首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The past decade has witnessed a rapid transition from the first positional cloning of an infectious disease susceptibility gene (Slc11a1, also called Nramp1) in the mouse to genome-wide scans in human multicase families and the identification of potential disease-causing genes by simple inspection of the public human genome databases. Pathogen genome projects have facilitated multilocus sequence typing of pathogen isolates and studies of ecological fitness and virulence patterns in disease-causing isolates. Comparative sequence analysis of pathogen strains and functional genomics studies are now underway, hopefully providing new insight into infectious disease susceptibility.  相似文献   

2.
As soon as whole-genome sequencing entered the scene in the mid-1990s and demonstrated its use in revealing the entire genetic potential of any given microbial organism, this technique immediately revolutionized the way pathogen (and many other fields of) research was carried out. The ability to perform whole-genome comparisons further transformed the field and allowed scientists to obtain information linking phenotypic dissimilarities among closely related organisms and their underlying genetic mechanisms. Such comparisons have become commonplace in examining strain-to-strain variability, as well as comparing pathogens to less, or nonpathogenic near neighbors. In recent years, a bloom in novel sequencing technologies along with continuous increases in throughput has occurred, inundating the field with various types of massively parallel sequencing data and further transforming comparative genomics research. Here, we review the evolution of comparative genomics, its impact in understanding pathogen evolution and physiology and the opportunities and challenges presented by next-generation sequencing as applied to pathogen genome comparisons.  相似文献   

3.
王磊  陈景堂  张祖新 《遗传》2007,29(9):1055-1060
随着拟南芥、水稻等模式植物基因组测序计划的完成, 比较基因组学作为一门新兴学科, 近年来发展迅速, 为植物基因组的进化、结构和功能研究开辟了新的途径。文章综述了比较基因组学在作物比较遗传作图、基因结构区域的微共线性、ESTs和蛋白质水平的比较以及基于比较基因组学的基因和QTL的克隆等方面内容与研究进展, 分析了不同水平上比较基因组学研究策略的原理、特点、可行性, 以期为利用模式生物的基因和基因组数据、采用比较基因组学策略克隆作物重要性状功能基因、阐明基因组结构与进化提供帮助。  相似文献   

4.
鸡基因组研究新进展   总被引:1,自引:1,他引:0  
牟彦双  李辉 《遗传》2006,28(5):617-622
鸡基因组测序草图的完成标志着禽类功能基因组时代的到来。鸡不仅是全世界广泛饲养且有重要经济价值的禽类,而且是极具生命科学研究价值的模式动物。因此,鸡基因组测序草图的完成将对遗传育种和生物学研究有重要的影响。本文综述了近年来鸡基因组研究的最新进展,主要内容包括鸡基因组的有关数据、物理图谱、遗传连锁图谱、比较基因组学、序列表达标签、生物信息学等方面所取得的成绩,同时对鸡基因组研究结果的应用前景进行了展望。  相似文献   

5.
Advances in swine biomedical model genomics   总被引:1,自引:0,他引:1  
This review is a short update on the diversity of swine biomedical models and the importance of genomics in their continued development. The swine has been used as a major mammalian model for human studies because of the similarity in size and physiology, and in organ development and disease progression. The pig model allows for deliberately timed studies, imaging of internal vessels and organs using standard human technologies, and collection of repeated peripheral samples and, at kill, detailed mucosal tissues. The ability to use pigs from the same litter, or cloned or transgenic pigs, facilitates comparative analyses and genetic mapping. The availability of numerous well defined cell lines, representing a broad range of tissues, further facilitates testing of gene expression, drug susceptibility, etc. Thus the pig is an excellent biomedical model for humans. For genomic applications it is an asset that the pig genome has high sequence and chromosome structure homology with humans. With the swine genome sequence now well advanced there are improving genetic and proteomic tools for these comparative analyses. The review will discuss some of the genomic approaches used to probe these models. The review will highlight genomic studies of melanoma and of infectious disease resistance, discussing issues to consider in designing such studies. It will end with a short discussion of the potential for genomic approaches to develop new alternatives for control of the most economically important disease of pigs, porcine reproductive and respiratory syndrome (PRRS), and the potential for applying knowledge gained with this virus for human viral infectious disease studies.  相似文献   

6.
Cross-species comparative genomics approaches have been employed to map and clone many important disease resistance (R) genes from Solanum species-especially wild relatives of potato and tomato. These efforts will increase with the recent release of potato genome sequence and the impending release of tomato genome sequence. Most R genes belong to the prominent nucleotide binding site-leucine rich repeat (NBS-LRR) class and conserved NBS-LRR protein motifs enable survey of the R gene space of a plant genome by generation of resistance gene analogs (RGA), polymerase chain reaction fragments derived from R genes. We generated a collection of 97 RGA from the disease-resistant wild potato S. bulbocastanum, complementing smaller collections from other Solanum species. To further comparative genomics approaches, we combined all known Solanum RGA and cloned solanaceous NBS-LRR gene sequences, nearly 800 sequences in total, into a single meta-analysis. We defined R gene diversity bins that reflect both evolutionary relationships and DNA cross-hybridization results. The resulting framework is amendable and expandable, providing the research community with a common vocabulary for present and future study of R gene lineages. Through a series of sequence and hybridization experiments, we demonstrate that all tested R gene lineages are of ancient origin, are shared between Solanum species, and can be successfully accessed via comparative genomics approaches.  相似文献   

7.
How Can We Use Genomics to Improve Cereals with Rice as a Reference Genome?   总被引:7,自引:0,他引:7  
Rice serves as a model crop for cereal genomics. The availability of complete genome sequences, together with various genomic resources available for both rice and Arabidopsis, have revolutionized our understanding of the genetic make-up of crop plants. Both macrocolinearity revealed by comparative mapping and microcolinearity revealed by sequence comparisons among the grasses indicate that sequencing and functional analysis of the rice genome will have a significant impact on other cereals in terms of both genomic studies and crop improvement. The availability of mutants, introgression libraries, and advanced transformation techniques make functional genomics in rice and other cereals more manageable than ever before. A wide array of genetic markers, including anchor markers for comparative mapping, SSRs and SNPs are widely used in genetic mapping, germplasm evaluation and marker assisted selection. An integrated database that combines genome information for rice and other cereals is key to the effective utilization of all genomics resources for cereal improvement. To maximize the potential of genomics for plant breeding, experiments must be further miniaturized and costs must be reduced. Many techniques, including targeted gene disruption or allele substitution, insertional mutagenesis, RNA interference and homologous recombination, need to be refined before they can be widely used in functional genomic analysis and plant breeding.  相似文献   

8.
Plant nuclear genomes encompass a wide range of variation in size and nucleotide composition with diverse arrangements of chromosomal segments, repetitive sequences and distribution of genes. Comparative genomic analysis may be undertaken at different levels of organisation, which are reflected in this review, together with a focus on the genetic and functional significance of the observed variation. Patterns of genome organisation have been revealed which reflect the different underlying mechanisms and constraints driving change. Thus comparative issues of genome size, nucleotide sequence composition and genome heterogeneity are provided as a background to understanding the different levels of segmental and repetitive sequence duplication and distribution of genes. The extent of synteny and collinearity revealed by recent genetic and sequence comparisons is discussed, together with a consideration of problems associated with such analyses. The possible origins and mechanisms of variation in genome size and organisation are covered, including the prevalence of duplication at different levels of organisation. The likely genetic, functional and adaptive consequences of replicated loci are discussed with evidence from comparative studies. The scope for comparative analysis of epigenetic plant genome variation is considered. Finally, opportunities for applying comparative genomics to isolating genes and understanding complex crop genomes are addressed.  相似文献   

9.
The genome of monotremes, like the animals themselves, is unique and strange. The importance of monotremes to genomics depends on their position as the earliest offshoot of the mammalian lineage. Although there has been controversy in the literature over the phylogenetic position of monotremes, this traditional interpretation is now confirmed by recent sequence comparisons. Characterizing the monotreme genome will therefore be important for studying the evolution and organization of the mammalian genome, and the proposal to sequence the platypus genome has been received enthusiastically by the genomics community. Recent investigations of X-chromosome inactivation, genomic imprinting and sex chromosome evolution provide good examples of the power of the monotreme genome to inform us about mammalian genome organization and evolution.  相似文献   

10.
We report the 4.94-Mb genome sequence of Xanthomonas axonopodis pv. punicae strain LMG 859, the causal agent of bacterial leaf blight disease in pomegranate. The draft genome will aid in comparative genomics, epidemiological studies, and quarantine of this devastating phytopathogen.  相似文献   

11.
Arabidopsis thaliana is now a model system, not just for plant biology but also for comparative genomics. The completion of the sequences of two closely related species, Arabidopsis lyrata and Brassica rapa, is complemented by genomic comparisons among A. thaliana accessions and mutation accumulation lines. Together these genomic data document the birth of new genes via gene duplication, transposon exaptation and de novo formation of new genes from noncoding sequence. Most novel loci exhibit low expression, and are undergoing pseudogenization or subfunctionalization. Comparatively, A. thaliana has lost large amounts of sequence through deletion, particularly of transposable elements. Intraspecific genomic variation indicates high rates of deletion mutations and deletion polymorphisms across accessions, shedding light on the history of Arabidopsis genome architecture.  相似文献   

12.
State of cat genomics   总被引:1,自引:0,他引:1  
Our knowledge of cat family biology was recently expanded to include a genomics perspective with the completion of a draft whole genome sequence of an Abyssinian cat. The utility of the new genome information has been demonstrated by applications ranging from disease gene discovery and comparative genomics to species conservation. Patterns of genomic organization among cats and inbred domestic cat breeds have illuminated our view of domestication, revealing linkage disequilibrium tracks consequent of breed formation, defining chromosome exchanges that punctuated major lineages of mammals and suggesting ancestral continental migration events that led to 37 modern species of Felidae. We review these recent advances here. As the genome resources develop, the cat is poised to make a major contribution to many areas in genetics and biology.  相似文献   

13.
Significant progress on pig genetics and genomics research has been witnessed in recent years due to the integration of advanced molecular biology techniques, bioinformatics and computational biology, and the collaborative efforts of researchers in the swine genomics community. Progress on expanding the linkage map has slowed down, but the efforts have created a higher-resolution physical map integrating the clone map and BAC end sequence. The number of QTL mapped is still growing and most of the updated QTL mapping results are available through PigQTLdb. Additionally, expression studies using high-throughput microarrays and other gene expression techniques have made significant advancements. The number of identified non-coding RNAs is rapidly increasing and their exact regulatory functions are being explored. A publishable draft (build 10) of the swine genome sequence was available for the pig genomics community by the end of December 2010. Build 9 of the porcine genome is currently available with Ensembl annotation; manual annotation is ongoing. These drafts provide useful tools for such endeavors as comparative genomics and SNP scans for fine QTL mapping. A recent community-wide effort to create a 60K porcine SNP chip has greatly facilitated whole-genome association analyses, haplotype block construction and linkage disequilibrium mapping, which can contribute to whole-genome selection. The future 'systems biology' that integrates and optimizes the information from all research levels can enhance the pig community's understanding of the full complexity of the porcine genome. These recent technological advances and where they may lead are reviewed.  相似文献   

14.
Marek's disease virus: from miasma to model   总被引:1,自引:0,他引:1  
Marek's disease virus (MDV) is an oncogenic herpesvirus that causes various clinical syndromes in its natural host, the chicken. MDV has long been of interest as a model organism, particularly with respect to the pathogenesis and immune control of virus-induced lymphoma in an easily accessible small-animal system. Recent advances in MDV genetics and the determination of the chicken genome sequence, aided by functional genomics, have begun to dramatically increase our understanding not only of lytic MDV replication, but also of the factors and mechanisms leading to latency and tumour formation. This new information is helping to elucidate cellular signalling pathways that have undergone convergent evolution and are perturbed by different viruses, and emphasizes the value of MDV as a comparative biomedical model. Furthermore, the door is now open for rational and efficient engineering of new vaccines against one of the most important and widespread infectious diseases in chickens.  相似文献   

15.
16.
Comparative genome sequencing projects are providing insight into aspects of genome biology that raise new questions and challenge existing paradigms. Placement in the phylogenetic tree can often be a major determinant of which organism to choose for study. Lemurs hold a key position at the base of the primate evolutionary tree and will be highly informative for the genomics community by offering comparisons of primate-specific characteristics and processes. Combining research in chromosome evolution, genome evolution and behavior with lemur comparative genomic sequencing will offer insights into many levels of primate evolution. We discuss the current state of lemur cytogenetic and phylogenetic analyses, and suggest how focusing more genomic efforts on lemurs will be beneficial to understanding human and primate evolution, as well as disease, and will contribute to conservation efforts.  相似文献   

17.
The genus Lactobacillus is a diverse group that includes many species used in food production and preservation. Some lactobacilli are considered probiotic, conferring health benefits upon the host. The heterogeneity of this genus poses challenges and opportunities when characterizing or exploiting individual strains. To date, 10 Lactobacillus genome sequences have been published, and at least 11 more sequencing projects are ongoing. These studies will dramatically improve one's understanding of metabolic processes, bioprocessing capabilities and potential roles in health and well-being of the Lactobacilli. This review describes the current status of Lactobacillus genome sequence projects, highlights the major findings and summarizes functional genomics or comparative genomics studies. The genomic basis for the unusual diversity of this genus is discussed, and the potential for comparative genomics to rigorously extend phylogenetic analysis of the Lactobacilli is described.  相似文献   

18.
19.
The complete genome sequences for human, Drosophila melanogaster and Arabidopsis thaliana have been reported recently. With the availability of complete sequences for many bacteria and archaea, and five eukaryotes, comparative genomics and sequence analysis are enabling us to identify counterparts of many human disease genes in model organisms, which in turn should accelerate the pace of research and drug development to combat human diseases. Continuous improvement of specialized protein databases, together with sensitive computational tools, have enhanced the power and reliability of computational prediction of protein function.  相似文献   

20.
An efficient algorithm for large-scale detection of protein families   总被引:6,自引:0,他引:6  
Detection of protein families in large databases is one of the principal research objectives in structural and functional genomics. Protein family classification can significantly contribute to the delineation of functional diversity of homologous proteins, the prediction of function based on domain architecture or the presence of sequence motifs as well as comparative genomics, providing valuable evolutionary insights. We present a novel approach called TRIBE-MCL for rapid and accurate clustering of protein sequences into families. The method relies on the Markov cluster (MCL) algorithm for the assignment of proteins into families based on precomputed sequence similarity information. This novel approach does not suffer from the problems that normally hinder other protein sequence clustering algorithms, such as the presence of multi-domain proteins, promiscuous domains and fragmented proteins. The method has been rigorously tested and validated on a number of very large databases, including SwissProt, InterPro, SCOP and the draft human genome. Our results indicate that the method is ideally suited to the rapid and accurate detection of protein families on a large scale. The method has been used to detect and categorise protein families within the draft human genome and the resulting families have been used to annotate a large proportion of human proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号