首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Morphological and metrical study suggested that seven human teeth from Tabun Cave, Israel were part of the upper dentition of a single, probably Neanderthal, individual renumbered as Tabun BC7. An enamel fragment gave ESR age estimates of 82+/-14 ka (early U-uptake) and 92+/-18 ka (linear uptake) and an age estimate of 90(+30)(-16) ka using U-series disequilibrium. Although metrical analyses suggested Neanderthal affinities, definitive assessment was difficult as the values often fell into the ranges of both Neanderthal and Levantine early modern human samples. Therefore, two further classification analyses were conducted (neural networks using self-organizing maps and homogeneity analysis). Both identify Tabun BC7 as a Neanderthal. Neural networks are a promising tool for paleoanthropological studies as they can provide reliable classifications even with incomplete data.  相似文献   

2.
Seven human teeth from Tabun Cave, Israel, curated at the Natural History Museum London since 1955, are of uncertain provenance and identity. They are all from the upper dentition, without duplications, and are characterized by a similar preservation. The Catalogue of Fossil Hominids (1975) suggested that they might have derived from Tabun Layer A (Bronze Age to Recent). However, one of us (AC) noted some distinctive features of these teeth that warranted further study. They are here assigned to a single individual, Tabun BC7. Their morphology and metrics were then compared with the frequency of Late Pleistocene and Early Holocene groups from Europe, North Africa and Middle East. A fragment of the right M3 crown of Tabun BC7 was removed for ESR and U-analysis, and it was determined that only samples from Layer B have similar dose values. Using the sediment dose values of layer B, preliminary age estimates of 82 +/- 14 ka (early U-uptake) and 92+/-18 ka (linear uptake) were obtained. U-series disequilibrium determined from other samples attributed to Layer B resulted in a U-uptake history close to linear uptake, giving a very comparable age estimate of 90(+30)(-16) ka. The dose value previously obtained on an enamel fragment from the Tabun C1 dentition is nearly double the value measured for BC7, and tentative age estimates for C1 were in the range of 143+/-37 ka. However, due to uncertainties in the exact provenance of the human fossils, we cannot confirm that C1 is older than the new tooth sampled here, and both C1 and BC7 can be attributed to Layer B on chronological grounds. On the basis of chronology, dental morphology and metrics, the specimen named Tabun BC7 was identified as a probable Neanderthal.  相似文献   

3.
4.
Although the shape of the scapular glenoid fossa (SGF) may be influenced by epigenetic and developmental factors, there appears to be strong genetic control over its overall form, such that variation within and between hominin taxa in SGF shape may contain information about their evolutionary histories. Here we present the results of a geometric morphometric study of the SGF of the Neanderthal Vi-209 from Vindjia Cave (Croatia), relative to samples of Plio-Pleistocene, later Pleistocene, and recent hominins. Variation in overall SGF shape follows a chronological trend from the plesiomorphic condition seen in Australopithecus to modern humans, with pre-modern species of the genus Homo exhibiting intermediate morphologies. Change in body size across this temporal series is not linearly directional, which argues against static allometry as an explanation. However, life history and developmental rates change directionally across the series, suggesting an ontogenetic effect on the observed changes in shape (ontogenetic allometry). Within this framework, the morphospace occupied by the Neanderthals exhibits a discontinuous distribution. The Vindija SGF and those of the later Near Eastern Neanderthals (Kebara and Shanidar) approach the modern condition and are somewhat segregated from both northwestern European (Neandertal and La Ferrassie) and early Mediterranean Neanderthals (Krapina and Tabun). Although more than one scenario may account for the pattern seen in the Neanderthals, the data is consistent with palaeogenetic evidence suggesting low levels of gene flow between Neanderthals and modern humans in the Near East after ca. 120-100 ka (thousands of years ago) (with subsequent introgression of modern human alleles into eastern and central Europe). Thus, in keeping with previous analyses that document some modern human features in the Vindija Neanderthals, the Vindija G3 sample should not be seen as representative of ‘classic’ - that is, unadmixed, pre-contact - Neanderthal morphology.  相似文献   

5.
This paper presents the cultural and archaeological context of the human fossil bones from Muierii Cave, dated by us to the age of 30 150 ± 800 14C years BP (Before Present) or 34 810 ± 927 cal years BP (calibrated years Before Present), and from Cioclovina Cave, dated to the age of 29 000 ± 700 14C years BP or 33 540 ± 832 cal years BP, in the Southern Carpathians. These are among the most ancient dated human fossil remains from Central and South-Eastern Europe and are described in conjunction with other sites with Mousterian assemblages of the recent Neanderthal population, and sites with Aurignacian assemblage of early modern humans, from Romanian region, for the interval of time 34,000-26,000, the transitional period from the Middle Paleolithic to the Upper Paleolithic.  相似文献   

6.
Data obtained from quantifying the upper part of the mandibular ramus (the coronoid process, the condylar process, and the notch between them) lead us to conclude that Neanderthals (both European and Middle Eastern) differ more from Homo sapiens (early specimens such as Tabun II, Skhul, and Qafzeh, as well as contemporary populations from as far apart as Alaska and Australia) than the latter differs from Homo erectus. The specialized Neanderthal mandibular ramus morphology emerges as yet another element constituting the derived complex of morphologies of the mandible and face that are unique to Neanderthals. These morphologies provide further support for the contention that Neanderthals do not play a role in modern human biological ancestry, either through "regional continuity" or through any other form of anagenetic progression.  相似文献   

7.
The oldest known fossil hominin in southern Asia was recovered from Hathnora in the Narmada Basin, central India in the early 1980's. Its age and taxonomic affinities, however, have remained uncertain. Current estimates place its maximum age at >236 ka, but not likely older than the early middle Pleistocene. The calvaria, however, could be considerably younger. We report recent fieldwork at Hathnora and associated Quaternary type-sections that has provided new geological and archaeological insights. The portion of the exposed ‘Boulder Conglomerate’ within the Surajkund Formation, which forms a relict terrace and has yielded the hominin fossils, contains reworked and stylistically mixed lithic artifacts and temporally mixed fauna. Three mammalian teeth stratigraphically associated with the hominin calvaria were dated by standard electron spin resonance (ESR). Assuming an early uranium uptake (EU) model for the teeth, two samples collected from the reworked surface deposit averaged 49 ± 1 ka (83 ± 2 ka, assuming linear uptake [LU]; 196 ± 7 ka assuming recent uptake [RU]). Another sample recovered from freshly exposed, crossbedded gravels averaged 93 ± 5 ka (EU), 162 ± 8 ka (LU) or 407 ± 21 ka (RU). While linear uptake models usually provide the most accurate ages for this environment and time range, the EU ages represent the minimum possible age for fossils in the deposit. Regardless, the fossils are clearly reworked and temporally mixed. Therefore, the current data constrains the minimum possible age for the calvaria to 49 ± 1 ka, although it could have been reworked and deposited into the Hathnora deposit any time after 160 ka (given the LU uptake ages) or earlier (given the RU ages). At Hathnora, carbonaceous clay, bivalve shells, and a bovid tooth recovered from layers belonging to the overlying Baneta Formation have yielded 14C ages of 35.66 ± 2.54 cal ky BP, 24.28 ± 0.39 cal ky BP, and 13.15 ± 0.34 ky BP, respectively. Additional surveys yielded numerous lithics and fossils on the surface and within the stratigraphic sequence. At the foot of the Vindhyan Hills 2 km from the river, we recovered a typologically Early Acheulean assemblage comprised of asymmetrical bifaces, large cleavers with minimal working, trihedral picks, and flake tools in fresh condition. These tools may be the oldest Acheulean in the Narmada Valley. Several lithics recovered from the Dhansi Formation may represent the first unequivocal evidence for an early Pleistocene hominin presence in India. In situ invertebrate and vertebrate fossils, pollen, and spores indicate a warm, humid climate during the late middle Pleistocene. High uranium concentrations in the mammalian teeth indicate exposure to saline water, suggesting highly evaporative conditions in the past. Late Pleistocene sediment dated between 24.28 ± 0.39 cal ky BP and 13.15 ± 340 ky BP has yielded pollen and spores indicating cool, dry climatic conditions corresponding to Oxygen Isotope Stage 2 (OIS 2). An early Holocene palynological assemblage from the type locality at Baneta shows evidence for relatively dry conditions and a deciduous forest within the region. The Dhansi Formation provisionally replaces the Pilikarar Formation as the oldest Quaternary formation within the central Narmada Basin. The Baneta Formation, previously dated at 70 ka to 128 ka, correlates with the late Pleistocene and early Holocene. Our results highlight the need for further Quaternary geological and paleoanthropological research within the Narmada Basin, especially because dam construction threatens these deposits.  相似文献   

8.
Neanderthal forearms have been described as being very powerful. Different individual features in the lower arm bones have been described to distinguish Neanderthals from modern humans. In this study, the overall morphology of the radius and ulna is considered, and morphological differences among Neanderthals, Upper Paleolithic Homo sapiens and recent H. sapiens are described.Comparisons among populations were made using a combination of 3D geometric morphometrics and standard multivariate methods. Comparative material included all available complete radii and ulnae from Neanderthals, early H. sapiens and archaeological and recent human populations, representing a wide geographical and lifestyle range.There are few differences among the populations when features are considered individually. Neanderthals and early H. sapiens fell within the range of modern human variation. When the suite of measurements and shapes were analyzed, differences and similarities became apparent. The Neanderthal radius is more laterally curved, has a more medially placed radial tuberosity, a longer radial neck, a more antero-posteriorly ovoid head and a well-developed proximal interosseous crest. The Neanderthal ulna has a more anterior facing trochlear notch, a lower M. brachialis insertion, larger relative mid-shaft size and a more medio-lateral and antero-posterior sinusoidal shaft. The Neanderthal lower arm morphology reflects a strong cold-adapted short forearm. The forearms of H. sapiens are less powerful in pronation and supination. Many differences between Neanderthals and H. sapiens can be explained as a secondary consequence of the hyper-polar body proportions of the Neanderthals, but also as retentions of the primitive condition of other hominoids.  相似文献   

9.
A new model may resolve the problem of when and where did appear anatomically modern humans. According to this model, Neanderthals were probably neither our ancestor nor different species.Homo sapiens appeared probably in the Middle East, approximately 150 ka ago and differentiated to anatomically modern humans and Neanderthals because of the genetic programme. The fossils older than 150 ka are probably not Neanderthal such as Zuttiyeh and Biache-Saint-Vaast specimens. Cultural capacities of Neanderthals were probably equivalent to Moderns. Most of pre-Homo sapiens populations may be extinct without replacement byHomo sapiens. Language and modern behaviour should have arisen with our own species.  相似文献   

10.
At the site of Marillac, near the Ligonne River in Marillac‐le‐Franc (Charente, France), a remarkable stratigraphic sequence has yielded a wealth of archaeological information, palaeoenvironmental data, as well as faunal and human remains. Marillac must have been a sinkhole used by Neanderthal groups as a hunting camp during MIS 4 (TL date 57,600 ± 4,600BP), where Quina Mousterian lithics and fragmented bones of reindeer predominate. This article describes three infracranial skeleton fragments. Two of them are from adults and consist of the incomplete shafts of a right radius (Marillac 24) and a left fibula (Marillac 26). The third fragment is the diaphysis of the right femur of an immature individual (Marillac 25), the size and shape of which resembles those from Teshik‐Tash and could be assigned to a child of a similar age. The three fossils have been compared with the remains of other Neanderthals or anatomically Modern Humans (AMH). Furthermore, the comparison of the infantile femora, Marillac 25 and Teshik‐Tash, with the remains of several European children from the early Middle Ages clearly demonstrates the robustness and rounded shape of both Neanderthal diaphyses. Evidence of peri‐mortem manipulations have been identified on all three bones, with spiral fractures, percussion pits and, in the case of the radius and femur, unquestionable cutmarks made with flint implements, probably during defleshing. Traces of periostosis appear on the fibula fragment and on the immature femoral diaphysis, although their aetiology remains unknown. Am J Phys Anthropol 155:99–113, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
A rare pathological mandible, manifesting bilateral absence of the condyles, is discussed. The pathology was identified as hemifacial microsomia. The mandible, dated to the Byzantine period in Israel, manifests bilateral aplasia of the condyles and extreme shortness, but normal width, of the body. The extremely well-developed coronoid process, the grooved masseter insertion area, and the manifestation of a medial pterygoid tubercle (MPT) suggest hypertrophy of the occlusal muscles. The presence of a large MPT is considered a Neanderthal autapomorphy. Studying the biomechanic forces acting on the deformed mandible in hemifacial microsomia patients may shed light on the mastication process in Neanderthals.  相似文献   

12.
Neanderthals     
Neanderthals are a group of fossil humans that inhabited Western Eurasia from approximately 300 to 30,000 years ago (ka). They vanished from the fossil record a few millennia after the first modern humans appeared in Europe (ca. 40 ka BP). They are characterized by a unique combination of distinctive anatomical features, and are found with stone tools of the Mousterian stone tool industry. Current consensus views them as a distinct Eurasian human lineage isolated from the rest of the Old World and sharing a common ancestor with modern humans sometime in the early Middle Pleistocene. The extreme cold of the European Ice Ages is considered at least partly responsible for the evolution of some of the distinctive Neanderthal anatomy, although other factors (functional demands, effects of chance in small populations) were probably also important. The causes for the Neanderthal extinction are not well understood. Worsening climate and competition with modern humans are implicated. Neanderthals were our sister species, much more closely related to us than the chimpanzees, our closest living relatives are today.  相似文献   

13.
In 1974, an incomplete human mandible was discovered in the site of Montgaudier Cave, along the Tardoire (Charente), France. The mandible was found in association with stone tools and animal bones in geological deposits referable to the very end of the Middle Pleistocene or the beginning of the Upper Pleistocene. The mandible preserves much of the anterior part of the body and three permanent teeth: left lateral incisor, canine and first molar. Estimates based on tooth eruption of modern humans, as well as occlusal wear and root development, suggest an age at death of between 12.5 and 14.5 years. Morphologically, the fossil possesses features, such as a lack of a chin and multiple mental foramina, which have been observed on immature Neanderthal mandibular specimens from Europe. Comparison with these immature European Neanderthals indicates that the jaw and teeth of the Montgaudier mandible are small for its chronological age, suggesting it was that of a female. Am J Phys Anthropol 103:507–527, 1997 © 1997 Wiley-Liss, Inc.  相似文献   

14.
15.
Excavations carried out during the 1990s at Moula‐Guercy cave Ardèche, France, yielded 108 hominid specimens dating to 100–120 Ka. In this paper, we describe and compare the 39 axial and appendicular specimens not including hand and foot bones. Among these remains are a large adult femur, several clavicles, a likely antimeric pair of radial heads, and a nearly complete superior pubic ramus. Analyses of this material indicate a clear affinity with Neanderthals by the presence of large and robust muscle attachments, thick long bone cortices, a long pubic ramus, and a superoinferiorly flattened clavicle shaft. The recovered remains reveal the presence of a mature male, a smaller mature individual, possibly a reproductive age female, an immature individual of age 10–12, and a second immature individual of age 4. Future analyses on the Moula‐Guercy remains will illuminate ties to other known Neanderthal populations and contribute to the ongoing debate over the relative rate of Neanderthal metric growth. Am J Phys Anthropol 152:530–542, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
The Pech-de-l'Azé I skull and mandible are included in the juvenile Neandertal remains from Europe. However, some preserved features in the cranial skeleton seem to distinguish the specimen from other Neandertal children. Unfortunately, the stratigraphic position and dating of this child has never been clear. Our recent work on unpublished archives show that the Pech-de-l'Azé I Neandertal child was discovered at the bottom of layer 6, attributed to the Mousterian of Acheulean tradition type B. These skull and mandible are the first diagnostic human remains (aside from an isolated tooth) attributed to the Mousterian of Acheulian tradition (MTA) type B. Consequently, we confirm that Neandertals were the makers of this Mousterian industry, which is characterized by unusual high frequencies of Upper Paleolithic type tools, elongated blanks and blades. We were able to date the context of the hominid remains by dating layer 6 and the layers above and beneath it using ESR, coupled ESR/(230)Th/(234)U (coupled ESR/U-series), and AMS (14)C. Coupled ESR/U-series results on 16 mammalian teeth constrain the age of the uppermost layer 7 to 41-58ka, and layer 6 to 37-51ka. The wide spread in each age estimate results mainly from uncertainties in the gamma-dose rate. These ages are concordant with AMS (14)C ages of two bones coming from the top of layer 6, which provide dates of about 41.7-43.6ka cal BP. A combination of stratigraphic arguments and dating results for layers 6 and 7 show that the Neandertal child cannot be older than 51ka or younger than 41ka. The lowermost layer 4 is shown to be older than 43ka by the principle of superposition and ESR dating in the immediately overlying layer 5. This study shows that the MTA type B had been manufactured by Neandertals before the arrival of anatomically modern humans in the local region. Additionally, by providing a firm chronological framework for the specific morphometric the features of Pech-de-l'Azé I Neandertal child, this study is a new step toward the understanding of temporal and spatial changes in the ontogenesis of Neandertals in south-western Europe during oxygen isotope stages 5-3.  相似文献   

17.

Background

A fraction of the Neanderthal mitochondrial genome sequence has a similarity with a 5,839-bp nuclear DNA sequence of mitochondrial origin (numt) on the human chromosome 1. This fact has never been interpreted. Although this phenomenon may be attributed to contamination and mosaic assembly of Neanderthal mtDNA from short sequencing reads, we explain the mysterious similarity by integration of this numt (mtAncestor-1) into the nuclear genome of the common ancestor of Neanderthals and modern humans not long before their reproductive split.

Principal Findings

Exploiting bioinformatics, we uncovered an additional numt (mtAncestor-2) with a high similarity to the Neanderthal mtDNA and indicated that both numts represent almost identical replicas of the mtDNA sequences ancestral to the mitochondrial genomes of Neanderthals and modern humans. In the proteins, encoded by mtDNA, the majority of amino acids distinguishing chimpanzees from humans and Neanderthals were acquired by the ancestral hominins. The overall rate of nonsynonymous evolution in Neanderthal mitochondrial protein-coding genes is not higher than in other lineages. The model incorporating the ancestral hominin mtDNA sequences estimates the average divergence age of the mtDNAs of Neanderthals and modern humans to be 450,000–485,000 years. The mtAncestor-1 and mtAncestor-2 sequences were incorporated into the nuclear genome approximately 620,000 years and 2,885,000 years ago, respectively.

Conclusions

This study provides the first insight into the evolution of the mitochondrial DNA in hominins ancestral to Neanderthals and humans. We hypothesize that mtAncestor-1 and mtAncestor-2 are likely to be molecular fossils of the mtDNAs of Homo heidelbergensis and a stem Homo lineage. The dN/dS dynamics suggests that the effective population size of extinct hominins was low. However, the hominin lineage ancestral to humans, Neanderthals and H. heidelbergensis, had a larger effective population size and possessed genetic diversity comparable with those of chimpanzee and gorilla.  相似文献   

18.
Variation at the ABO locus was one of the earliest sources of data in the study of human population identity and history, and to this day remains widely genotyped due to its importance in blood and tissue transfusions. Here, we look at ABO blood type variants in our archaic relatives: Neanderthals and Denisovans. Our goal is to understand the genetic landscape of the ABO gene in archaic humans, and how it relates to modern human ABO variation. We found two Neanderthal variants of the O allele in the Siberian Neanderthals (O1 and O2), one of these variants is shared with an European Neanderthal, who is a heterozygote for this O1 variant and a rare cis-AB variant. The Denisovan individual is heterozygous for two variants of the O1 allele, functionally similar to variants found widely in modern humans. Perhaps more surprisingly, the O2 allele variant found in Siberian Neanderthals can be found at low frequencies in modern Europeans and Southeast Asians, and the O1 allele variant found in Siberian and European Neanderthal is also found at very low frequency in modern East Asians. Our genetic distance analyses suggest both alleles survive in modern humans due to inbreeding with Neanderthals. We find that the sequence backgrounds of the surviving Neanderthal-like O alleles in modern humans retain a higher sequence divergence than other surviving Neanderthal genome fragments, supporting a view of balancing selection operating in the Neanderthal ABO alleles by retaining highly diverse haplotypes compared with portions of the genome evolving neutrally.  相似文献   

19.
Neanderthals inhabited Western Eurasia from approximately 300 to 30 thousand years ago (ka). They are distinguished by a unique combination of anatomical traits, and are commonly associated with Middle Paleolithic lithic industries. Current consensus among paleoanthropologists is that they represented a separate Eurasian human lineage, which evolved in isolation from the rest of the Old World and which shared a common ancestor with modern humans in the Middle Pleistocene. It is thought that some aspects of the distinctive Neanderthal anatomy evolved in response to selection related to the extreme cold of the European glacial cycles. Nevertheless, genetic drift seems to be partially responsible for the evolution of these traits. The last appearance of Neanderthals in the fossil record ca. 30 ka BP dates a few millennia after the first appearance of modern humans in Europe. The retrieval of ancient mitochondrial and, more recently, nuclear DNA from Neanderthal fossil puts us in the unique position to combine fossil with genetic evidence to address questions about their evolution, paleobiology and eventual fate.  相似文献   

20.
Many morphological features of the Pleistocene fossil hominin Homo neanderthalensis, including the reputed large size of its paranasal sinuses, have been interpreted as adaptations to extreme cold, as some Neanderthals lived in Europe during glacial periods. This interpretation of sinus evolution rests on two assumptions: that increased craniofacial pneumatization is an adaptation to lower ambient temperatures, and that Neanderthals have relatively large sinuses. Analysis of humans, other primates, and rodents, however, suggests that the first assumption is suspect; at least the maxillary sinus undergoes a significant reduction in volume in extreme cold, in both wild and laboratory conditions. The second assumption, that Neanderthal sinuses are large, extensive, or even ‘hyperpneumatized,’ has held sway since the first specimen was described and has been interpreted as the causal explanation for some of the distinctive aspects of Neanderthal facial form, but has never been evaluated with respect to scaling. To test the latter assumption, previously published measurements from two-dimensional (2D) X-rays and new three-dimensional (3D) data from computed tomography (CT) of Neanderthals and temperate-climate European Homo sapiens are regressed against cranial size to determine the relative size of their sinuses. The 2D data reveal a degree of craniofacial pneumatization in Neanderthals that is both commensurate with the size of the cranium and comparable in scale with that seen in temperate climate H. sapiens. The 3D analysis of CT data from a smaller sample supports this conclusion. These results suggest that the distinctive Neanderthal face cannot be interpreted as a direct result of increased pneumatization, nor is it likely to be an adaptation to resist cold stress; an alternative explanation is thus required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号