylamide disc gels. 5. A glycine-rich component of high electrophoretic mobility (band I) and a triplet of soluble apolipoproteins (bands II-IV) were present in both VLD and LD lipoprotein classes. These components constituted a higher proportion of the tetramethylurea-soluble apoproteins of VLD lipoprotein (60--80%) than of LD lipoprotein (40--55%). 6. Small amounts (10--15%) of a component of intermediate mobility, which contained traces of half-cystine, were also present in both VLD and LD lipoproteins. 7. A group of soluble components of basic character (bands VI-X), present as minor components of VLD lipoprotein (10--20%), constituted a major proportion (30--45%) of the soluble apoproteins of LD lipoprotein. Two of these apoproteins were rich in lysine, and two of lower electrophoretic mobility were rich in arginine. 8. The pattern of tetramethylurea-soluble apoproteins in HD lipoprotein was distinguished by the presence of two polypeptides of low electrophoretic mobility as its predominant components. One of these components, band VI, resembled the A-I apolipoprotein of man in both its amino acid profile and in its electrophoretic mobility. The second major component, band VI-B, was rich in lysine and resembled the C-I apolipoprotein of man in amino acid composition. 9. The soluble components of bands I and IX were analogous in physicochemical properties to the R-X1 and R-X2 (high-arginine polypeptide) peptides of human serum lipoproteins respectively.  相似文献   

11.
Patas monkeys were studied for 2 years on three dietary regimes: (1) commercial chow (control diet); (2) semipurified diet plus lard (fat-fed); and (3) semipurified diet plus lard and cholesterol (cholesterol-fed). The control and fat-fed animals had similar lipoproteins which were equivalent to the human very low density, low density (LDL), and high density lipoproteins. An additional lipoprotein referred to as LDL-II appeared to be equivalent to the human Lp(a). The cholesterol-fed animals developed accelerated atherosclerosis associated with a hypercholesterolemia which was characterized by (1) the appearance of beta-migrating lipoproteins (B=VLDL) in the d less than 1.006, (2) an increase in the intermediate lipoproteins and LDL, and (3) the appearance of LDL-II which contained a prominence of the arginine-rich apoprotein. The arginine-rich apoprotein was also a prominent component of the B-VLDL and intermediate lipoproteins. Characterization of this apoprotein revealed that it contained 11.5 mol % arginine, had a molecular weight of approximately 34 000, and coelectrophoresed with the arginine-rich apoprotein of man, dog, swine, rat, and rabbit.  相似文献   

12.
Study of guinea pig plasma lipoproteins has shown that they contain a polypeptide that comigrates with the arginine-rich polypeptide (apo-E) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This comigrating polypeptide differs from apo-E in its amino acid composition, immunological cross-reactivities, electrophoretic mobility in urea polyacrylamide gel, and elution volume from Sephadex gel columns. It is present in very low density lipoproteins and low density lipoproteins from both control and cholesterol-fed guinea pigs.  相似文献   

13.
By a combination of polyanion precipitation and ultracentrifugation, chylomicrons, very low density, low density, and high density lipoproteins have been isolated from human serum as discrete classes free from contamination with any other major class of lipoprotein or protein. After removal of the lipid, the proteins from each class were hydrolyzed and their amino acid compositions were determined by use of the amino acid analyzer. Application of the "t" test to the concentrations of amino acid residues showed that the amino acid composition of the proteins from each of these lipoprotein classes differs significantly from class to class. However, when the logarithms of the moles of amino acid residues are plotted, there are similarities in the amino acid "profiles" between the chylomicrons and high density lipoproteins on the one hand, and between the very low density and low density lipoproteins on the other. The differences in amino acid composition between the lipoproteins suggest that any metabolic interconversions between them probably do not occur by simple lipolysis.  相似文献   

14.
The plasma lipoproteins of estrogen-treated and untreated sexually immature hens have been compared with respect to their concentration in plasma, protein and lipid composition, particle size, and and apoprotein composition. Administration of diethylstilbestrol resulted in a 400-fold rise in the concentration of very low density lipoprotein (VLDL), a 70-fold rise in low density lipoprotein (LDL), and a marked reduction in high density lipoprotein (HDL) protein. It also resulted in the production of LDL and HDL which were enriched in triacylglycerol, while the proportion of cholesterol in all three lipoprotein fractions decreased. In contrast to the lipoproteins from untreated birds, lipoproteins of density less than 1.06 g/ml from estrogen-treated birds were not clearly separable into discrete VLDL and LDL fractions, but appeared to be a single ultracentrifugal class. The apoprotein composition of VLDL and LDL from untreated birds differed from each other; however, the apoprotein patterns of VLDL and LDL from estrogen-treated birds were indistinguishable: both contained a large amount of low molecular weight protein in addition to the high molecular weight component that predominates in the untreated state. The apoprotein composition of HDL was also markedly altered by estrogen administration: the 28,000 mol. wt. protein (apo A-I) decreased in amount from 65% to less than 5% of the total, while a low molecular weight (Mr = 14,000) protein and as yet poorly defined high molecular weight components became predominant. These observations indicate that the hyperlipidemia induced by estrogen administration is accompanied by marked alterations, both qualitative and quantitative, in the plasma lipoproteins.  相似文献   

15.
High density lipoproteins were isolated from plasma of white Leghorn hens by ultracentrifugal flotation between densities 1.063 and 1.210 g/ml. After delipidation, the lipid-free proteins were fractionated by chromatography on Sephadex G-150 in urea; one major apolipoprotein was isolated and characterized. From its chemical, physical and immunochemical properties, the major apoprotein from hen high-density lipoproteins has characteristics similar to the major apoprotein of human high density lipoproteins, apoA-I. Thus the hen protein has been designated hen apoA-I. Hen apoA-I has a molecular weight of approximately 28 000 as determined by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Its calculated molecular weight from its 234 constituent amino acids is 26 674. Hen apoA-I differed from its human counterpart by containing isoleucine. Treatment of hen apoA-I with carboxypeptidase A yielded a COOH-terminal sequence of Leu-Val-Ala-Gln. Automatic Edman degradation of the apoprotein gave an NH2-terminal sequence of Asp-Glu-Pro-Gln-Pro-Glu-Leu. Hen apoA-I had a circular dichroic spectrum typical of alpha-helical structures; the calculated helicity was 90%. Goat antisera prepared to hen apoA-I formed precipitin lines of complete identity to the hen apoprotein but lines of only partial identity to human apoA-I. These studies show that the major apoprotein from hen and human high-density lipoproteins have similar properties to each other suggesting a common physiologic function.  相似文献   

16.
The plasma of squirrel monkeys contains extremely low levels of very low density lipoproteins. The delipidated apoproteins from the different lipoprotein density classes of this species show a heterogeneity similar to that of man and the rat. The biosynthesis of the apoproteins of squirrel monkey lipoproteins was studied in fasted normal and Triton WR1339-treated animals. After intravenous injection of [3-H] leucine, maximal labeling of very low density lipoproteins occurred after 1 h, intermediate density lipoproteins (d 1.006--1.019) in 2 h, and low density lipoproteins after 3 h. At all times, however, low density lipoproteins had the greatest percentage of radioactivity. Polyacrylamide gel electrophoresis revealed that the apoprotein B moiety of very low density and intermediate density lipoproteins contained 62% and 81% of the total radioactivity in these lipoproteins whereas the fast-migrating peptides were minimally labeled. In monkeys injected with Triton WR1339, 70--80% of the radioactivity incorporated into d smaller than 1.063 lipoproteins was in very low density lipoproteins with only 10--15% in intermediate and low density lipoproteins. After injection of 3-H-labeled very low density lipoproteins and [14-C] leucine into Triton-treated monkeys, catabolism of 3-H-labeled very low density lipoprotein to intermediate and low density lipoproteins was small and was significantly less than corresponding values for the incorporation of [14-C] leucine. Thus, breakdown of very low density lipoproteins could not account for all the labeled apoprotein B present in the intermediate and low density lipoprotein fractions. The results indicate that most, but not all, of the newly synthesized apoprotein B enters plasma in very low density lipoproteins and that the low concentrations of this lipoprotein in squirrel monkey plasma are a consequence of its rapid turnover.  相似文献   

17.
1. The lipoproteins of the Ehrlich ascites tumor plasma were separated into 3 distinct fractions, very low density, low density and high density lipoproteins by preparative ultracentrifugation combined with agarose column chromatography. 2. High density lipoproteins contained 74% of the total protein in the lipoproteins. By contrast, most of the lipids were present in the very low density lipoprotein fraction. 3. The fatty acid compositions of the cholesteryl esters were appreciably different in the very low, low and high density lipoproteins, whereas phospholipid and triacylglycerol fatty acid compositions were quite similar in the 3 lipoprotein fractions. 4. Very low and high density apoprotein electrophoretic patterns on sodium dodecyl sulfate-acrylamide gels were similar to those observed in the corresponding lipoprotein fractions obtained from other mammalian species. The low density fraction, however, contained 7 apoprotein bands, and 32% of the low density apoprotein was soluble in tetramethyl urea. 5. The average molecular weights as determined by analytical ultracentrifugation were 2-10(7) (very low density), 6-10(6) (low density) and 4.4-10(5) (high density).  相似文献   

18.
Rat serum phosphorylcholine-binding protein (PCBP), a member of the pentraxin family of proteins, was previously shown to bind multilamellar liposomes prepared with egg phosphatidylcholine and lysophosphatidylcholine. The results suggested that the phosphorylcholine groups on the surface of liposomes play an important role in the binding process (Nagpurkar, A., Saxena, U., and Mookerjea, S. (1983) J. Biol Chem. 258, 10518-10523). A study on the binding of human plasma lipoproteins to PCBP immobilized on Sepharose has now been initiated. Very low density lipoproteins were partially bound to a Sepharose-PCBP column, and the bound fraction contained higher concentrations of apoprotein B and E. All the low density lipoproteins applied were bound to the column. In the case of high density lipoproteins, only a small fraction was retained on the column (based on protein analysis), and that bound fraction contained all the apoprotein E and Lp(a) lipoprotein. The binding of very low, low, and high density lipoproteins to Sepharose-PCBP was Ca2+-dependent, and the bound lipoproteins were quantitatively eluted by a phosphorylcholine gradient. Apoprotein B and E were also bound when whole human plasma was applied to Sepharose-PCBP. The effect of selective modification of lysine residues by acetoacetylation and of arginine residues by cyclohexanedione on the binding of low density lipoproteins to Sepharose-PCBP was examined. Modification of arginyl residues resulted in marked reduction of binding, whereas modification of lysine had no effect. Removal of sialic acid from PCBP also had no effect on the binding of low density lipoproteins to immobilized-desialylated PCBP column. The preferential binding of apoprotein B- and E-containing lipoproteins to Sepharose-PCBP indicates a possible physiological role of PCBP and other similar circulating phosphorylcholine-binding proteins of the pentraxin family in lipoprotein metabolism.  相似文献   

19.
A group of 14 adult male rhesus monkeys was maintained on a low cholesterol-high fat diet. Periodically, animals were fasted and blood samples were taken for characterization of the plasma lipoproteins. Complete separation of individual plasma lipoprotein classes was not achieved by traditional sequential ultracentrifugation techniques. Rather, initial separation of lipoprotein classes according to size was effected and density centrifugation was used subsequently for further separation. At least six lipoprotein fractions were identified, each of which was unique as defined by the properties of size, density (d), and electrophoretic mobility. These lipoprotein fractions were characterized by determination of chemical compositions and apoprotein patterns. The lipoproteins present in highest concentration in these monkeys were designated as region IV lipoproteins. This fraction had alpha-migration on agarose electrophoresis, 1.063 < d < 1.225, and the size, composition, and apoprotein pattern characteristic of HDL. No fewer than three fractions were identified with densities that overlapped the 1.019 < d < 1.063 range. Of these, the fraction designated as region III lipoproteins was present in highest concentration, had beta-migration by agarose electrophoresis, a predominant B apoprotein, and a chemical composition and size characteristic of LDL. Two larger subfractions, identified as region II lipoproteins, were separated from each other at a density of 1.050 g/ml. Agarose electrophoresis showed that the fraction with d < 1.050 had a migration intermediate between beta and pre-beta. The chemical composition and apoprotein pattern were consistent with the possibility that these lipoproteins were remnants of VLDL catabolism. The fraction with d > 1.050, had pre-beta mobility and a size and composition similar to the Lp(a) lipoprotein in plasma of human beings. At least two VLDL subfractions, identified as region I and IIa lipoproteins, were found although both were present in very low concentrations. Region I lipoproteins were larger and contained relatively more cholesteryl ester and more of the apoproteins that migrated with the mobility of apo-B and arg-rich apoprotein in SDS-polyacrylamide gel electrophoresis. Some of the region I lipoproteins were beta-migrating by agarose electrophoresis. These results suggested the possibility that a beta-migrating VLDL was present in these normal animals.  相似文献   

20.
Hypercholesterolemia, induced by a cholesterol-enriched diet, is associated with distinctive modifications in the serum lipoproteins of a variety of species. Present in the serum of these animals are several classes of lipoproteins enriched in cholesteryl esters and apolipoprotein E. To investigate the role of intestinal lipoprotein synthesis in diet-induced hypercholesterolemia, we characterized nascent lipoproteins retrieved from Golgi apparatus-rich fractions of intestinal epithelial cells from chow-fed control and hypercholesterolemic rats. To eliminate chylomicrons from the preparations, rats were fasted overnight prior to the experiments. Golgi very low density lipoproteins (d less than 1.006 g/ml) from control rats were triglyceride-rich lipoproteins that migrated slightly slower than pre-beta migrating serum very low density lipoproteins. These particles contained apoproteins B-240, A-IV, and A-I. Golgi very low density lipoproteins from hypercholesterolemic rats were likewise triglyceride-rich lipoproteins migrating electrophoretically like control Golgi very low density lipoproteins and they contained apoproteins B-240, A-IV, and A-I. However, these latter particles contained less triglyceride and more cholesterol compared to control Golgi very low density lipoproteins. In addition, by radioisotope incorporation studies, Golgi very low density lipoproteins from hypercholesterolemic rats contained relatively more apoprotein A-IV (21.6 vs. 11.0%) and less apoprotein B-240 (17.0 vs. 27.0%) than found in control Golgi very low density lipoproteins. Approximately 60% of the total apoprotein radioactivity was found in apoprotein A-I in both preparations. We conclude that intestinal lipoprotein synthesis is modified by diet-induced hypercholesterolemia. The significance of these modifications with respect to the marked hypercholesterolemia observed in these animals remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号