首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In addition to forming symbiotic nodules on legumes, rhizobial strains are members of soil or rhizosphere communities or occur as endophytes, e.g., in rice. Two rhizobial strains which have been isolated from root nodules of the aquatic legumes Aeschynomene fluminensis (IRBG271) and Sesbania aculeata (IRBG74) were previously found to promote rice growth. In addition to analyzing their phylogenetic positions, we assessed the suitability of the 16S-23S ribosomal DNA (rDNA) intergenic spacer (IGS) sequences for the differentiation of closely related rhizobial taxa and for the development of PCR protocols allowing the specific detection of strains in the environment. 16S rDNA sequence analysis (sequence identity, 99%) and phylogenetic analysis of IGS sequences showed that strain IRBG271 was related to but distinct from Bradyrhizobium elkanii. Rhizobium sp. (Sesbania) strain IRBG74 was located in the Rhizobium-Agrobacterium cluster as a novel lineage according to phylogenetic 16S rDNA analysis (96.8 to 98.9% sequence identity with Agrobacterium tumefaciens; emended name, Rhizobium radiobacter). Strain IRBG74 harbored four copies of rRNA operons whose IGS sequences varied only slightly (2 to 9 nucleotides). The IGS sequence analyses allowed intraspecies differentiation, especially in the genus Bradyrhizobium, as illustrated here for strains of Bradyrhizobium japonicum, B. elkanii, Bradyrhizobium liaoningense, and Bradyrhizobium sp. (Chamaecytisus) strain BTA-1. It also clearly differentiated fast-growing rhizobial species and strains, albeit with lower statistical significance. Moreover, the high sequence variability allowed the development of highly specific IGS-targeted nested-PCR assays. Strains IRBG74 and IRBG271 were specifically detected in complex DNA mixtures of numerous related bacteria and in the DNA of roots of gnotobiotically cultured or even of soil-grown rice plants after inoculation. Thus, IGS sequence analysis is an attractive technique for both microbial ecology and systematics.  相似文献   

2.
Six endophytic strains isolated from surface-sterilized rice roots and stems of different rice varieties grown in the Philippines were characterized. They were analyzed by physiological and biochemical tests, SDS-PAGE of whole-cell protein patterns, DNA-DNA hybridization and 16S rDNA sequencing. SDS-PAGE of whole-cell patterns showed that the six isolates fell into two subgroups which were similar but not identical in protein patterns to S. marcescens. The phylogenetic analysis of 16S rDNA sequences of two representative strains IRBG 500 and IRBG 501 indicated that they were closely related to S. marcescens (more than 99% identity). Physiological and biochemical tests corroborated that the isolates were highly related to each other and to S. marcescens. In cluster analysis, all six isolates were clustered together at 93% similarity level and grouped closely with Serratia marcescens at 86% similarity level. DNA-DNA hybridization studies revealed that the isolates shared high similarity levels with S. marcescens (> or =86% DNA-DNA binding), indicating they belong to the same species. However, the isolates differed in several biochemical characteristics from the type strain. They produce urease and utilize urea and L(+) sorbose as a substrate, which is different from all known Serratia reference strains. These results suggest that the six endophytic isolates represent a novel, non-pigmented subgroup of S. marcescens.  相似文献   

3.
In addition to forming symbiotic nodules on legumes, rhizobial strains are members of soil or rhizosphere communities or occur as endophytes, e.g., in rice. Two rhizobial strains which have been isolated from root nodules of the aquatic legumes Aeschynomene fluminensis (IRBG271) and Sesbania aculeata (IRBG74) were previously found to promote rice growth. In addition to analyzing their phylogenetic positions, we assessed the suitability of the 16S-23S ribosomal DNA (rDNA) intergenic spacer (IGS) sequences for the differentiation of closely related rhizobial taxa and for the development of PCR protocols allowing the specific detection of strains in the environment. 16S rDNA sequence analysis (sequence identity, 99%) and phylogenetic analysis of IGS sequences showed that strain IRBG271 was related to but distinct from Bradyrhizobium elkanii. Rhizobium sp. (Sesbania) strain IRBG74 was located in the Rhizobium-Agrobacterium cluster as a novel lineage according to phylogenetic 16S rDNA analysis (96.8 to 98.9% sequence identity with Agrobacterium tumefaciens; emended name, Rhizobium radiobacter). Strain IRBG74 harbored four copies of rRNA operons whose IGS sequences varied only slightly (2 to 9 nucleotides). The IGS sequence analyses allowed intraspecies differentiation, especially in the genus Bradyrhizobium, as illustrated here for strains of Bradyrhizobium japonicum, B. elkanii, Bradyrhizobium liaoningense, and Bradyrhizobium sp. (Chamaecytisus) strain BTA-1. It also clearly differentiated fast-growing rhizobial species and strains, albeit with lower statistical significance. Moreover, the high sequence variability allowed the development of highly specific IGS-targeted nested-PCR assays. Strains IRBG74 and IRBG271 were specifically detected in complex DNA mixtures of numerous related bacteria and in the DNA of roots of gnotobiotically cultured or even of soil-grown rice plants after inoculation. Thus, IGS sequence analysis is an attractive technique for both microbial ecology and systematics.  相似文献   

4.
Six endophytic strains isolated from surface-sterilized rice roots and stems of different rice varieties grown in the Philippines were characterized. They were analyzed by physiological and biochemical tests, SDS-PAGE of whole-cell protein patterns, DNA-DNA hybridization and 16S rDNA sequencing. SDS-PAGE of whole-cell patterns showed that the six isolates fell into two subgroups which were similar but not identical in protein patterns to S. marcescens. The phylogenetic analysis of 16S rDNA sequences of two representative strains IRBG 500 and IRBG 501 indicated that they were closely related to S. marcescens(more than 99% identity). Physiological and biochemical tests corroborated that the isolates were highly related to each other and to S. marcescens. In cluster analysis, all six isolates were clustered together at 93% similarity level and grouped closely with Serratia marcescens at 86% similarity level. DNA-DNA hybridization studies revealed that the isolates shared high similarity levels with S. marcescens(≥86% DNA-DNA binding), indicating they belong to the same species. However, the isolates differed in several biochemical characteristics from the type strain. They produce urease and utilize urea and L(+) sorbose as a substrate, which is different from all known Serratia reference strains. These results suggest that the six endophytic isolates represent a novel, non-pigmented subgroup of S. marcescens.  相似文献   

5.
Two field experiments were carried out at the UAPNPBS experimental station, Seropédica, with two sorghum and one rice cultivars. The establishment, and inoculation effects, ofAzospirillum spp. andHerbaspirillum strains marked with antibiotic resistance were investigated. One grain sorghum (BR 300) and one sugar sorghum (Br 505) cultivar were used.Azospirillum lipoferum strain S82 (isolated from surface sterilized roots of sorghum) established in both cultivars and comprised 40 to 80% of theAzospirillum spp. population in roots and stems 60 days after plant emergence (DAE).Azospirillum amazonense strain AmS91 (isolated from surface-sterilized roots of sorghum) reached only 50%. At 90 DAE, S82 almost disappeared (less than 30% of establishment) while the establishment of AmS91 remained constant in roots and stems. No establishment ofH. seropedicae strain H25 (isolated from surface-sterilized roots of sorghum) orA. lipoferum strain S65 (isolated from the root surface of sorghum) could be observed on inoculated roots. Inoculation with S82, AmS91 or S65 but not withH. seropedicae H25, increased plant dry weight of both cultivars and total N in grain of the grain sorghum. In rice,A. lipoferum Al 121 andA. brasilense Sp 245 (isolated from surface sterilized rice and wheat roots respectively) established in the roots but there was no increase inAzospirillum spp. numbers due to inoculation. None of the strains affected plant growth or rice grain yield.Azospirillum amazonense, A82 andH. seropedicae Z95, which did not establish in roots, significantly enhanced seed germination.  相似文献   

6.
A beta-glucoronidase (GUS)-marked strain of Herbaspirillum seropedicae Z67 was inoculated onto rice seedling cvs. IR42 and IR72. Internal populations peaked at over 10(6) log CFU per gram of fresh weight by 5 to 7 days after inoculation (DAI) but declined to 10(3) to 10(4) log CFU per gram of fresh weight by 28 DAI. GUS staining was most intense on coleoptiles, lateral roots, and at the junctions of some of the main and lateral roots. Bacteria entered the roots via cracks at the points of lateral root emergence, with cv. IR72 appearing to be more aggressively infected than cv. IR42. H. seropedicae subsequently colonized the root intercellular spaces, aerenchyma, and cortical cells, with a few penetrating the stele to enter the vascular tissue. Xylem vessels in leaves and stems were extensively colonized at 2 DAI but, in later harvests (7 and 13 DAI), a host defense reaction was often observed. Dense colonies of H. seropedicae with some bacteria expressing nitrogenase Fe-protein were seen within leaf and stem epidermal cells, intercellular spaces, and substomatal cavities up until 28 DAI. Epiphytic bacteria were also seen. Both varieties showed nitrogenase activity but only with added C, and the dry weights of the inoculated plants were significantly increased. Only cv. IR42 showed a significant (approximately 30%) increase in N content above that of the uninoculated controls, and it also incorporated a significant amount of 15N2.  相似文献   

7.
We investigated the presence of endophytic rhizobia within the roots of the wetland wild rice Oryza breviligulata, which is the ancestor of the African cultivated rice Oryza glaberrima. This primitive rice species grows in the same wetland sites as Aeschynomene sensitiva, an aquatic stem-nodulated legume associated with photosynthetic strains of Bradyrhizobium. Twenty endophytic and aquatic isolates were obtained at three different sites in West Africa (Senegal and Guinea) from nodal roots of O. breviligulata and surrounding water by using A. sensitiva as a trap legume. Most endophytic and aquatic isolates were photosynthetic and belonged to the same phylogenetic Bradyrhizobium/Blastobacter subgroup as the typical photosynthetic Bradyrhizobium strains previously isolated from Aeschynomene stem nodules. Nitrogen-fixing activity, measured by acetylene reduction, was detected in rice plants inoculated with endophytic isolates. A 20% increase in the shoot growth and grain yield of O. breviligulata grown in a greenhouse was also observed upon inoculation with one endophytic strain and one Aeschynomene photosynthetic strain. The photosynthetic Bradyrhizobium sp. strain ORS278 extensively colonized the root surface, followed by intercellular, and rarely intracellular, bacterial invasion of the rice roots, which was determined with a lacZ-tagged mutant of ORS278. The discovery that photosynthetic Bradyrhizobium strains, which are usually known to induce nitrogen-fixing nodules on stems of the legume Aeschynomene, are also natural true endophytes of the primitive rice O. breviligulata could significantly enhance cultivated rice production.  相似文献   

8.
Colonization of Maize and Rice Plants by Strain Bacillus megaterium C4   总被引:1,自引:0,他引:1  
Liu X  Zhao H  Chen S 《Current microbiology》2006,52(3):186-190
Bacillus megaterium C4, a nitrogen-fixing bacterium, was marked with the gfp gene. Maize and rice seedlings were inoculated with the, GFP-labeled B. megaterium C4 and then grown in gnotobiotic condition. Observation by confocal laser scanning microscope showed that the GFP-labeled bacterial cells infected the maize roots through the cracks formed at the lateral root junctions and then penetrated into cortex, xylem, and pith, and that the bacteria migrated slowly from roots to stems and leaves. The bacteria were mainly located in the intercellular spaces, although a few bacterial cells were also present within the xylem vessels, root hair cells, epidermis, cortical parenchyma, and pith cells. In addition, microscopic observation also revealed clearly that the root tip in the zone of elongation and differentiation and the junction between the primary and the lateral roots were the two sites for the bacteria entry into rice root. Therefore, we conclude that this Gram-positive nitrogen-fixer has a colonization pattern similar to those of many Gram-negative diazotrophs, such as Azospirillun brasilense Yu62 and Azoarcus sp. As far as we know, this is the first detailed report of the colonization pattern for Gram-positive diazotrophic Bacillus.  相似文献   

9.
During a survey of endophytic diazotrophic bacteria associated with different rice varieties in Tamilnadu, some “endophytes” were obtained. Thirteen bacterial isolates from surface-sterilized roots and shoots were obtained in pure culture, which produced indole acetic acid (IAA) and reduced acetylene to ethylene. Polymerase chain reaction (PCR) amplification confirmed the presence of nif-H gene in all the isolates. Morphological, biochemical, and molecular characteristics indicated that all of them belonged to the genus Burkholderia One of them, MGK3, was consistently more active in reducing acetylene, and 16S rDNA sequences of isolate MGK3 confirmed its identification as Burkholderia vietnamiensis. Colonization of rice root was confirmed by strain MGK3 marked with gusA gene. The inoculated roots showed a blue color, which was most intense at the points of lateral root emergence and at the root tip. Transverse sections of roots, 15 days after inoculation, revealed beta-glucuronidase (GUS) activity within many of the cortical intercellular spaces next to the stele and within the aerenchyma. Nitrogen fixation was quantified by using 15N isotope dilution method with two different cultivars grown in pot and field experiments. Higher nitrogen fixation was observed in variety Ponni than in ADT-43, where nearly 42% (field) and 40% (pot) of the nitrogen was derived from the atmosphere (% Ndfa). Isolate MGK3 was used to inoculate rice seedlings in a comparison with four other diazotrophs, viz., Gluconacetobacter diazotrophicus LMG7603, Herbaspirillum seropedicae LMG6513, Azospirillum lipoferum 4B LMG4348, and B. vietnamiensis LMG10929. They were used to conduct two pot and four field inoculation experiments. MGK3 alone, and combined with other diazotrophs, performed best under both pot and field conditions: combined inoculation produced yield increases between 9.5 and 23.6%, while MGK3 alone increased yield by 5.6 to 12.16% over the uninoculated control treatment.  相似文献   

10.
Summary Four field experiments were carried out with wheat or sorghum in different regions of Brazil. The aim was to study the establishment of inoculatedAzospirillum strains, marked with resistance to various antibiotics, in the rhizosphere and in roots. The levels of the various antibiotics were chosen according to the resistance of the indigenousAzospirillum population.Azospirillum brasilense strains Sp 107 and Sp 245 could be established in all three wheat experiments and predominated within theAzospirillum population in washed, and especially in surface sterilized, roots. Strains Sp 7 and Cd established poorly in wheat roots.Azospirillum lipoferum Sp S82 represented 72% of the root isolates from sorghum inoculated with this strain. This strain and naturalAzospirillum infection became concentrated in the upper parts of the root system. Improved methods for root surface sterilization in which the absence ofAzospirillum on the root surface was established by pre-incubating roots with paraffin-capped ends in NFb medium confirmed the establishment of inoculatedAzospirillum strains within sorghum roots in the field.  相似文献   

11.
Most rhizobial strains inhibit rice root growth in the presence of calcium or potassium nitrates, but not ammonium nitrate. Certain rhizobial strains, however, such as strain R4, do not inhibit rice growth and can enter rice roots and multiply in the intercellular spaces. By using the green fluorescent protein (GFP) as a visual marker, it was found that Rhizobium became intimately associated with rice seedling roots within 24-48 h. During this initial period it was observed that strain R4 could cause structural changes resembling infection threads within the rice root hairs. Generally, the sites of the emerging lateral roots provide a temporary entry point for rhizobia, either by root hair entry or crack entry. All tested GFP-labelled Rhizobium strains infected the root hairs near the base of growing lateral roots. This study suggests that some strains may have the ability to infect rice root tissues via root hairs located at the emerging lateral roots and to spread extensively throughout the rice root.  相似文献   

12.
巨菌草不同生长时期的内生固氮菌群组成分析   总被引:1,自引:0,他引:1  
【背景】禾本科植物中存在着丰富的内生固氮菌资源,可为植物的生长、营养利用、增强抗逆性等起到重要的促进作用。【目的】揭示巨菌草不同生长时期根、茎、叶内生固氮细菌的组成及其变化。【方法】采用高通量测序技术对不同生长时期的巨菌草根、茎、叶内生固氮菌群进行群落分析。【结果】不同生长时期巨菌草根、茎、叶的15个样本分别得到4-6万条有效序列,主要分布在360 bp左右。根部巨菌草内生固氮菌群在成熟期最高,茎部和叶部均为拔节期最高,同一生长时期则为根叶茎,变化趋势与巨菌草植物样本的固氮酶活性变化趋势一致,其主要的菌群门类为变形菌门(Proteobacteria)和蓝藻菌门(Cyanobacteria),主要核心属为克雷伯氏菌属(Klebsiella)、草螺菌属(Herbaspirillum)和慢生根瘤菌(Bradyrhizobium)。整体上看,根、叶部来源的各自微生物菌群组成较为接近,茎部来源的菌群与根部、叶部有交叉,成熟期根部的联合固氮菌群种类和丰度最高。典范对应分析表明各来源样本固氮菌群的组成主要受环境温度影响,其次为湿度和pH。【结论】不同生长时期巨菌草根、茎、叶固氮菌群的组成及丰度存在着较大的差异,本研究可为巨菌草内生固氮菌群资源的开发和利用以及种质资源库的建立提供基础依据。  相似文献   

13.
Concatenated sequence analysis with 16S rRNA, rpoB and fusA genes identified a bacterial strain (IRBG74) isolated from root nodules of the aquatic legume Sesbania cannabina as a close relative of the plant pathogen Rhizobium radiobacter (syn. Agrobacterium tumefaciens ). However, DNA:DNA hybridization with R. radiobacter , R. rubi , R. vitis and R. huautlense gave only 44%, 5%, 8% and 8% similarity respectively, suggesting that IRBG74 is potentially a new species. Additionally, it contained no vir genes and lacked tumour-forming ability, but harboured a sym -plasmid containing nifH and nodA genes similar to those in other Sesbania symbionts. Indeed, IRBG74 effectively nodulated S. cannabina and seven other Sesbania spp. that nodulate with Ensifer ( Sinorhizobium )/ Rhizobium strains with similar nodA genes to IRBG74, but not species that nodulate with Azorhizobium or Mesorhizobium . Light and electron microscopy revealed that IRBG74 infected Sesbania spp. via lateral root junctions under flooded conditions, but via root hairs under non-flooded conditions. Thus, IRBG74 is the first confirmed legume-nodulating symbiont from the Rhizobium ( Agrobacterium ) clade. Cross-inoculation studies with various Sesbania symbionts showed that S. cannabina could form fully effective symbioses with strains in the genera Rhizobium and Ensifer , only ineffective ones with Azorhizobium strains, and either partially effective ( Mesorhizobium huakii ) or ineffective ( Mesorhizobium plurifarium ) symbioses with Mesorhizobium . These data are discussed in terms of the molecular phylogeny of Sesbania and its symbionts.  相似文献   

14.
杂交水稻金优63幼苗期SOD和POD特性研究   总被引:3,自引:0,他引:3  
对杂交水稻金优63幼苗不同时期的根、茎、叶进行SOD同工酶电泳分析,并测定SOD、POD活性。结果表明,自播种后第7天到第13天,幼苗的SOD同工酶在根、茎、叶中有明显的器官特异性,且SOD活性叶 >茎 >根。相同器官不同时期的SOD同工酶电泳谱带条数及SOD活性都有变化,且SOD活性强弱与SOD同工酶电泳谱带中有无Mn-SOD同工酶带有一定的关系。幼苗的POD活性在根、茎、叶中也有明显的器官特异性,茎中POD活性明显高于根和叶,且POD活性变化与SOD活性变化有一定的关系。  相似文献   

15.
耐氮固氮菌接种水稻后,能够附着秧苗根系移动而迁移,其数量随时间增长逐渐减少,耐氨固氮菌在水稻根际存活时间早造为7—8周,晚造5—8周.它们在水稻根际附近的泥土中存在时间较短,为5周左右。初步测定结果表明,当水稻根际有耐氨固氮菌存在时,接种耐氨固氮菌的水稻根际乙炔还原活性比对照高1-2倍。  相似文献   

16.
A study of the diversity of endophytic bacteria present in seeds of a deepwater rice variety revealed the presence of seven types of BOX-PCR fingerprints. In order to evaluate the plant growth promoting potential the presence of nitrogenase, indole acetic acid production and mineral phosphate solubilization were estimated in the representative BOX-PCR types. The seven representatives of BOX-PCR types produced indole acetic acid, reduced acetylene and showed specific immunological cross-reaction with anti-dinitrogenase reductase antibody. Only four types showed mineral phosphate solubilizing ability. Comparison of cellulase and pectinase activities showed differences among different BOX-PCR types. PCR fingerprinting data showed that one strain isolated from the surface sterilized seeds as well as the aerial parts of the seedlings of rice variety showed low cellulase and pectinase but relatively high ARA. On the basis of 16S rDNA nucleotide sequence and BIOLOG system of bacterial identification, this strain was identified as Pantoea agglomerans. For studying the endophytic colonization this strain was genetically tagged with the reporter gene, gusA. Histochemical analysis of the seedling grown in hydroponics showed that the tagged strain colonized the root surface, root hairs, root cap, points of lateral root emergence, root cortex and the stelar region. Treatment of the roots with 2,4-D produced short thickened lateral roots which showed better colonization by P. agglomerans.  相似文献   

17.
巴西固氮螺菌(Azospirillum brasilence)是重要的植物促生内生菌之一。用gfp基因标记固氮螺菌后接种无菌的水稻和烟草幼苗的根部,限菌培养一定时间后,用共聚焦激光显微镜观察,结果表明:除了根内部有发荧光的螺菌定殖外,螺菌还分布在茎、叶的表皮细胞,皮层细胞和维管系统组织的细胞和细胞间隙。从根、茎、叶器官分离固氮螺菌,都存在有较高的螺菌群体密度。这一结果证明螺菌在植物内存在着从根部向茎、叶顶端的迁移现象。这一发现为研究巴西固氮螺菌在宿主植物体内的迁移运动的机制、与植物细胞间的分子相互作用及其对植物的促生作用奠定了生态学和细胞形态学的基础,也为实际应用提供了进一步的科学依据,具有重要的科学和实践意义。  相似文献   

18.
Two experimental replicates were conducted to test whether strains of Beauveria brongniartii (BIPESCO2 and 2843) and Metarhizium brunneum (BIPESCO5) can endophytically colonise Vicia faba plants and improve their growth by comparing them with an endophytic strain of B. bassiana (NATURALIS®). The plants were inoculated through foliar spray and the effect of inoculation on plant height, leaf pair number, fresh root and shoot weights was measured at 7 and 14 days post inoculation (dpi). Endophytic colonisation of different plant parts with the tested fungal strains were confirmed 7 and 14?dpi through re-isolation of inoculated fungi onto selective media and subsequent Simple Sequence Repeat (SSR) marker-based genetic identification. All tested strains were able to endophytically colonise leaves, stems, and even roots of inoculated plants 7 and 14?dpi, but per cent colonisation varied significantly among strains and plant parts within each sampling date. Foliar inoculation of plants with the tested strains increased plant height, leaf pair number, fresh shoot and root weights; however the increase was not always consistent across sampling dates in both experimental replicates. This study provides the first evidence for the endophytic colonisation of plants with two strains of B. brongniartii, an important biocontrol agent of Melolontha melolontha and other scarab beetles in several European countries, and thus extends previous reports on the ability of entomopathogenic fungi to act as endophytes. It also presents possible explanations for the lack of consistency in the plant growth promotion obtained by the foliar inoculation of entomopathogenic fungi.  相似文献   

19.
以濒危植物七子花二年生幼苗为研究材料,采用盆栽试验方法,研究干旱胁迫和接种丛枝菌根真菌(AMF)处理对幼苗不同器官C、N、P化学计量关系和非结构性碳水化合物(NSC)含量的影响。试验共设计4个处理:对照(CK)、干旱胁迫(D)、接种AMF(AMF)、干旱胁迫和接种AMF(D+AMF)。结果表明: 在干旱胁迫下七子花根系AMF的侵染率显著下降,但接种AMF处理植株的株高、叶片数显著高于未接种处理。接种AMF显著提高了干旱胁迫下植株根、叶可溶性糖和NSC含量及茎、叶淀粉含量,且茎和叶可溶性糖与淀粉比显著下降。干旱胁迫导致植株C含量在根和叶中显著增加,P含量在茎中显著减少;与干旱胁迫相比,胁迫下接种AMF植株根、茎、叶P含量及叶C含量显著提高,而根C、N含量及茎C含量显著降低。胁迫下接种AMF植株根、茎C∶N、C∶P、N∶P和叶N∶P均显著低于单一胁迫处理。NSC与C∶N∶P计量比的相关性分析表明,根、叶P含量与可溶性糖和NSC含量呈显著正相关,茎P含量与淀粉和NSC含量呈显著正相关,各器官N∶P与NSC含量呈显著负相关。综上,干旱胁迫显著抑制了七子花幼苗的生长,接种AMF通过提高植株根和叶的可溶性糖含量、根的可溶性糖/淀粉,增加地上部分淀粉含量,促进P元素吸收和降低各器官N∶P来增强植株耐旱性,从而提高七子花幼苗在干旱环境中的存活率。  相似文献   

20.
We investigated the presence of endophytic rhizobia within the roots of the wetland wild rice Oryza breviligulata, which is the ancestor of the African cultivated rice Oryza glaberrima. This primitive rice species grows in the same wetland sites as Aeschynomene sensitiva, an aquatic stem-nodulated legume associated with photosynthetic strains of Bradyrhizobium. Twenty endophytic and aquatic isolates were obtained at three different sites in West Africa (Senegal and Guinea) from nodal roots of O. breviligulata and surrounding water by using A. sensitiva as a trap legume. Most endophytic and aquatic isolates were photosynthetic and belonged to the same phylogenetic Bradyrhizobium/Blastobacter subgroup as the typical photosynthetic Bradyrhizobium strains previously isolated from Aeschynomene stem nodules. Nitrogen-fixing activity, measured by acetylene reduction, was detected in rice plants inoculated with endophytic isolates. A 20% increase in the shoot growth and grain yield of O. breviligulata grown in a greenhouse was also observed upon inoculation with one endophytic strain and one Aeschynomene photosynthetic strain. The photosynthetic Bradyrhizobium sp. strain ORS278 extensively colonized the root surface, followed by intercellular, and rarely intracellular, bacterial invasion of the rice roots, which was determined with a lacZ-tagged mutant of ORS278. The discovery that photosynthetic Bradyrhizobium strains, which are usually known to induce nitrogen-fixing nodules on stems of the legume Aeschynomene, are also natural true endophytes of the primitive rice O. breviligulata could significantly enhance cultivated rice production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号