首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of a disintegrin and metalloprotease (ADAM) family members are expressed in mammalian male reproductive organs such as testis and epididymis. These reproductive ADAMs are divided phylogenically into three major groups: ADAMs 1, 4, 6, 20, 21, 24, 25, 26, 29, 30, and 34 (the first group); ADAMs 2, 3, 5, 27, and 32 (the second group); and ADAMs 7 and 28 (the third group). Previous mouse knockout studies indicate that ADAM1, ADAM2, and ADAM3 have intricate expressional relationships, playing critical roles in fertilization. In the present study, we analyzed processing, biochemical characteristics, localization, and expressional relationship of the previously-unexplored, second-group ADAMs (ADAM5, ADAM27, and ADAM32). We found that all of the three ADAMs are made as precursors in the testis and processed during epididymal maturation, and that ADAM5 and ADAM32, but not ADAM27, are located on the sperm surface. Using sperm from Adam2(-/-) and Adam3(-/-) mice, we found that, among the three ADAMs, the level of ADAM5 is modestly and severely reduced in Adam3 and Adam2 knockout sperm, respectively. Further, we analyzed ADAM7, an epididymis-derived sperm surface ADAM from the separate phylogenetic group, in the knockout sperm. We found that the level of ADAM7 is also significantly reduced in both Adam2 and Adam3-null sperm. Taken together, our results suggest a novel expressional relationship of ADAM5 and ADAM7 with ADAM2 and ADAM3, which play critical roles in fertilization.  相似文献   

2.
Putative function of ADAM9, ADAM10, and ADAM17 as APP alpha-secretase   总被引:9,自引:0,他引:9  
The putative alpha-secretase cleaves the amyloid precursor protein (APP) of Alzheimer's disease in the middle of the amyloid beta peptide (Abeta) domain. It is generally thought that the alpha-secretase pathway mitigates Abeta formation in the normal brain. Several studies have suggested that ADAM9, ADAM10, and ADAM17 are candidate alpha-secretases belonging to the ADAM (a disintegrin and metalloprotease) family, which are membrane-anchored cell surface proteins. In this comparative study of ADAM9, ADAM10, and ADAM17, we examined the physiological role of ADAMs by expressing these ADAMs in COS-7 cells, and both "constitutive" and "regulated" alpha-secretase activities of these ADAMs were determined. We tried to suppress the expression of these ADAMs in human glioblastoma A172 cells, which contain large amounts of endogenous alpha-secretase, by lipofection of the double-stranded RNA (dsRNA) encoding each of these ADAMs. The results indicate that ADAM9, ADAM10, and ADAM17 catalyze alpha-secretory cleavage and therefore act as alpha-secretases in A172 cells. This is the first report that to suggest the endogenous alpha-secretase is composed of several ADAM enzymes.  相似文献   

3.
4.
Choi I  Oh J  Cho BN  Ahnn J  Jung YK  Han Kim D  Cho C 《Genomics》2004,83(4):636-646
ADAM (a disintegrin and metalloprotease) family members with testis-specific or -predominant gene expression are divided phylogenically into two groups: ADAMs 2, 3, 5, 27, and 32 (the first group) and ADAMs 4, 6, 20, 21, 24, 25, 26, 29, 30, and 34 (the second group). We cloned and sequenced cDNAs for previously unidentified mouse Adams that belong to the second group. We found that all the Adam genes in the second phylogenic group are transcribed by both somatic and germ cells in mouse testis, representing a unique expression pattern different from that of the first-group Adams. Genomic analyses revealed that all the second-group Adam genes lack introns interrupting protein-coding sequences and many of them are present as multicopy genes, resulting in total of 14 functional mouse genes in this phylogenic group. Comparing the mouse and human ADAM genes, we found that a number of these mouse Adam genes do not have human orthologues and, even if they exist, some orthologues are pseudogenes in human. These results suggest the differential expansion of the second-group Adam genes in the mouse genome during evolution and a relationship between these Adams and male reproduction unique to mouse.  相似文献   

5.
The ADAMs (a disintegrin and metalloprotease) comprise a family of multidomain proteins with metalloprotease, cell adhesion, and signaling activities. Human ADAM12, which is implicated in diseases such as cancer, is expressed in two splice forms, the transmembrane ADAM12-L and the shorter and soluble ADAM12-S. ADAM12 is synthesized as a zymogen with the prodomain keeping the metalloprotease inactive through a cysteine-switch mechanism. Maturation and activation of the protease involves the cleavage of the prodomain in the trans-Golgi or possibly at the cell surface by a furin-peptidase. The aim of the present study was to determine the fate of the prodomain following furin cleavage. Here we demonstrate that, following cleavage of the human ADAM12-S prodomain in the trans-Golgi by a furin-peptidase, the prodomain remains non-covalently associated with the mature molecule. Accordingly, both the 68-kDa mature form of ADAM12-S and the 25-kDa prodomain could be detected using domain-specific antisera in immunoprecipitation and Western blot analyses of human serum ADAM12 and purified recombinant human ADAM12. Using electron microscopy after negative staining we have furthermore obtained the first visualization of a full-length ADAM molecule, human ADAM12-S, and report that it appears to be a compact clover composed of four globular domains, one of which is the prodomain. Finally, our data demonstrate that the presence of the metalloprotease domain appears to be sufficient for the prodomain to remain associated with the mature ADAM12-S. Thus, we conclude that the prodomain of human ADAM12-S is an integral domain of the mature molecule and as such might have specific biological functions in the extracellular space.  相似文献   

6.
ADAM 9 is a member of the cellular metalloprotease/disintegrin/cysteine-rich (MDC) gene family, related to soluble snake venom metalloproteases (SVMP). ADAMs may play important roles in cell-cell fusion, cell-matrix interaction, and other cellular functions. To investigate catalytic activity of human ADAM 9 we have cloned and expressed the metalloprotease domain of human ADAM 9 in Pichia pastoris. The recombinant protein was purified in a three-step purification procedure and activity was detected against gelatin, beta-casein, and fibronectin. In addition we identified five normal and cancer cell lines expressing mRNA of human ADAM 9.  相似文献   

7.
Transcriptional regulation of the mouse fatty acid amide hydrolase gene   总被引:4,自引:0,他引:4  
  相似文献   

8.
ADAMs are membrane-anchored proteases that regulate cell behavior by proteolytically modifying the cell surface and ECM. Like other membrane-anchored proteases, ADAMs contain candidate "adhesive" domains downstream of their metalloprotease domains. The mechanism by which membrane-anchored cell surface proteases utilize these putative adhesive domains to regulate protease function in vivo is not well understood. We address this important question by analyzing the relative contributions of downstream extracellular domains (disintegrin, cysteine rich, and EGF-like repeat) of the ADAM13 metalloprotease during Xenopus laevis development. When expressed in embryos, ADAM13 induces hyperplasia of the cement gland, whereas ADAM10 does not. Using chimeric constructs, we find that the metalloprotease domain of ADAM10 can substitute for that of ADAM13, but that specificity for cement gland expansion requires a downstream extracellular domain of ADAM13. Analysis of finer resolution chimeras indicates an essential role for the cysteine-rich domain and a supporting role for the disintegrin domain. These and other results reveal that the cysteine-rich domain of ADAM13 cooperates intramolecularly with the ADAM13 metalloprotease domain to regulate its function in vivo. Our findings thus provide the first evidence that a downstream extracellular adhesive domain plays an active role in regulating ADAM protease function in vivo. These findings are likely relevant to other membrane-anchored cell surface proteases.  相似文献   

9.
In the present study the expression patterns of ADAM (a disintegrin and metalloprotease) genes in the chicken developing lens were analyzed. Using in situ hybridization, we found that seven members of the ADAM family including ADAM9, ADAM10, ADAM12, ADAM13, ADAM17, ADAM22, and ADAM23 are expressed in the developing embryonic lens. From embryonic incubation day (E) 2 to E3, most of the ADAMs investigated here are expressed in the lens placode and lens vesicle. From E5 to E7, all seven ADAMs, but predominantly ADAM9 and ADAM10, are throughly expressed in the central epithelium, as well as in the proliferating lens epithelium and the equatorial lens epithelium. From E9 to E14, expression of ADAM9, ADAM10, and ADAM17 decreases moderately in these regions. ADAM12 and ADAM13 are weakly expressed in the central epithelium and the lens epithelium, and are not detectable from E14 onward. ADAM22 and ADAM23 are expressed in the central epithelium, the lens epithelium and the equatorial lens epithelium at E5 and decrease gradually afterwards in the same regions. At E16, only weak ADAM9, ADAM10 and ADAM17 signals are found in the anterior lens epithelium. The changing spatiotemporal expression of the seven ADAMs suggests a regulatory role for these molecules during chicken lens development.  相似文献   

10.
A disintegrin and a metalloprotease (ADAM) family members have been implicated in many biological processes. Although it is recognized that recombinant ADAM disintegrin domains can interact with integrins, little is known about ADAM-integrin interactions in cellular context. Here, we tested whether ADAMs can selectively regulate integrin-mediated cell migration. ADAMs were expressed in Chinese hamster ovary cells that express defined integrins (alpha4beta1, alpha5beta1, or both), and cell migration on full-length fibronectin or on its alpha4beta1 or alpha5beta1 binding fragments was studied. We found that ADAMs inhibit integrin-mediated cell migration in patterns dictated by the integrin binding profiles of their isolated disintegrin domains. ADAM12 inhibited cell migration mediated by the alpha4beta1 but not the alpha5beta1 integrin. ADAM17 had the reciprocal effect; it inhibited alpha5beta1- but not alpha4beta1-mediated cell migration. ADAM19 and ADAM33 inhibited migration mediated by both alpha4beta1 and alpha5beta1 integrins. A point mutation in the ADAM12 disintegrin loop partially reduced the inhibitory effect of ADAM12 on cell migration on the alpha4beta1 binding fragment of fibronectin, whereas mutations that block metalloprotease activity had no effect. Our results indicate that distinct ADAMs can modulate cell migration mediated by specific integrins in a pattern dictated, at least in part, by their disintegrin domains.  相似文献   

11.
The ADAMs (a disintegrin and metalloprotease) are a family of multidomain proteins that are believed to play key roles in cell-cell and cell-matrix interactions. We have shown recently that human ADAM 12-S (meltrin alpha) is an active metalloprotease. It is synthesized as a zymogen, with the prodomain maintaining the protease in a latent form. We now provide evidence that the latency mechanism of ADAM 12 can be explained by the cysteine switch model, in which coordination of Zn2+ in the active site of the catalytic domain by a cysteine residue in the prodomain is critical for inhibition of the protease. Replacing Cys179 with other amino acids results in an ADAM 12 proform that is proteolytically active, but latency can be restored by placing cysteine at other positions in the propeptide. None of the amino acids adjacent to the crucial cysteine residue is essential for blocking activity of the protease domain. In addition to its latency function, the prodomain is required for exit of ADAM 12 protease from the endoplasmic reticulum. Tissue inhibitor of metalloprotease-1, -2, and -3 were not found to block proteolytic activity of ADAM 12, hence a physiological inhibitor of ADAM 12 protease in the extracellular environment remains to be identified.  相似文献   

12.
ADAM12 belongs to the transmembrane metalloprotease ADAM ("a disintegrin and metalloprotease") family. ADAM12 has been implicated in muscle cell differentiation and fusion, but its precise function remains unknown. Here, we show that ADAM12 is dramatically up-regulated in regenerated, newly formed fibers in vivo. In C2C12 cells, ADAM12 is expressed at low levels in undifferentiated myoblasts and is transiently up-regulated at the onset of differentiation when myoblasts fuse into multinucleated myotubes, whereas other ADAMs, such as ADAMs 9, 10, 15, 17, and 19, are expressed at all stages of differentiation. Using the yeast two-hybrid screen, we found that the muscle-specific alpha-actinin-2 strongly binds to the cytoplasmic tail of ADAM12. In vitro binding assays with GST fusion proteins confirmed the specific interaction. The major binding site for alpha-actinin-2 was mapped to a short sequence in the membrane-proximal region of ADAM12 cytoplasmic tail; a second binding site was identified in the membrane-distal region. Co-immunoprecipitation experiments confirm the in vivo association of ADAM12 cytoplasmic domain with alpha-actinin-2. Overexpression of the entire cytosolic ADAM12 tail acted in a dominant negative fashion by inhibiting fusion of C2C12 cells, whereas expression of a cytosolic ADAM12 lacking the major alpha-actinin-2 binding site had no effect on cell fusion. Our results suggest that interaction of ADAM12 with alpha-actinin-2 is important for ADAM12 function.  相似文献   

13.
The ADAM (a disintegrin and metalloprotease) protein family uniquely exhibits both catalytic and adhesive properties. In the well-defined process of ectodomain shedding, ADAMs transform latent, cell-bound substrates into soluble, biologically active derivatives to regulate a spectrum of normal and pathological processes. In contrast, the integrin ligand properties of ADAMs are not fully understood. Emerging models posit that ADAM–integrin interactions regulate shedding activity by localizing or sequestering the ADAM sheddase. Interestingly, 8 of the 21 human ADAMs are predicted to be catalytically inactive. Unlike their catalytically active counterparts, integrin recognition of these “dead” enzymes has not been largely reported. The present study delineates the integrin ligand properties of a group of non-catalytic ADAMs. Here we report that human ADAM11, ADAM23, and ADAM29 selectively support integrin α4-dependent cell adhesion. This is the first demonstration that the disintegrin-like domains of multiple catalytically inactive ADAMs are ligands for a select subset of integrin receptors that also recognize catalytically active ADAMs.  相似文献   

14.
Christian LM 《Fly》2012,6(1):30-34
Notch signaling is integral to a large number of developmental and homeostasis events, and either gain or loss of Notch signaling results in a wide range of defects. Notch must be processed by several proteases, including a member of the ADAM (a disintegrin and metalloprotease) family to mediate downstream signaling. Until recently, interactions of Notch with specific ADAMs in different contexts were unclear. ADAM10 is now known to be specifically essential for development and homeostasis of mouse epidermis and cardiovascular structures, and ADAM17 may not be able to fully replace ADAM10 in these contexts. However, Notch from T-cell acute lymphoblastic leukemia (T-ALL) patients can be cleaved by both ADAMs 10 and 17. Studies have revealed that ADAM10 is necessary for Notch processing when Notch is activated by a ligand, while ADAM17 is the major protease for processing Notch that is activated independently of ligand in both flies and mammals.  相似文献   

15.
Adam33 is a putative asthma susceptibility gene encoding for a membrane-anchored metalloprotease belonging to the ADAM family. The ADAMs (a disintegrin and metalloprotease) are a family of glycoproteins implicated in cell-cell interactions, cell fusion, and cell signaling. We have determined the crystal structure of the Adam33 catalytic domain in complex with the inhibitor marimastat and the inhibitor-free form. The structures reveal the polypeptide fold and active site environment resembling that of other metalloproteases. The substrate-binding site contains unique features that allow the structure-based design of specific inhibitors of this enzyme.  相似文献   

16.
The ADAM family     
《Fly》2013,7(1):30-34
Notch signaling is integral to a large number of developmental and homeostasis events, and either gain or loss of Notch signaling results in a wide range of defects. Notch must be processed by several proteases, including a member of the ADAM (a disintegrin and metalloprotease) family to mediate downstream signaling. Until recently, interactions of Notch with specific ADAMs in different contexts were unclear. ADAM10 is now known to be specifically essential for development and homeostasis of mouse epidermis and cardiovascular structures, and ADAM17 may not be able to fully replace ADAM10 in these contexts. However, Notch from T-cell acute lymphoblastic leukemia (T-ALL) patients can be cleaved by both ADAMs 10 and 17. Studies have revealed that ADAM10 is necessary for Notch processing when Notch is activated by a ligand, while ADAM17 is the major protease for processing Notch that is activated independently of ligand in both flies and mammals.  相似文献   

17.
Proenzyme maturation is a general mechanism to control the activation of enzymes. Catalytically active members of the A Disintegrin And Metalloprotease (ADAM) family of membrane-anchored metalloproteases are synthesized as proenzymes, in which the latency is maintained by their autoinhibitory pro-domains. A proteolytic processing then transforms the proenzyme into a catalytically active form. The removal of the pro-domain of ADAMs is currently thought to depend on processing at a canonical consensus site for the proprotein convertase Furin (RXXR) between the pro- and the catalytic domain. Here, we demonstrate that this previously described canonical site is a secondary cleavage site to a prerequisite cleavage in a newly characterized upstream PC site embedded within the pro-domain sequence. The novel upstream regulatory site is important for the maturation of several ADAM proenzymes. Mutations in the upstream regulatory site of ADAM17, ADAM10, and ADAM9 do not prevent pro-domain processing between the pro- and metalloprotease domain, but nevertheless, cause significantly reduced catalytic activity. Thus, our results have uncovered a novel functionally relevant PC processing site in the N-terminal part of the pro-domain that is important for the activation of these ADAMs. These results suggest that the novel PC site is part of a general mechanism underlying proenzyme maturation of ADAMs that is independent of processing at the previously identified canonical Furin cleavage site.  相似文献   

18.
Amyloid-beta (Abeta) peptide, the principal component of senile plaques in the brains of patients with Alzheimer's disease, is derived from proteolytic cleavage of amyloid precursor protein (APP) by beta- and gamma-secretases. Alternative cleavage of APP by alpha-secretase occurs within the Abeta domain and precludes generation of Abeta peptide. Three members of the ADAM (a disintegrin and metalloprotease) family of proteases, ADAM9, 10 and 17, are the main candidates for alpha-secretases. However, the mechanism that regulates alpha-secretase activity remains unclear. We have recently demonstrated that nardilysin (EC 3.4.24.61, N-arginine dibasic convertase; NRDc) enhances ectodomain shedding of heparin-binding epidermal growth factor-like growth factor through activation of ADAM17. In this study, we show that NRDc enhances the alpha-secretase activity of ADAMs, which results in a decrease in the amount of Abeta generated. When expressed with ADAMs in cells, NRDc dramatically increased the secretion of alpha-secretase-cleaved soluble APP and reduced the amount of Abeta peptide generated. A peptide cleavage assay in vitro also showed that recombinant NRDc enhances ADAM17-induced cleavage of the peptide substrate corresponding to the alpha-secretase cleavage site of APP. A reduction of endogenous NRDc by RNA interference was accompanied by a decrease in the cleavage by alpha-secretase of APP and increase in the amount of Abeta generated. Notably, NRDc is clearly expressed in cortical neurons in human brain. Our results indicate that NRDc is involved in the metabolism of APP through regulation of the alpha-secretase activity of ADAMs, which may be a novel target for the treatment of Alzheimer's disease.  相似文献   

19.
Members of the ADAM (a disintegrin and metalloprotease) family are type I transmembrane proteins involved in biological processes of proteolysis, cell adhesion, cell–matrix interaction, as well as in the intracellular signaling transduction. In the present study, expression patterns of seven members of the ADAM family were investigated at the early stages of the developing cochlea by in situ hybridization. The results show that each individual ADAM is expressed and regulated in the early developing cochlea. ADAM9, ADAM10, ADAM17, and ADAM23 are initially and widely expressed in the otic vesicle at embryonic day 2.5 (E2.5) and in the differential elements of the cochlear duct at E9, while ADAM12 is expressed in acoustic ganglion cells at E7. ADAM22 is detectable in cochlear ganglion cells as early as from E4 and in the basilar papilla from E7. Therefore, the present study extends our previous results and suggests that ADAMs also play a role in the early cochlear development.  相似文献   

20.
ADAM (a disintegrin and metalloprotease) genes have been identified in various tissues and species, and recently associated with several important human diseases such as tumor and asthma. Although various biological processes have been known for the ADAM family in different species including fertilization, neurogenesis, infection and inflammation, little is known about its detailed phylogenetic and molecular evolutionary history. In this study, the ADAMs of Xenopus (Silurana) tropicalis, Mus musculus, Rattus norvegicus, and Homo sapiens were collected and analyzed by using the Bayesian analysis and gene synteny analysis to establish a comprehensive phylogenetic relationship and evolutionary drive of this gene family. It was found that there were more ADAMs in the two rodents than in the amphibian, suggesting an expansion of the ADAM gene family during the early evolution of mammals. All ADAMs from this expansion were retained in both the rodents, but other duplication events occurred subsequently in the two rodents, respectively, leading to the classification of rodent ADAMs as classes I, II and III. Moreover, these duplicated ADAM genes in the rodents were found to be driven by positive selection, which might be the major force to retain them in the genome. Importantly, it was also found that orthologs of ADAM3 and 5 have been lost in humans. These results not only provide valuable information of the evolution of ADAM genes, but may also help in understanding the role of ADAM genes in the pathobiology of relevant diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号