首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The beta and gamma subunits of heterotrimeric GTP-binding proteins (Gbetagamma) were found to bi-directionally regulate the UV-induced activation of p38 and c-Jun NH(2)-terminal kinase, and the UV-induced activation of p38 was reported to enhance the resistance of normal keratinocytes to apoptosis. However, the signaling pathway downstream of Gbetagamma for this UV-induced p38 activation is not known. Thus, we examined the role of the Rho GTPase family in the regulation of UV-induced p38 activation by Gbetagamma. We found that overexpression of Gbetagamma increased the UV-induced activation of Cdc42 and that overexpression of constitutively active V12 Cdc42 increased the UV-induced p38 activation. Transfection of dominant negative N17 Cdc42 or small interfering RNA for Cdc42 blocked UV-induced p38 activation mediated by Gbetagamma in COS-1 and HaCaT cells. UV-induced p38 activation by Gbetagamma was blocked by overexpression of dominant negative p21-activated kinase (PAK)-interacting exchange factor beta (betaPix), and wild type betaPix stimulated the UV-induced p38 activation, which was blocked by N17 Cdc42. Gbetagamma increased the UV-induced activation of Ras, and the overexpression of V12 Ras increased UV-induced p38 activation, which was blocked by dominant negative betaPix. UV-induced p38 activation was inhibited by N17 Ras and a farnesyltransferase inhibitor, manumycin A. Gbetagamma also increased the UV-induced phosphorylation of the epidermal growth factor receptor (EGFR), and the UV-induced p38 activation was blocked by an EGFR kinase inhibitor, AG1478. From these results, we conclude that Gbetagamma mediates UV-induced activation of p38 in a Cdc42-dependent way and that EGFR, Ras, and betaPix act sequentially upstream of Cdc42 in COS-1 and HaCaT cells.  相似文献   

2.
The p21-activated kinases (PAKs) contain an N-terminal Cdc42/Rac interactive binding domain, which in the group 1 PAKs (PAK1, 2, and 3) regulates the activity of an adjacent conserved autoinhibitory domain. In contrast, the group 2 PAKs (PAK4, 5, and 6) lack this autoinhibitory domain and are not activated by Cdc42/Rac binding, and the mechanisms that regulate their kinase activity have been unclear. This study found that basal PAK6 kinase activity was repressed by a p38 mitogen-activated protein (MAP) kinase antagonist and could be strongly stimulated by constitutively active MAP kinase kinase 6 (MKK6), an upstream activator of p38 MAP kinases. Mutation of a consensus p38 MAP kinase target site at serine 165 decreased PAK6 kinase activity. Moreover, PAK6 was directly activated by MKK6, and mutation of tyrosine 566 in a consensus MKK6 site (threonine-proline-tyrosine, TPY) in the activation loop of the PAK6 kinase domain prevented activation by MKK6. PAK6 activation by MKK6 was also blocked by mutation of an autophosphorylated serine (serine 560) in the PAK6 activation loop, indicating that phosphorylation of this site is necessary for MKK6-mediated activation. PAK4 and PAK5 were similarly activated by MKK6, consistent with a conserved TPY motif in their activation domains. The activation of PAK6 by both p38 MAP kinase and MKK6 suggests that PAK6 plays a role in the cellular response to stress-related signals.  相似文献   

3.
Benzo[a]pyrene [B(a)P], a potent procarcinogen found in combustion products such as diesel exhaust and cigarette smoke, has been recently shown to activate the c-Jun NH(2)-terminal kinase 1 (JNK1) and induce caspase-3-mediated apoptosis in Hepa1c1c7 cells. However, the molecules of the signaling pathway that control the mitogen-activated protein kinase cascades induced by B(a)P and the interaction between those and apoptosis by B(a)P have not been well defined. We report here that B(a)P promoted Cdc42/Rac1, p21-activated kinase 1 (PAK1), and JNK1 activities in 293T and HeLa cells. Moreover, alpha-PAK-interacting exchange factor (alpha PIX) mRNA and its protein expression were upregulated by B(a)P. While overexpression of an active mutant of alpha PIX (DeltaCH) facilitated B(a)P-induced activation of Cdc42/Rac1, PAK1, and JNK1, overexpression of mutated alphaPIX (L383R, L384S), which lacks guanine nucleotide exchange factor activity, SH3 domain-deleted alphaPIX (Delta SH3), which lacks the ability to bind PAK, kinase-negative PAK1 (K299R), and kinase-negative SEK1 (K220A, K224L) inhibited B(a)P-triggered JNK1 activation. Interestingly, overexpression of alphaPIX (Delta CH) and a catalytically active mutant PAK1 (T423E) accelerated B(a)P-induced apoptosis in HeLa cells, whereas alphaPIX (Delta SH3), PAK1 (K299R), and SEK 1 (K220A, K224L) inhibited B(a)P-initiated apoptosis. Finally, a preferential caspase inhibitor, Z-Asp-CH2-DCB, strongly blocked the alphaPIX (Delta CH)-enhanced apoptosis in cells treated with B(a)P but did not block PAK1/JNK1 activation. Taken together, these results indicate that alphaPIX plays a crucial role in B(a)P-induced apoptosis through activation of the JNK1 pathway kinases.  相似文献   

4.
This study examined the upstream signaling pathways initiated by muscarinic m2 and m3 receptors that mediate sustained ERK1/2- and p38 MAP kinase-dependent phosphorylation and activation of the 85-kDa cytosolic phospholipase (cPL)A(2) in smooth muscle. The pathway initiated by m2 receptors involved sequential activation of Gbetagamma(i3), phosphatidylinositol (PI)3-kinase, Cdc42, and Rac1, p21-activated kinase (PAK1), p38 mitogen-activated protein (MAP) kinase, and cPLA(2), and phosphorylation of cPLA(2) at Ser(505). cPLA(2) activity was inhibited to the same extent (61 +/- 5 to 72 +/- 4%) by the m2 antagonist methoctramine, Gbeta antibody, pertussis toxin, the PI3-kinase inhibitor LY 294002, PAK1 antibody, the p38 MAP kinase inhibitor SB-203580, and a Cdc42/Rac1 GEF (Vav2) antibody and by coexpression of dominant-negative Cdc42 and Rac1 mutants. The pathway initiated by m3 receptors involved sequential activation of Galpha(q), PLC-beta1, PKC, ERK1/2, and cPLA(2), and phosphorylation of cPLA(2) at Ser(505). cPLA(2) activity was inhibited to the same extent (35 +/- 3 to 41 +/- 5%) by the m3 antagonist 4-diphenylacetoxy-N-methylpiperdine (4-DAMP), the phosphoinositide hydrolysis inhibitor U-73122, the PKC inhibitor bisindolylmaleimide, and the ERK1/2 inhibitor PD 98059. cPLA(2) activity was not affected in cells coexpressing dominant-negative RhoA and PLC-delta1 mutants, implying that PKC was not derived from phosphatidylcholine hydrolysis. The effects of ERK1/2 and p38 MAP kinase on cPLA(2) activity were additive and accounted fully for activation and phosphorylation of cPLA(2).  相似文献   

5.
Lysophosphatidic acid (LPA), one of the naturally occurring phospholipids, stimulates cell motility through the activation of Rho family members, but the signaling mechanisms remain to be elucidated. In the present study, we investigated the roles of p21-activated kinase 1 (PAK1) on LPA-induced focal adhesion kinase (FAK) phosphorylation and cell motility. Treatment of human melanoma cells A2058 with LPA increased phosphorylation and activation of PAK1, which was blocked by treatment with pertussis toxin and by inhibition of phosphoinositide 3-kinase (PI3K) with an inhibitor LY294002 or by overexpression of catalytically inactive mutant of PI3Kgamma, indicating that LPA-induced PAK1 activation was mediated via a Gi protein and the PI3Kgamma signaling pathway. In addition, we demonstrated that Rac1/Cdc42 signals acted as upstream effector molecules of LPA-induced PAK activation. However, Rho-associated kinase, MAP kinase kinase 1/2 or phospholipase C might not be involved in LPA-induced PAK1 activation or cell motility stimulation. Furthermore, PAK1 was necessary for FAK phosphorylation by LPA, which might cause cell migration, as transfection of the kinase deficient mutant of PAK1 or PAK auto-inhibitory domain significantly abrogated LPA-induced FAK phosphorylation. Taken together, these findings strongly indicated that PAK1 activation was necessary for LPA-induced cell motility and FAK phosphorylation that might be mediated by sequential activation of Gi protein, PI3Kgamma and Rac1/Cdc42.  相似文献   

6.
Feng Q  Baird D  Cerione RA 《The EMBO journal》2004,23(17):3492-3504
The Cool-2 (cloned-out of library-2) protein (identical to alpha-Pix for Pak-interactive exchange factor) has been implicated in various biological responses including chemoattractant signaling and in certain forms of mental retardation. We show that when Cool-2 exists as a dimer, it functions as a Rac-specific guanine nucleotide exchange factor (GEF). Dimerization of Cool-2 enables its Dbl (diffuse B-cell lymphoma) and pleckstrin homology domains to work together (in trans) to bind specifically to Rac-GDP. Dissociation of dimeric Cool-2 into its monomeric form allows it to act as a GEF for Cdc42 as well as for Rac. The binding of either PAK (p21-activated kinase) or Cbl (Casitas B-lymphoma) to the SH3 domain of monomeric Cool-2 is necessary for the functional interactions between GDP-bound Cdc42 or Rac and the Cool-2 monomer. The betagamma subunit complex of large GTP-binding proteins, by interacting with PAK, stimulates the dissociation of the Cool-2 dimer and activates its GEF activity for Cdc42. Overall, these findings highlight novel mechanisms by which extracellular signals can direct the specific activation of Rac versus Cdc42 by Cool-2/alpha-Pix.  相似文献   

7.
The mitogen-activated protein (MAP) kinases are a family of serine/threonine kinases that are regulated by distinct extracellular stimuli. The currently known members include extracellular signal-regulated protein kinase 1 (ERK1), ERK2, the c-Jun N-terminal kinase/stress-activated protein kinases (JNK/SAPKs), and p38 MAP kinases. We find that overexpression of the Ste20-related enzymes p21-activated kinase 1 (PAK1) and PAK2 in 293 cells is sufficient to activate JNK/SAPK and to a lesser extent p38 MAP kinase but not ERK2. Rat MAP/ERK kinase kinase 1 can stimulate the activity of each of these MAP kinases. Although neither activated Rac nor the PAKs stimulate ERK2 activity, overexpression of either dominant negative Rac2 or the N-terminal regulatory domain of PAK1 inhibits Ras-mediated activation of ERK2, suggesting a permissive role for Rac in the control of the ERK pathway. Furthermore, constitutively active Rac2, Cdc42hs, and RhoA synergize with an activated form of Raf to increase ERK2 activity. These findings reveal a previously unrecognized connection between Rho family small G proteins and the ERK pathway.  相似文献   

8.
Src homology 3 domain (SH3)-containing proline-rich protein kinase (SPRK)/mixed-lineage kinase (MLK)-3 is a serine/threonine kinase that upon overexpression in mammalian cells activates the c-Jun NH(2)-terminal kinase pathway. The mechanisms by which SPRK activity is regulated are not well understood. The small Rho family GTPases, Rac and Cdc42, have been shown to bind and modulate the activities of signaling proteins, including SPRK, which contain Cdc42/Rac interactive binding motifs. Coexpression of SPRK and activated Cdc42 increases SPRKs activity. SPRKs Cdc42/Rac interactive binding-like motif contains six of the eight consensus residues. Using a site-directed mutagenesis approach, we show that SPRK contains a functional Cdc42/Rac interactive binding motif that is required for SPRKs association with and activation by Cdc42. However, experiments using a SPRK variant that lacks the COOH-terminal zipper region/basic stretch suggest that this region may also contribute to Cdc42 binding. Unlike the PAK family of protein kinases, we find that the activation of SPRK by Cdc42 cannot be recapitulated in an in vitro system using purified, recombinant proteins. Comparative phosphopeptide mapping demonstrates that coexpression of activated Cdc42 with SPRK alters the in vivo serine/threonine phosphorylation pattern of SPRK suggesting that the mechanism by which Cdc42 increases SPRKs catalytic activity involves a change in the in vivo phosphorylation of SPRK. This is, to the best of our knowledge, the first demonstrated example of a Cdc42-mediated change in the in vivo phosphorylation of a protein kinase. These studies suggest an additional component or cellular environment is required for SPRK activation by Cdc42.  相似文献   

9.
Fractionation of brain extracts and functional biochemical assays identified PP2Calpha, a serine/threonine phosphatase, as the major biochemical activity inhibiting PAK1. PP2Calpha dephosphorylated PAK1 and p38, both of which were activated upon hyperosmotic shock with the same kinetics. In comparison to growth factors, hyperosmolality was a more potent activator of PAK1. Therefore we characterize the PAK signaling pathway in the hyperosmotic shock response. Endogenous PAKs were recruited to the p38 kinase complex in a phosphorylation-dependent manner. Overexpression of a PAK inhibitory peptide or dominant negative Cdc42 revealed that p38 activation was dependent on PAK and Cdc42 activities. PAK mutants deficient in binding to Cdc42 or PAK-interacting exchange factor were not activated. Using a panel of kinase inhibitors, we identified PI3K acting upstream of PAK, which correlated with PAK repression by pTEN overexpression. RNA interference knockdown of PAK expression reduced stress-induced p38 activation and conversely, PP2Calpha knockdown increased its activation. Hyperosmotic stress-induced PAK translocation away from focal adhesions to the perinuclear compartment and resulted in disassembly of focal adhesions, which are hallmarks of PAK activation. Inhibition of PAK by overexpression of PP2Calpha or the kinase inhibitory domain prevented sorbitol-induced focal adhesion dissolution. Inhibition of MAPK pathways showed that MEK-ERK signaling but not p38 is required for full PAK activation and focal adhesion turnover. We conclude that 1) PAK plays a required role in hyperosmotic signaling through the PI3K/pTEN/Cdc42/PP2Calpha/p38 pathway, and 2) PAK and PP2Calpha modulate the effects of this pathway on focal adhesion dynamics.  相似文献   

10.
MEK kinases are regulated by EGF and selectively interact with Rac/Cdc42.   总被引:17,自引:3,他引:14  
G R Fanger  N L Johnson    G L Johnson 《The EMBO journal》1997,16(16):4961-4972
MEK kinases (MEKKs) 1, 2, 3 and 4 are members of sequential kinase pathways that regulate MAP kinases including c-Jun NH2-terminal kinases (JNKs) and extracellular regulated kinases (ERKs). Confocal immunofluorescence microscopy of COS cells demonstrated differential MEKK subcellular localization: MEKK1 was nuclear and in post-Golgi vesicular-like structures; MEKK2 and 4 were localized to distinct Golgi-associated vesicles that were dispersed by brefeldin A. MEKK1 and 2 were activated by EGF, and kinase-inactive mutants of each MEKK partially inhibited EGF-stimulated JNK activity. Kinase-inactive MEKK1, but not MEKK2, 3 or 4, strongly inhibited EGF-stimulated ERK activity. In contrast to MEKK2 and 3, MEKK1 and 4 specifically associated with Rac and Cdc42 and kinase-inactive mutants blocked Rac/Cdc42 stimulation of JNK activity. Inhibitory mutants of MEKK1-4 did not affect p21-activated kinase (PAK) activation of JNK, indicating that the PAK-regulated JNK pathway is independent of MEKKs. Thus, in different cellular locations, specific MEKKs are required for the regulation of MAPK family members, and MEKK1 and 4 are involved in the regulation of JNK activation by Rac/Cdc42 independent of PAK. Differential MEKK subcellular distribution and interaction with small GTP-binding proteins provides a mechanism to regulate MAP kinase responses in localized regions of the cell and to different upstream stimuli.  相似文献   

11.
PAK promotes morphological changes by acting upstream of Rac.   总被引:18,自引:0,他引:18       下载免费PDF全文
A Obermeier  S Ahmed  E Manser  S C Yen  C Hall    L Lim 《The EMBO journal》1998,17(15):4328-4339
The serine/threonine kinase p21-activated kinase (PAK) has been implicated as a downstream effector of the small GTPases Rac and Cdc42. While these GTPases evidently induce a variety of morphological changes, the role(s) of PAK remains elusive. Here we report that overexpression of betaPAK in PC12 cells induces a Rac phenotype, including cell spreading/membrane ruffling, and increased lamellipodia formation at growth cones and shafts of nerve growth factor-induced neurites. These effects are still observed in cells expressing kinase-negative or Rac/Cdc42 binding-deficient PAK mutants, indicating that kinase- and p21-binding domains are not involved. Furthermore, lamellipodia formation in all cell lines, including those expressing Rac binding-deficient PAK, is inhibited significantly by dominant-negative RacN17. Equal inhibition is achieved by blocking PAK interaction with the guanine nucleotide exchange factor PIX using a specific N-terminal PAK fragment. We conclude that PAK, via its N-terminal non-catalytic domain, acts upstream of Rac mediating lamellipodia formation through interaction with PIX.  相似文献   

12.
A variety of intracellular signaling pathways are linked to cell surface receptor signaling through their recruitment by Src homology 2 (SH2)/SH3-containing adapter molecules. p21-activated kinase 1 (PAK1) is an effector of Rac/Cdc42 GTPases that has been implicated in the regulation of cytoskeletal dynamics, proliferation, and cell survival signaling. In this study, we describe the specific interaction of PAK1 with the Grb2 adapter protein both in vitro and in vivo. We identify the site of this interaction as the second proline-rich SH3 binding domain of PAK1. Stimulation of the epidermal growth factor receptor (EGFR) in HaCaT cells enhances the level of EGFR-associated PAK1 and Grb2, although the PAK1-Grb2 association is itself independent of this stimulation. A cell-permeant TAT-tagged peptide encompassing the second proline-rich SH3 binding domain of PAK1 simultaneously blocked Grb2 and activated EGFR association with PAK1, in vitro and in vivo, indicating that Grb2 mediates the interaction of PAK1 with the activated EGFR. Blockade of this interaction decreased the epidermal growth factor-induced extension of membrane lamellae. Thus Grb2 may serve as an important mechanism for linking downstream PAK signaling to various upstream pathways.  相似文献   

13.
Tissue factor (TF), apart from activating the extrinsic pathway of the blood coagulation, is a principal regulator of embryonic angiogenesis and oncogenic neoangiogenesis, but also influences inflammation, leukocyte diapedesis and tumor progression. The intracellular domain of TF lacks homology to other classes of receptors and hence the signaling mechanism is poorly understood. Here we demonstrate that factor VIIa (the natural ligand for TF) induces the activation of the Src family members c-Src, Lyn, and Yes, and subsequently phosphatidylinositol 3-kinase (PI3K), followed by stimulation of c-Akt/protein kinase B as well as the small GTPases Rac and Cdc42. In turn Rac mediates p38 mitogen-activated protein (MAP) kinase activation and cytoskeletal reorganization, whereas factor VIIa-induced p42/p44 MAP kinase stimulation required PI3K enzymatic activity but was not inhibited by dominant negative Rac proteins. We propose that this Src family member/PI3K/Rac-dependent signaling pathway is a major mediator of factor VIIa/TF effects in pathophysiology.  相似文献   

14.
The activation of Nef-associated kinase (NAK) by Nef from human and simian immunodeficiency viruses is critical for efficient viral replication and pathogenesis. This induction occurs via the guanine nucleotide exchange factor Vav and the small GTPases Rac1 and Cdc42. In this study, we identified NAK as p21-activated kinase 1 (PAK1). PAK1 bound to Nef in vitro and in vivo. Moreover, the induction of cytoskeletal rearrangements such as the formation of trichopodia, the activation of Jun N-terminal kinase, and the increase of viral production were blocked by an inhibitory peptide that targets the kinase activity of PAK1 (PAK1 83-149). These results identify NAK as PAK1 and emphasize the central role its kinase activity plays in cytoskeletal rearrangements and cellular signaling by Nef.  相似文献   

15.
16.
The Ras-GTPase-activating protein (RasGAP) is an important modulator of p21ras - dependent signal transduction in Xenopus oocytes and in mammalian cells. We investigated the role of the RasGAP SH3 domain in signal transduction with a monoclonal antibody against the SH3 domain of RasGaP. This antibody prevented the activation of the maturation-promoting factor complex (cyclin B-p34cdc2) by oncogenic Ras. The antibody appears to be specific because as little as 5 ng injected per oocyte reduced the level of Cdc2 activation by 50% whereas 100 ng of nonspecific immunoglobulin G did not affect Cdc2 activation. The antibody blocked the Cdc2 activation induced by oncogenic Ras but not that induced by progesterone, which acts independently of Ras. A peptide corresponding to positions 317 to 326 of a sequence in the SH3 domain of human RasGAP blocked Cdc2 activation, whereas a peptide corresponding to positions 273 to 305 of a sequence in the N-terminal moiety of the SH3 domain of RasGAP had no effect. The antibody did not block the mitogen-activated protein (MAP) kinase cascade (activation of MAPK/ERK kinase [MEK], MAP kinase, and S6 kinase p90rsk). Surprisingly, injection of the negative MAP kinase mutant protein ERK2 K52R (containing a K-to-R mutation at position 52) blocked the Cdc2 activation induced by oncogenic Ras as well as blocking the activation of MAP kinase. Thus, MAP kinase is also implicated in the regulation of Cdc2 activity. In this study, we further investigated the regulation of the synthesis of the c-mos oncogene product, which is necessary for the activation of Cdc2. We report that the synthesis of the c-mos oncogene product, which is necessary for the activation antibody to the SH3 domain of RasGAP and by injecting the negative MAP kinase mutant protein ERK2 K52R. These results suggest that oncogenic Ras activates two signaling mechanisms: the MAP kinase cascade and a signaling pathway implicating the SH3 domain of RasGAP. These mechanisms might control Mos protein expression implicated in Cdc2 activation.  相似文献   

17.
The family of p21-activated kinases (PAKs) have been implicated in the rearrangement of actin cytoskeleton by acting downstream of the small GTPases Rac and Cdc42. Here we report that even though Cdc42/Rac1 or Akt are not activated, phosphatidylinositol-3 (PI-3) kinase activation induces PAK1 kinase activity. Indeed, we demonstrate that PI-3 kinase associates with the N-terminal regulatory domain of PAK1 (amino acids 67-150) leading to PAK1 activation. The association of the PI-3 kinase with the Cdc42/Rac1 binding-deficient PAK1(H83,86L) confirms that the small GTPases are not involved in the PI-3 kinase-PAK1 interaction. Furthermore, PAK1 was activated in cells expressing the dominant-negative forms of Cdc42 or Rac1. Additionally, we show that PAK1 phosphorylates actin, resulting in the dissolution of stress fibers and redistribution of microfilaments. The phosphorylation of actin was inhibited by the kinase-dead PAK1(K299R) or the PAK1 autoinhibitory domain (PAK1(83-149)), indicating that PAK1 was responsible for actin phosphorylation. We conclude that the association of PI-3 kinase with PAK1 regulates PAK1 kinase activity through a Cdc42/Rac1-independent mechanism leading to actin phosphorylation and cytoskeletal reorganization.  相似文献   

18.
Kong L  Ge BX 《Cell research》2008,18(7):745-755
Phagocytosis and subsequent degradation of pathogens by macrophages play a pivotal role in host innate immune responses to microbial infection. Recent studies have shown that Toll-like receptors (TLRs) play an important role in promoting the clearance of bacteria by up-regulating the phagocytic activity of macrophages. However, information regarding the signaling mechanism of TLR-mediated phagocytosis is still limited. Here, we provide evidence that the stimulation of TLR4 with LPS leads to activation of multiple signaling pathways including MAP kinases, phosphatidylinositide 3-kinase (PI3K), and small GTPases in the murine macrophage-like cell line RAW264.7. Specific inhibition of Cdc42/Rac or p38 MAP kinase, but not PI3K, reduced TLR4-induced phagocytosis of bacteria. Moreover, we have found that either inhibition of actin polymerization by cytochalasin D or the knockdown of actin by RNAi markedly reduced the activation of Cdc42 and Rac by LPS. TLR4-induced activation of Cdc42 and Rac appears to be independent of MyD88. Taken together, our results described a novel actin-Cdc42/Rac pathway through which TLRs can specifically provoke phagocytosis.  相似文献   

19.
Rho family GTPases (Cdc42, Rac1, and RhoA) function downstream of Ras [1], and in a variety of cellular processes [2]. Studies to examine these functions have not directly linked endogenous protein interactions with specific in vivo functions of Rho GTPases. Here, we show that endogenous Rac1 and two known binding partners, Rho GDP dissociation inhibitor (RhoGDI) and p21-activated kinase (PAK), fractionate as distinct cytosolic complexes. A Rac1:PAK complex is translocated from the cytosol to ruffling membranes upon cell activation by serum. Overexpression of dominant-negative (T17N) Rac1 does not affect the assembly or distribution of this Rac1:PAK complex. This is the first direct evidence of how a specific function of Rac1 is selected by the assembly and membrane translocation of a distinct Rac1:effector complex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号