首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Opioid receptors are the principal targets for opioids, which have been used as analgesics for centuries. Opioid receptors belong to the rhodopsin family of G-protein coupled receptors (GPCRs). In the absence of crystal structures of opioid receptors, 3D homology models have been reported with bovine rhodopsin as a template, though the sequence homology is low. Recently, it has been reported that use of multiple templates results in a better model for a target having low sequence identity with a single template. With the objective of carrying out a comparative study on the structural quality of the 3D models based on single and multiple templates, the homology models for opioid receptors (mu, delta and kappa) were generated using bovine rhodopsin as single template and the recently deposited crystal structures of squid rhodopsin, turkey β-1 and human β-2 adrenoreceptors along with bovine rhodopsin as multiple templates. In this paper we report the results of comparison between the refined 3D models based on multiple sequence alignment (MSA) and models built with bovine rhodopsin as template, using validation programs PROCHECK, PROSA, Verify 3D, Molprobity and docking studies. The results indicate that homology models of mu and kappa with multiple templates are better than those built with only bovine rhodopsin as template, whereas, in many aspects, the homology model of delta opioid receptor with single template is better with respect to the model based on multiple templates. Three nonselective ligands were docked to both the models of mu, delta and kappa opioid receptors using GOLD 3.1. The results of docking complied well with the pharamacophore, reported for nonspecific opioid ligands. The comparison of docking results for models with multiple templates and those with single template have been discussed in detail. Three selective ligands for each receptor were also docked. As the crystallographic structures are not yet known, this comparison will help in choosing better homology models of opioid receptors for studying ligand receptor interactions to design new potent opioid antagonists.  相似文献   

2.
5-HT(1A) serotonin and D1 dopamine receptor agonists have been postulated to be able to improve negative and cognitive impairment symptoms of schizophrenia, while partial agonists and antagonists of the D2 and 5-HT(2A) receptors have been reported to be effective in reducing positive symptoms. There is therefore a need for well-defined homology models for the design of more selective antipsychotic agents, since no three-dimensional (3D) crystal structures of these receptors are currently available. In this study, homology models were built based on the high-resolution crystal structure of the β(2)-adrenergic receptor (2RH1) and further refined via molecular dynamics simulations in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayer system with the GROMOS96 53A6 united atom force field. Docking evaluations with representative agonists and antagonists using AutoDock 4.2 revealed binding modes in agreement with experimentally determined site-directed mutagenesis data and significant correlations between the computed and experimental pK (i) values. The models are also able to distinguish between antipsychotic agents with different selectivities and binding affinities for the four receptors, as well as to differentiate active compounds from decoys. Hence, these human 5-HT(1A), 5-HT(2A), D1 and D2 receptor homology models are capable of predicting the activities of novel ligands, and can be used as 3D templates for antipsychotic drug design and discovery.  相似文献   

3.
We present a comparative account on 3D-structures of human type-1 receptor (AT1) for angiotensin II (AngII), modeled using three different methodologies. AngII activates a wide spectrum of signaling responses via the AT1 receptor that mediates physiological control of blood pressure and diverse pathological actions in cardiovascular, renal, and other cell types. Availability of 3D-model of AT1 receptor would significantly enhance the development of new drugs for cardiovascular diseases. However, templates of AT1 receptor with low sequence similarity increase the complexity in straightforward homology modeling, and hence there is a need to evaluate different modeling methodologies in order to use the models for sensitive applications such as rational drug design. Three models were generated for AT1 receptor by, (1) homology modeling with bovine rhodopsin as template, (2) homology modeling with multiple templates and (3) threading using I-TASSER web server. Molecular dynamics (MD) simulation (15 ns) of models in explicit membrane-water system, Ramachandran plot analysis and molecular docking with antagonists led to the conclusion that multiple template-based homology modeling outweighs other methodologies for AT1 modeling.  相似文献   

4.
Zhu M  Li M 《Molecular bioSystems》2012,8(6):1686-1693
G-protein coupled receptors (GPCRs) are recognized to constitute the largest family of membrane proteins. Due to the disproportion in the quantity of crystal structures and their amino acid sequences, homology modeling contributes a reasonable and feasible approach to GPCR theoretical coordinates. With the brand new crystal structures resolved recently, herein we deliberated how to designate them as templates to carry out homology modeling in four aspects: (1) various sequence alignment methods; (2) protein weight matrix; (3) different sets of multiple templates; (4) active and inactive state of templates. The accuracy of models was evaluated by comparing the similarity of stereo conformation and molecular docking results between models and the experimental structure of Meleagris gallopavo β(1)-adrenergic receptor (Mg_Adrb1) that we desired to develop as an example. Our results proposed that: (1) Cobalt and MAFFT, two algorithms of sequence alignment, were suitable for single- and multiple-template modeling, respectively; (2) Blosum30 is applicable to align sequences in the case of low sequence identity; (3) multiple-template modeling is not always better than single-template one; (4) the state of template is an influential factor in simulating the GPCR structures as well.  相似文献   

5.
G-protein coupled receptors (GPCRs) are the largest class of molecules involved in signal transduction across membranes, and represent major targets in the development of novel drug candidates in all clinical areas. Membrane cholesterol has been reported to have an important role in the function of a number of GPCRs. Several structural features of proteins, believed to result in preferential association with cholesterol, have been recognized. Cholesterol recognition/interaction amino acid consensus (CRAC) sequence represents such a motif. Many proteins that interact with cholesterol have been shown to contain the CRAC motif in their sequence. We report here the presence of CRAC motifs in three representative GPCRs, namely, rhodopsin, the β(2)-adrenergic receptor, and the serotonin(1A) receptor. Interestingly, the function of these GPCRs has been previously shown to be dependent on membrane cholesterol. The presence of CRAC motifs in GPCRs indicates that interaction of cholesterol with GPCRs could be specific in nature. Further analysis shows that CRAC motifs are inherent characteristic features of the serotonin(1A) receptor and are conserved over natural evolution. These results constitute the first report of the presence of CRAC motifs in GPCRs and provide novel insight in the molecular nature of GPCR-cholesterol interaction.  相似文献   

6.
A number of recently solved crystal structures of G-protein coupled receptors reveal the presence of closely associated cholesterol molecules in the receptor structure. We have previously shown the requirement of membrane cholesterol in the organization, dynamics and function of the serotonin(1A) receptor, a representative G-protein coupled receptor. In this work, we explored the role of membrane cholesterol in the stability of the human serotonin(1A) receptor. Analysis of sensitivity of the receptor to thermal deactivation, pH, and proteolytic digestion in control, cholesterol-depleted and cholesterol-enriched membranes comprehensively demonstrate that membrane cholesterol stabilizes the serotonin(1A) receptor. We conclude that these results could have potential implications in future efforts toward crystallizing the receptor.  相似文献   

7.
Using sets of experimental distance restraints, which characterize active or inactive receptor conformations, and the X-ray crystal structure of the inactive form of bovine rhodopsin as a starting point, we have constructed models of both the active and inactive forms of rhodopsin and the beta2-adrenergic G-protein coupled receptors (GPCRs). The distance restraints were obtained from published data for site-directed crosslinking, engineered zinc binding, site-directed spin-labeling, IR spectroscopy, and cysteine accessibility studies conducted on class A GPCRs. Molecular dynamics simulations in the presence of either "active" or "inactive" restraints were used to generate two distinguishable receptor models. The process for generating the inactive and active models was validated by the hit rates, yields, and enrichment factors determined for the selection of antagonists in the inactive model and for the selection of agonists in the active model from a set of nonadrenergic GPCR drug-like ligands in a virtual screen using ligand docking software. The simulation results provide new insights into the relationships observed between selected biochemical data, the crystal structure of rhodopsin, and the structural rearrangements that occur during activation.  相似文献   

8.
Abstract

The adenylate cyclase-stimulatory β2-adrenergic receptor has been purified to apparent homogeneity from hamster lung. Partial amino acid sequence obtained from isolated CNBr peptides was used to clone the gene and cDNA for this receptor. The predicted amino acid sequence for the hamster β2-adrenergic receptor revealed that the protein consists of a single polypeptide chain of 418 aa with consensus N-glycosylation and phosphorylation sites predicted by previous in vitro data. The most striking feature of the receptor protein however, is that it contains seven stretches of hydrophobic residues similar to the proposed seven transmembrane segments of the light receptor rhodopsin. Significant amino acid homology (30-35%) can be found between the hamster β2-adrenergic receptor and rhodopsin within these putative membrane spanning regions. Using a hamster β2-adrenergic receptor probe, the gene and cDNA for the human β2-adrenergic receptor were isolated, revealing a high degree of homology (87%) between the two proteins from different species. Unlike the genes encoding the family of opsin pigments, of which rhodopsin is a member, the genes encoding both hamster and human β2-adrenergic receptors are devoid of introns in their coding as well as 5′ and 3′ untranslated nucleotide sequences. The cloning of the genes and the elucidation of the aa sequences for these G-protein coupled receptors should help to determine the structure-function as well as the evolutionary relationship of these proteins.  相似文献   

9.
The role of cholesterol in eukaryotic membrane protein function has been attributed primarily to an influence on membrane fluidity and curvature. We present the 2.8 A resolution crystal structure of a thermally stabilized human beta(2)-adrenergic receptor bound to cholesterol and the partial inverse agonist timolol. The receptors pack as monomers in an antiparallel association with two distinct cholesterol molecules bound per receptor, but not in the packing interface, thereby indicating a structurally relevant cholesterol-binding site between helices I, II, III, and IV. Thermal stability analysis using isothermal denaturation confirms that a cholesterol analog significantly enhances the stability of the receptor. A consensus motif is defined that predicts cholesterol binding for 44% of human class A receptors, suggesting that specific sterol binding is important to the structure and stability of other G protein-coupled receptors, and that this site may provide a target for therapeutic discovery.  相似文献   

10.
Bu L  Michino M  Wolf RM  Brooks CL 《Proteins》2008,71(1):215-226
A three-dimensional model of the human Calcium-sensing receptor (CaSR) seven transmembrane domain was built via a novel sequence alignment method based on the conserved contacts in proteins using the crystal structure of bovine rhodopsin as the template. This model was tested by docking NPS 2143, the first identified allosteric antagonist of CaSR. In our model, Glu837 plays a critical role in anchoring the protonated nitrogen atom and hydroxy oxygen atom of NPS 2143. The phenyl moiety of the ligand contacts residues Phe668, Pro672, and Ile841. The naphthalene moiety is surrounded by several hydrophobic residues, including Phe684, Phe688, and Phe821. Our model appears to be consistent with all six residues that have been demonstrated to be critical for NPS 2143 binding, in contrast with existing homology models based on traditional sequence alignment of CaSR to rhodopsin. This provides validation of our sequence alignment method and the use of the rhodopsin backbone as the initial structure in homology modeling of other G protein-coupled receptors that are not members of the rhodopsin family.  相似文献   

11.
Our previously derived models of the active state of the β2-adrenergic receptor are compared with recently published X-ray crystallographic structures of activated GPCRs (G-protein-coupled receptors). These molecular dynamics-based models using experimental data derived from biophysical experiments on activation were used to restrain the receptor to an active state that gave high enrichment for agonists in virtual screening. The β2-adrenergic receptor active model and X-ray structures are in good agreement over both the transmembrane region and the orthosteric binding site, although in some regions the active model is more similar to the active rhodopsin X-ray structures. The general features of the microswitches were well reproduced, but with minor differences, partly because of the unexpected X-ray results for the rotamer toggle switch. In addition, most of the interacting residues between the receptor and the G-protein were identified. This analysis of the modelling has also given important additional insight into GPCR dimerization: re-analysis of results on photoaffinity analogues of rhodopsin provided additional evidence that TM4 (transmembrane helix 4) resides at the dimer interface and that ligands such as bivalent ligands may pass between the mobile helices. A comparison, and discussion, is also carried out between the use of implicit and explicit solvent for active-state modelling.  相似文献   

12.
Cholesterol has been shown to modulate the activity of multiple G Protein-coupled receptors (GPCRs), yet whether cholesterol acts through specific interactions, indirectly via modifications to the membrane, or via both mechanisms is not well understood. High-resolution crystal structures of GPCRs have identified bound cholesterols; based on a β2-adrenergic receptor (β2AR) structure bound to cholesterol and the presence of conserved amino acids in class A receptors, the cholesterol consensus motif (CCM) was identified. Here in mammalian cells expressing the adenosine A2A receptor (A2AR), ligand dependent production of cAMP is reduced following membrane cholesterol depletion with methyl-beta-cyclodextrin (MβCD), indicating that A2AR signaling is dependent on cholesterol. In contrast, ligand binding is not dependent on cholesterol depletion. All-atom molecular simulations suggest that cholesterol interacts specifically with the CCM when the receptor is in an active state, but not when in an inactive state. Taken together, the data support a model of receptor state-dependent binding between cholesterol and the CCM, which could facilitate both G-protein coupling and downstream signaling of A2AR.  相似文献   

13.
Arrestins bind active phosphorylated forms of G protein-coupled receptors, terminating G protein activation, orchestrating receptor trafficking, and redirecting signaling to alternative pathways. Visual arrestin-1 preferentially binds rhodopsin, whereas the two non-visual arrestins interact with hundreds of G protein-coupled receptor subtypes. Here we show that an extensive surface on the concave side of both arrestin-2 domains is involved in receptor binding. We also identified a small number of residues on the receptor binding surface of the N- and C-domains that largely determine the receptor specificity of arrestins. We show that alanine substitution of these residues blocks the binding of arrestin-1 to rhodopsin in vitro and of arrestin-2 and -3 to β2-adrenergic, M2 muscarinic cholinergic, and D2 dopamine receptors in intact cells, suggesting that these elements critically contribute to the energy of the interaction. Thus, in contrast to arrestin-1, where direct phosphate binding is crucial, the interaction of non-visual arrestins with their cognate receptors depends to a lesser extent on phosphate binding and more on the binding to non-phosphorylated receptor elements.  相似文献   

14.
The Smith-Lemli-Opitz Syndrome (SLOS) is a congenital and developmental malformation syndrome associated with defective cholesterol biosynthesis. SLOS is clinically diagnosed by reduced plasma levels of cholesterol along with elevated levels of 7-dehydrocholesterol (and its positional isomer 8-dehydrocholesterol) and the ratio of their concentrations to that of cholesterol. Since SLOS is associated with neurological deformities and malfunction, exploring the function of neuronal receptors and their interaction with membrane cholesterol under these conditions assumes significance. We have earlier shown the requirement of membrane cholesterol for the ligand binding function of an important neurotransmitter G-protein coupled receptor, the serotonin(1A) receptor. In the present work, we have generated a cellular model of SLOS using CHO cells stably expressing the human serotonin(1A) receptor. This was achieved by metabolically inhibiting the biosynthesis of cholesterol, utilizing a specific inhibitor (AY 9944) of the enzyme required in the final step of cholesterol biosynthesis. We utilized this cellular model to monitor the function of the human serotonin(1A) receptor under SLOS-like condition. Our results show that ligand binding activity, G-protein coupling and downstream signaling of serotonin(1A) receptors are impaired in SLOS-like condition, although the membrane receptor level does not exhibit any reduction. Importantly, metabolic replenishment of cholesterol using serum partially restored the ligand binding activity of the serotonin(1A) receptor. These results are potentially useful in developing strategies for the future treatment of the disease since intake of dietary cholesterol is the only feasible treatment for SLOS patients.  相似文献   

15.
Building reliable structural models of G protein‐coupled receptors (GPCRs) is a difficult task because of the paucity of suitable templates, low sequence identity, and the wide variety of ligand specificities within the superfamily. Template‐based modeling is known to be the most successful method for protein structure prediction. However, refinement of homology models within 1–3 Å Cα RMSD of the native structure remains a major challenge. Here, we address this problem by developing a novel protocol (foldGPCR) for modeling the transmembrane (TM) region of GPCRs in complex with a ligand, aimed to accurately model the structural divergence between the template and target in the TM helices. The protocol is based on predicted conserved inter‐residue contacts between the template and target, and exploits an all‐atom implicit membrane force field. The placement of the ligand in the binding pocket is guided by biochemical data. The foldGPCR protocol is implemented by a stepwise hierarchical approach, in which the TM helical bundle and the ligand are assembled by simulated annealing trials in the first step, and the receptor‐ligand complex is refined with replica exchange sampling in the second step. The protocol is applied to model the human β2‐adrenergic receptor (β2AR) bound to carazolol, using contacts derived from the template structure of bovine rhodopsin. Comparison with the X‐ray crystal structure of the β2AR shows that our protocol is particularly successful in accurately capturing helix backbone irregularities and helix‐helix packing interactions that distinguish rhodopsin from β2AR. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
G protein-coupled receptors (GPCRs) are known to be modulated by membrane cholesterol levels, but whether or not the effects are caused by specific receptor-cholesterol interactions or cholesterol's general effects on the membrane is not well-understood. We performed coarse-grained molecular dynamics (CGMD) simulations coupled with structural bioinformatics approaches on the β2-adrenergic receptor (β2AR) and the cholecystokinin (CCK) receptor subfamily. The β2AR has been shown to be sensitive to membrane cholesterol and cholesterol molecules have been clearly resolved in numerous β2AR crystal structures. The two CCK receptors are highly homologous and preserve similar cholesterol recognition motifs but despite their homology, CCK1R shows functional sensitivity to membrane cholesterol while CCK2R does not. Our results offer new insights into how cholesterol modulates GPCR function by showing cholesterol interactions with β2AR that agree with previously published data; additionally, we observe differential and specific cholesterol binding in the CCK receptor subfamily while revealing a previously unreported Cholesterol Recognition Amino-acid Consensus (CRAC) sequence that is also conserved across 38% of class A GPCRs. A thermal denaturation assay (LCP-Tm) shows that mutation of a conserved CRAC sequence on TM7 of the β2AR affects cholesterol stabilization of the receptor in a lipid bilayer. The results of this study provide a better understanding of receptor-cholesterol interactions that can contribute to novel and improved therapeutics for a variety of diseases.  相似文献   

17.
We report the first homology model of human bradykinin receptor B1 generated from the crystal structure of bovine rhodopsin as a template. Using an automated docking procedure, two B1 receptor antagonists of the dihydroquinoxalinone structural class were docked into the receptor model. Site-directed mutagenesis data of the amino acid residues in TM1, TM3, TM6, and TM7 were incorporated to place the compounds in the binding site of the homology model of the human B1 bradykinin receptor. The best pose in agreement with the mutation data was selected for detailed study of the receptor-antagonist interaction. To test the model, the calculated antagonist-receptor binding energy was correlated with the experimentally measured binding affinity (K(i)) for nine dihydroquinoxalinone analogs. The model was used to gain insight into the molecular mechanism for receptor function and to optimize the dihydroquinoxalinone analogs.  相似文献   

18.
It is possible to induce sub- and super-sensitivity of β-adrenergic receptors by long-term treatment with drugs acting on catecholamine systems. In contrast, analogous treatment with drugs acting on serotoninergic systems does not modify serotonin receptor sensitivity as measured by serotonin binding. Firstly, chronic 1-5HTP, the precursor amino acid, increases serotonin turnover but does not decrease serotonin binding. Secondly, chronic clomipramine, a predominantly serotonin uptake inhibitor also has no effect on serotonin binding. Thirdly, chronic metergoline, a selective serotonin antagonist in the cortex, does not induce supersensitivity.This apparent intractability of the serotonin receptor to changes after long-term treatment indicates a different post-synaptic regulatory mechanism than that found in catecholaminergic neurones. Furthermore, modification of serotonin receptor sensitivity is probably not relevant to the mode of action of antidepressant drugs. Rather, the response of pineal melatonin stimulation found after chronic clomipramine in these experiments implicates induction of β-receptor subsensitivity.  相似文献   

19.
Human G-protein coupled receptors (hGPCRs) comprise the most prominent family of validated drug targets. More than 50% of approved drugs reveal their therapeutic effects by targeting this family. Accurate models would greatly facilitate the process of drug discovery and development. However, 3-D structure prediction of GPCRs remains a challenge due to limited availability of resolved structure. The X-ray structures have been solved for only four such proteins. The identity between hGPCRs and the potential templates is mostly less than 30%, well below the level at which sequence alignment can be done regularly. In this study, we analyze a large database of human G-protein coupled receptors that are members of family A in order to optimize usage of the available crystal structures for molecular modeling of hGPCRs. On the basis of our findings in this study, we propose to regard specific parts from the trans-membrane domains of the reference receptor helices as appropriate template for constructing models of other GPCRs, while other residues require other techniques for their remodeling and refinement. The proposed hypothesis in the current study has been tested by modeling human β2-adrenergic receptor based on crystal structures of bovine rhodopsin (1F88) and human A2A adenosine receptor (3EML). The results have shown some improvement in the quality of the predicted models compared to Modeller software.  相似文献   

20.
Kothandan G  Gadhe CG  Cho SJ 《PloS one》2012,7(3):e32864
Chemokine receptors are G protein-coupled receptors that contain seven transmembrane domains. In particular, CCR2 and CCR5 and their ligands have been implicated in the pathophysiology of a number of diseases, including rheumatoid arthritis and multiple sclerosis. Based on their roles in disease, they have been attractive targets for the pharmaceutical industry, and furthermore, targeting both CCR2 and CCR5 can be a useful strategy. Owing to the importance of these receptors, information regarding the binding site is of prime importance. Structural studies have been hampered due to the lack of X-ray crystal structures, and templates with close homologs for comparative modeling. Most of the previous models were based on the bovine rhodopsin and β2-adrenergic receptor. In this study, based on a closer homolog with higher resolution (CXCR4, PDB code: 3ODU 2.5 Å), we constructed three-dimensional models. The main aim of this study was to provide relevant information on binding sites of these receptors. Molecular dynamics simulation was done to refine the homology models and PROCHECK results indicated that the models were reasonable. Here, binding poses were checked with some established inhibitors of high pharmaceutical importance against the modeled receptors. Analysis of interaction modes gave an integrated interpretation with detailed structural information. The binding poses confirmed that the acidic residues Glu291 (CCR2) and Glu283 (CCR5) are important, and we also found some additional residues. Comparisons of binding sites of CCR2/CCR5 were done sequentially and also by docking a potent dual antagonist. Our results can be a starting point for further structure-based drug design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号