首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neuroprostanes are prostaglandin-like compounds produced by free radical-induced peroxidation of docosahexaenoic acid, which is highly enriched in the brain. We previously described the formation of highly reactive gamma-ketoaldehydes (isoketals) as products of the isoprostane pathway of free radical-induced peroxidation of arachidonic acid. We therefore explored whether isoketal-like compounds (neuroketals) are also formed via the neuroprostane pathway. Utilizing mass spectrometric analyses, neuroketals were found to be formed in abundance in vitro during oxidation of docosahexaenoic acid and were formed in greater abundance than isoketals during co-oxidation of docosahexaenoic and arachidonic acid. Neuroketals were shown to rapidly adduct to lysine, forming lactam and Schiff base adducts. Neuroketal lysyl-lactam protein adducts were detected in nonoxidized rat brain synaptosomes at a level of 0.09 ng/mg of protein, which increased 19-fold following oxidation in vitro. Neuroketal lysyl-lactam protein adducts were also detected in vivo in normal human brain at a level of 9.9 +/- 3.7 ng/g of brain tissue. These studies identify a new class of highly reactive molecules that may participate in the formation of protein adducts and protein-protein cross-links in neurodegenerative diseases and contribute to the injurious effects of other oxidative pathologies in the brain.  相似文献   

2.
Isoprostanes are prostaglandin-like compounds produced by non-enzymatic peroxidation of arachidonic acid. The cyclooxygenase-derived endoperoxide, prostaglandin H2, can undergo rearrangement to highly reactive gamma-ketoaldehyde secoprostanoids (levuglandin E2 and D2). We explored whether isoprostane endoperoxide intermediates also rearrange to levuglandin-like compounds (isolevuglandins). Formation of a series of isolevuglandins during oxidation of arachidonic acid in vitro was established utilizing a number of mass spectrometric analyses. However, these compounds could not be detected in free form in protein-containing biological systems, which we hypothesized was due to extremely rapid adduction to amines. This was supported by the finding that >60% of levuglandin E2 adducted to albumin within 20 s, whereas approximately 50% of 4-hydroxynonenal still remained unadducted after 1 h. By utilizing electrospray tandem mass spectrometry, we established that these compounds form oxidized pyrrole adducts (lactams and hydroxylactams) with lysine. Formation of isolevuglandin-lysine adducts on apolipoprotein B was readily detected during oxidation of low density lipoprotein following enzymatic digestion of the protein to single amino acids. These studies identify a novel series of extremely reactive products of the isoprostane pathway that rapidly form covalent adducts with lysine residues on proteins. This provides the basis to explore the formation of isolevuglandins in vivo to investigate the potential biological ramifications of their formation in settings of oxidant injury.  相似文献   

3.
F2-isoprostanes are prostaglandin F2-like compounds that are formed nonenzymatically by free radical mediated peroxidation of arachidonic acid. Intermediate in the pathway of the formation of isoprostanes are labile prostaglandin H2-like bicyclic endoperoxides (H2-isoprostanes), which are reduced to F2-isoprostanes and also undergo rearrangement in vivo to form E-ring and D-ring isoprostanes, isothromboxanes, and highly reactive acyclic gamma-ketoaldehdyes (isoketals). Docosahexaenoic acid (C22:6omega3) is highly enriched in neurons in the brain and is highly susceptible to oxidation. Free radical mediated oxidation of docosahexaenoic acid results in the formation of isoprostane-like compounds (neuroprostanes). F4- and E4/D4-neuroprostanes as well as neuroketals have been shown to be produced in vivo. Finally, we recently discovered a new pathway of lipid peroxidation that forms compounds with a substituted tetrahydrofuran ring (isofurans). Oxygen concentrations differentially modulate the formation of isoprostanes and isofurans; at elevated oxygen concentrations, the formation of isofurans is favored whereas the formation of isoprostanes is disfavored.  相似文献   

4.
Free radical-initiated oxidant injury and lipid peroxidation have been implicated in a number of neural disorders. Docosahexaenoic acid is the most abundant unsaturated fatty acid in the central nervous system. We have shown previously that this 22-carbon fatty acid can yield, upon oxidation, isoprostane-like compounds termed neuroprostanes, with E/D-type prostane rings (E(4)/D(4)-neuroprostanes). Eicosanoids with E/D-type prostane rings are unstable and dehydrate to cyclopentenone-containing compounds possessing A-type and J-type prostane rings, respectively. We thus explored whether cyclopentenone neuroprostanes (A(4)/J(4)-neuroprostanes) are formed from the dehydration of E(4)/D(4)-neuroprostanes. Indeed, oxidation of docosahexaenoic acid in vitro increased levels of putative A(4)/J(4)-neuroprostanes 64-fold from 88 +/- 43 to 5463 +/- 2579 ng/mg docosahexaenoic acid. Chemical approaches and liquid chromatography/electrospray ionization tandem mass spectrometry definitively identified them as A(4)/J(4)-neuroprostanes. We subsequently showed these compounds are formed in significant amounts from a biological source, rat brain synaptosomes. A(4)/J(4)-neuroprostanes increased 13-fold, from a basal level of 89 +/- 72 ng/mg protein to 1187 +/- 217 ng/mg (n = 4), upon oxidation. We also detected these compounds in very large amounts in fresh brain tissue from rats at levels of 97 +/- 25 ng/g brain tissue (n = 3) and from humans at levels of 98 +/- 26 ng/g brain tissue (n = 5), quantities that are nearly an order of magnitude higher than other classes of neuroprostanes. Because of the fact that A(4)/J(4)-neuroprostanes contain highly reactive cyclopentenone ring structures, it would be predicted that they readily undergo Michael addition with glutathione and adduct covalently to proteins. Indeed, incubation of A(4)/J(4)-neuroprostanes in vitro with excess glutathione resulted in the formation of large amounts of adducts. Thus, these studies have identified novel, highly reactive A/J-ring isoprostane-like compounds that are derived from docosahexaenoic acid in vivo.  相似文献   

5.
Free radical-mediated oxidant injury and lipid peroxidation have been implicated in a number of neural disorders. We have reported that bioactive prostaglandin D2/E2-like compounds, termed D2/E2-isoprostanes, are produced in vivo by the free radical-catalyzed peroxidation of arachidonic acid. Docosahexaenoic acid, in contrast to arachidonic acid, is the most abundant unsaturated fatty acid in brain. We therefore questioned whether D/E-isoprostane-like compounds (D4/E4-neuroprostanes) are formed from the oxidation of docosahexaenoic acid. Levels of putative D4/E4-neuroprostanes increased 380-fold after oxidation of docosahexaenoic acid in vitro from 15.2 +/- 6.3 to 5773 +/- 1024 ng/mg of docosahexaenoic acid. Subsequently, chemical approaches and liquid chromatography electrospray ionization tandem mass spectrometry definitively identified these compounds as D4/E4-neuroprostanes. We then explored the formation of D4/E4-neuroprostanes from a biological source, rat brain synaptosomes. Basal levels of D4/E4-neuroprostanes were 3.8 +/- 0.6 ng/mg of protein and increased 54-fold after oxidation (n = 4). We also detected these compounds in fresh brain tissue from rats at levels of 12.1 +/- 2.4 ng/g of brain tissue (n = 3) and in human brain tissue at levels of 9.2 +/- 4.1 ng/g of brain tissue (n = 4). Thus, these studies have identified novel D/E-ring isoprostane-like compounds that are derived from docosahexaenoic acid and that are formed in brain in vivo. The fact that they are readily detectable suggests that ongoing oxidative stress is present in the central nervous system of humans and animals. Further, identification of these compounds provides a rationale for examining their role in neurological disorders associated with oxidant stress.  相似文献   

6.
The bicyclic endoperoxide prostaglandin (PG) H2 undergoes nonenzymatic rearrangement not only to PGE2 and PGD2, but also to levuglandins (LG) E2 and D2, which are highly reactive gamma-ketoaldehydes. Isoprostanes (IsoPs) are PG-like compounds that are produced by nonenzymatic peroxidation of arachidonic acid. PGH2-like endoperoxides are intermediates in this pathway. Therefore, we explored whether the IsoP endoperoxides also undergo rearrangement to form IsoLGs. Oxidation of arachidonic acid in vitro resulted in the formation of abundant quantities of compounds that were established to be IsoLGs by using mass spectrometric analyses. However, the formation of IsoLGs could not be detected in biological systems subjected to an oxidant stress. We hypothesized that this was due to extremely rapid adduction of IsoLGs to proteins. This notion was supported by the finding that LGE2 adducted to albumin at a rate that exceeded that of 4-hydroxynonenal by several orders of magnitude: >50% of LGE2 had adducted within 20 s. We therefore undertook to characterize the nature of LG adducts. Using liquid chromatography electrospray tandem mass spectrometry, we established that LGs form oxidized pyrrole adducts (lactams and hydroxylactams) with the epsilon-amino group of lysine. Oxidation of low density lipoprotein resulted in readily detectable IsoLG adducts on apolipoprotein B after enzymatic digestion of the protein to individual amino acids. These studies identify a novel class of ketoaldehydes produced by the IsoP pathway that form covalent protein adducts at a rate that greatly exceeds that of other known aldehyde products of lipid peroxidation. Elucidation of the nature of the adducts formed by IsoLGs provides the basis to explore the formation of IsoLGs in vivo and investigate the potential biological ramifications of their formation in settings of oxidant injury.  相似文献   

7.
Macrophages are prominent components of human atherosclerotic lesions and they are believed to accelerate the progression and/or complications of both early and advanced atherosclerotic lesions. We and others have shown that oxidized low-density lipoprotein (oxLDL) induces growth and inhibits apoptosis in murine bone marrow-derived macrophages. In this study, we sought to characterize the oxidative modification of LDL that is responsible for this prosurvival effect. We found that both the modified lipid and the modified protein components of oxLDL can increase the viability of macrophages. The key modification appeared to involve derivatization of amino groups in apoB or in phosphatidylethanolamine by lipid peroxidation products. These reactive oxidation products were primarily unfragmented hydroperoxide- or endoperoxide-containing oxidation products of linoleic acid or arachidonic acid. LC-MS/MS studies showed that some of the arachidonic acid-derived lysine adducts were isolevuglandins that contain lactam and hydroxylactam rings. MS/MS analysis of linoleic acid autoxidation adducts was consistent with 5- or 6-membered nitrogen-containing heterocycles derived from unfragmented oxidation products. The amine modification by oxidation products generated a fluorescence pattern with an excitation maximum at 350nm and emission maximum at 430nm. This is very similar to the fluorescence spectrum of copper-oxidized LDL.  相似文献   

8.
α,β-Unsaturated aldehydes generated during lipid peroxidation, such as 4-oxoalkenals and 4-hydroxyalkenals, can give rise to protein degeneration in a variety of pathological states. Although the covalent modification of proteins by these end products has been well studied, the reactivity of unstable intermediates possessing a hydroperoxy group, such as 4-hydroperoxy-2-nonenal (HPNE), with protein has received little attention. We have now established a unique protein modification in which the 4-hydroperoxy group of HPNE is involved in the formation of structurally unusual lysine adducts. In addition, we showed that one of the HPNE-specific lysine adducts constitutes the epitope of a monoclonal antibody raised against the HPNE-modified protein. Upon incubation with bovine serum albumin, HPNE preferentially reacted with the lysine residues. By employing N(α)-benzoylglycyl-lysine, we detected two major products containing one HPNE molecule per peptide. Based on the chemical and spectroscopic evidence, the products were identified to be the N(α)-benzoylglycyl derivatives of N(ε)-4-hydroxynonanoic acid-lysine and N(ε)-4-hydroxy-(2Z)-nonenoyllysine, both of which are suggested to be formed through mechanisms in which the initial HPNE-lysine adducts undergo Baeyer-Villiger-like reactions proceeding through an intramolecular oxidation catalyzed by the hydroperoxy group. On the other hand, using an HPNE-modified protein as the immunogen, we raised a monoclonal antibody against the HPNE-modified protein and identified one of the HPNE-specific lysine adducts, N(ε)-4-hydroxynonanoic acid-lysine, as an intrinsic epitope of the monoclonal antibody. Furthermore, we demonstrated that the HPNE-specific epitopes were produced not only in the oxidized low density lipoprotein in vitro but also in the atherosclerotic lesions. These results indicated that HPNE is not just an intermediate but also a reactive molecule that could covalently modify proteins in biological systems.  相似文献   

9.
N epsilon-(Carboxymethyl)lysine (CML) has been identified as a product of oxidation of glucose adducts to protein in vitro and has been detected in human tissue proteins and urine [Ahmed, M. U., Thorpe, S. R., & Baynes, J. W. (1986) J. Biol. Chem. 261, 4889-4894; Dunn, J. A., Patrick, J. S., Thorpe, S. R., & Baynes, J. W. (1989) Biochemistry 28, 9464-9468]. In the present study we show that CML is also formed in reactions between ascorbate and lysine residues in model compounds and protein in vitro. The formation of CML from ascorbate and lysine proceeds spontaneously at physiological pH and temperature under air. Kinetic studies indicate that oxidation of ascorbic acid to dehydroascorbate is required. Threose and N epsilon-threuloselysine, the Amadori adduct of threose to lysine, were identified in the ascorbate reaction mixtures, suggesting that CML was formed by oxidative cleavage of N epsilon-threuloselysine. Support for this mechanism was obtained by identifying CML as a product of reaction between threose and lysine and by analysis of the relative rates of formation of threuloselysine and CML in reactions of ascorbate or threose with lysine. The detection of CML as a product of reaction of ascorbate and threose with lysine suggests that other sugars, in addition to glucose, may be sources of CML in proteins in vivo. The proposed mechanism for formation of CML from ascorbate is an example of autoxidative glycosylation of protein and suggests that CML may also be an indicator of autoxidative glycosylation of proteins in vivo.  相似文献   

10.
Modification of low density lipoproteins (LDL) by oxidation has been shown to permit recognition by the acetyl-LDL receptor of macrophages. The extensive oxidation of LDL that is required before interaction occurs with this receptor produces major alterations in both the lipid and protein components of LDL. Several chemical modifications of LDL also lead to recognition by this receptor; all of these involve derivatization of lysine residues of apolipoprotein B by adducts that neutralize the positively charged epsilon-amino group. The present studies show that oxidation also results in derivatization of LDL lysine residues. Analysis of amino acid composition indicated that 32% of lysine residues were modified after oxidation of LDL by exposure to 5 microM CuSO4 for 20 h. About one-half of the derivatized lysines were labile under the conditions of acid hydrolysis. Fluorescence of LDL protein was greatly increased by oxidation, with excitation maximum at 350 nm and emission maximum at 433 nm. When LDL containing phosphatidylcholine with isotopically labeled arachidonic acid in the sn-2 position was oxidized, there was a 5-fold increase in radioactivity bound to protein compared to nonoxidized LDL or oxidized LDL labeled with 2-[1-14C]palmitoyl phosphatidylcholine. Prior methylation of LDL prevented the rapid uptake and degradation by macrophages that normally accompanies oxidation. These findings suggest that oxidation of LDL is accompanied by derivatization of lysine epsilon-amino groups by lipid products and that these adducts may be important in the interaction of oxidized LDL with the acetyl-LDL receptor.  相似文献   

11.
Free radical-catalyzed peroxidation of docosahexaenoic acid (DHA, C22:6/omega-3) generates various lipid peroxidation products that covalently modify biomolecules such as proteins. Under a free radical-generating system, DHA significantly modified lysine residues in bovine serum albumin. Upon incubation of oxidized DHA with an amino-compound pyridoxamine or a lysine-containing peptide, N-propanoyl and N-succinyl adducts were determined to be the major modification products. The hydroperoxide levels in the oxidized DHA closely reflected the formation of the N(epsilon)-(succinyl)lysine (SUL) upon reaction with the peptide, indicating that the hydroperoxides of DHA represent a potential pathway for the formation of SUL. To detect the DHA-derived protein modification in vivo, we developed a monoclonal antibody (mAb2B12) specific to SUL and found that the antibody specifically reacts with the SUL moiety. The formation of SUL was then immunochemically demonstrated in the liver of mice fed with DHA followed by intraperitoneal injection of carbon tetrachloride (CCl(4)), a hepatic lipid peroxidation model. Immunoreactive materials with mAb2B12 were observed in the DHA + CCl(4) group, but were not significant in the control, DHA-alone, and CCl(4)-alone groups. These data suggest that the formation of DHA-derived adducts such as SUL may be implicated in the oxidative damage observed in DHA-enriched tissues.  相似文献   

12.
This work describes the addition of a lysine derivative to guanine base in a nucleoside, an oligonucleotide, and to a large DNA that occurs via oxidation by copper generated reactive oxygen species. Nucleophiles present during oxidation leads to the formation of adducts. In this work, 2′-deoxyguanosine is oxidized by copper generated reactive oxygen species in the presence of a lysine derivative, Nα-acetyl-lysine methyl ester. Under these conditions the guanidinohydantoin-lysine adduct is observed in a relative yield of 27% when compared to other guanine oxidation products. MS2 strongly supports that lysine is added to the 5-position during the formation of guanidinohydantoin-lysine. A fourteen-nucleotide DNA duplex was oxidized under similar conditions. Digestion showed formation of the same guanidinohydantoin-lysine nucleoside. The reaction was then examined on a 392-nucleotide DNA substrate. Oxidation in the presence of the lysine ester showed adduct formation as stops in a primer extension assay. Adducts predominately formed at a 5′-GGG at position 415. Six of the seven sites that showed reaction greater than 3-fold above background were guanine sites. We conclude from this study that copper can catalyze the formation of DNA-protein adducts and may form in cells with elevated copper and oxidative stress.  相似文献   

13.
Prostaglandin H(2) has been demonstrated to rearrange to gamma-ketoaldehyde prostanoids termed levuglandins E(2) and D(2). As gamma-dicarbonyl molecules, the levuglandins react readily with amines. We sought to characterize the adducts formed by synthetic levuglandin E(2) and prostaglandin H(2)-derived levuglandins with lysine. Using liquid chromatography/electrospray mass spectrometry, we found that the reaction predominantly produces lysyl-levuglandin Schiff base adducts that readily dehydrate to form lysyl-anhydrolevuglandin Schiff base adducts. These adducts were characterized by examination of their mass spectra, by analysis of the products of their reaction with sodium cyanide, sodium borohydride, and methoxylamine and by the mass spectra derived from collision-induced dissociation in tandem mass spectrometry. The Schiff base adducts also are formed on peptide-bound lysyl residues. In addition, synthetic levuglandin E(2) and prostaglandin H(2)-derived levuglandins produced pyrrole-derived lactam and hydroxylactam adducts upon reaction with lysine as determined by tandem mass spectrometry. A marked time dependence in the formation of these adducts was observed: Schiff base adducts formed very rapidly and robustly, whereas the lactam and hydroxylactam adducts formed more slowly but accumulated throughout the time of the experiment. These findings provide a basis for investigating protein modification induced by oxygenation of arachidonic acid by the cyclooxygenases.  相似文献   

14.
This study was conducted to further our understanding about the link between lipid peroxidation and protein carbonylation in rat brain slices incubated with the glutathione (GSH)-depletor diethyl maleate. Using this in vitro system of oxidative stress, we found that there is a significant lag between the appearance of carbonylated proteins and GSH depletion, which seems to be due to the removal of oxidized species early on in the incubation by the mitochondrial Lon protease. Upon acute GSH depletion, protein carbonyls accumulated mostly in mitochondria and to a lesser degree in other subcellular fractions that also contain high levels of polyunsaturated lipids. This result is consistent with our previous findings suggesting that lipid hydroperoxides mediate the oxidation of proteins in this system. However, these lipid hydroperoxides are not produced by oxidation of free arachidonic acid or other polyunsaturated free fatty acids by lipooxygenases or cyclooxygenases. Finally, γ-glutamyl semialdehyde and 2-amino-adipic semialdehyde were identified by HPLC as the carbonyl-containing amino acid residues, indicating that proteins are carbonylated by metal ion-catalyzed oxidation of lysine, arginine and proline residues. The present findings are important in the context of neurological disorders that exhibit increased lipid peroxidation and protein carbonylation, such as Parkinson’s disease, Alzheimer’s disease, and multiple sclerosis.  相似文献   

15.
Chemistry of phospholipid oxidation   总被引:1,自引:0,他引:1  
The oxidation of lipids has long been a topic of interest in biological and food sciences, and the fundamental principles of non-enzymatic free radical attack on phospholipids are well established, although questions about detail of the mechanisms remain. The number of end products that are formed following the initiation of phospholipid peroxidation is large, and is continually growing as new structures of oxidized phospholipids are elucidated. Common products are phospholipids with esterified isoprostane-like structures and chain-shortened products containing hydroxy, carbonyl or carboxylic acid groups; the carbonyl-containing compounds are reactive and readily form adducts with proteins and other biomolecules. Phospholipids can also be attacked by reactive nitrogen and chlorine species, further expanding the range of products to nitrated and chlorinated phospholipids. Key to understanding the mechanisms of oxidation is the development of advanced and sensitive technologies that enable structural elucidation. Tandem mass spectrometry has proved invaluable in this respect and is generally the method of choice for structural work. A number of studies have investigated whether individual oxidized phospholipid products occur in vivo, and mass spectrometry techniques have been instrumental in detecting a variety of oxidation products in biological samples such as atherosclerotic plaque material, brain tissue, intestinal tissue and plasma, although relatively few have achieved an absolute quantitative analysis. The levels of oxidized phospholipids in vivo is a critical question, as there is now substantial evidence that many of these compounds are bioactive and could contribute to pathology. The challenges for the future will be to adopt lipidomic approaches to map the profile of oxidized phospholipid formation in different biological conditions, and relate this to their effects in vivo. This article is part of a Special Issue entitled: Oxidized phospholipids-their properties and interactions with proteins.  相似文献   

16.
Oxidative stress induced in tumor cells undergoing photodynamic treatment (PDT) leads to extensive modification of many proteins in these cells. Protein oxidation mainly gives rise to formation of carbonyls and oxidized thiols. The immediate targets of PDT-induced protein oxidation in A431 tumor cells have been identified using a proteomic approach involving selective biotinylation, affinity purification and mass spectrometric identification of modified proteins. In all, 314 proteins were shown to undergo PDT-mediated oxidative modifications. While abundant structural proteins and chaperones represented a significant fraction of the carbonylated proteins, labeling of proteins containing oxidized thiols allowed identification of many proteins at low abundance and those involved in signaling and redox homeostasis. On the basis of the identification of these proteins, several likely mechanisms of PDT-induced triggering of apoptosis were put forward. This may not only lead to a further understanding of the complex network of cellular responses to oxidative stress, but it may also help in detailed targeting of photodynamic treatment applied to cancer.  相似文献   

17.
Oxidative stress appears to be directly involved in the pathogenesis of the neurodegeneration of dopaminergic systems in Parkinson disease. In this study, we formed four dopamine modification adducts derived from docosahexaenoic acid (C22:6/omega-3) and arachidonic acid (C18:4/omega-6), which are known as the major polyunsaturated fatty acids in the brain. Upon incubation of dopamine with fatty acid hydroperoxides and an in vivo experiment using rat brain tissue, all four dopamine adducts were detected. Furthermore, hexanoyl dopamine (HED), an arachidonic acid-derived adduct, caused severe cytotoxicity in human dopaminergic neuroblastoma SH-SY5Y cells, whereas the other adducts were only slightly affected. The HED-induced cell death was found to include apoptosis, which also seems to be mediated by reactive oxygen species generation and mitochondrial abnormality. Additionally, the experiments using monoamine transporter inhibitor and mouse embryonic fibroblast NIH-3T3 cells that lack the monoamine transporter indicate that the HED-induced cytotoxicity might specially occur in the neuronal cells. These data suggest that the formation of the docosahexaenoic acid- and arachidonic acid-derived dopamine adducts in vitro and in vivo, and HED, the arachidonic acid-derived dopamine modification adduct, which caused selective cytotoxicity of neuronal cells, may indicate a novel mechanism responsible for the pathogenesis in Parkinson disease.  相似文献   

18.
It is known that n-3 polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid and eicosapentaenoic acid, are rapidly oxidized in vitro. N?-(propanoyl)lysine (propionyllysine, or PRL) is formed from the reaction of the oxidized products of n-3 PUFAs and lysine. To evaluate the oxidized n-3 PUFA-derived protein modifications in vivo, we have developed detection methods using a novel monoclonal antibody against PRL as well as liquid chromatography–mass spectrometry (LC/MS/MS). The antibody obtained specifically recognized PRL. A strong positive staining in atherosclerotic lesions of hypercholesterolemic rabbits was observed. We have also simultaneously identified and quantified both urinary PRL and urinary N?-(hexanoyl)lysine, using LC/MS/MS using isotope dilution methods. The level of urinary PRL (21.6 ± 10.6 μmol/mol of creatinine) significantly correlated with the other oxidative stress markers, 8-oxo-deoxyguanosine, dityrosine, and isoprostanes. The increase in the excretion of amide adducts into the urine of diabetic patients was also confirmed compared to healthy subjects. These results suggest that PRL may be good marker for n-3 PUFA-derived oxidative stress in vivo.  相似文献   

19.
—It is generally believed that leucine serves primarily as a precursor for protein synthesis in the central nervous system. However, leucine is also oxidized to CO2 in brain. The present investigation compares leucine oxidation and incorporation into protein in brain slices and synaptosomes. In brain slices from adult rats, these processes were linear for 90min and 14CO2 production from 0·1 mm -l -[l-14C]leucine was 23 times more rapid than incorporation into protein. The rate of oxidation increased further with greater leucine concentrations. Experiments with l -[U-14C]leucine suggested that all of the carbons from leucine were oxidized to CO2 with very little incorporation into lipid. Oxidation of leucine also occurred in synaptosomes. In slices, leucine oxidation and incorporation into protein were inhibited by removal of glucose or Na+, or addition of ouabain. In synaptosomes, replacement of Na+ by choline also reduced leucine oxidation; and this effect did not appear to be due to inhibition of leucine transport. The rate of leucine oxidation did not change in brain slices prepared from fasted animals. Fasting, however, reduced the incorporation of leucine into protein in brain slices prepared from young but not from adult rats. These findings indicate that oxidation is the major metabolic fate of leucine in brain of fed and fasted animals.  相似文献   

20.
Acrolein, a representative carcinogenic aldehyde, that could be ubiquitously generated in biological systems under oxidative stress shows facile reactivity with a nucleophile such as a protein. In this study, to gain a better understanding of the molecular basis of acrolein modification of protein, we characterized the acrolein modification of a model peptide (the oxidized B chain of insulin) by electrospray ionization-liquid chromatography/mass spectrometry method and established a novel acrolein-lysine condensation reaction. In addition, we found that this condensation adduct represented the major antigenic adduct generated in acrolein-modified protein. To identify the modification site and structures of adducts generated in the acrolein-modified insulin B chain, both the acrolein-pretreated and untreated peptides were digested with V8 protease and the resulting peptides were subjected to electrospray ionization-liquid chromatography/mass spectrometry. This technique identified nine peptides, which contained the acrolein adducts at Lys-29 and the N terminus, and revealed that the reaction of the insulin B chain with acrolein gave multiple adducts, including an unknown adduct containing two molecules of acrolein per lysine. To identify this adduct, we incubated N(alpha)-acetyllysine with acrolein and isolated a product having the same molecular mass as the unknown acrolein-lysine adduct. On the basis of the chemical and spectroscopic evidence, the adduct was determined to be a novel pyridinium-type lysine adduct, N(epsilon)-(3-methylpyridinium)lysine (MP-lysine). The formation of MP-lysine was confirmed by amino acid analysis of proteins treated with acrolein. More notably, this condensation adduct appeared to be an intrinsic epitope of a monoclonal antibody 5F6 that had been raised against acrolein-modified protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号