首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To understand the genetic basis of pathways involved in the control of breathing, a large scale, high-throughput study using chromosomal substitution strains of rats is underway. Eight new consomic rat stains (SS-2(BN), SS-4(BN), SS-6(BN), SS-7(BN), SS-8(BN), SS-11(BN), SS-12(BN), SS-14(BN), SS-Y(BN)), containing one homozygous BN/NHsdMcwi (BN) chromosome on a background of SS/JrHsdMcwi (SS), were created by PhysGen (http://pga.mcw.edu) Program for Genomic Applications. Male and female rats were studied using standard plethysmography under control conditions and during acute hypoxia (inspired oxygen fraction = 0.12) and hypercapnia (inspired CO(2) fraction = 0.07). The rats were also studied during treadmill exercise. Both male and female BN rats had a significantly lower ventilatory response during 7% CO(2) compared with SS rats of the same gender. SS-6(BN) female rats had a significantly reduced ventilatory response, similar to BN rats due primarily to a reduced tidal volume. Male SS-6(BN) rats had a significantly reduced tidal volume response to hypercapnia but a slightly increased frequency response during hypercapnia. Gene(s) on the Y chromosome may play a role in this increased frequency response in the male rats because the SS-Y(BN) hypercapnic ventilatory response involves a significantly increased frequency response. Several chromosomal substitutions slightly altered the ventilatory responses to hypoxia and exercise. However, genes on chromosomes 6 and Y of those studied are of primary importance in aspects of ventilatory control currently studied.  相似文献   

2.
Hypoxic ventilatory responses differ between rodent strains, suggesting a genetic contribution to interindividual variability. However, hypoxic ventilatory responses consist of multiple time-dependent mechanisms that can be observed in different respiratory motor outputs. We hypothesized that strain differences would exist in discrete time-dependent mechanisms of the hypoxic response and, furthermore, that there may be differences between hypoglossal and phrenic nerve responses to hypoxia. Hypoglossal and phrenic nerve responses were assessed during and after a 5-min hypoxic episode in anesthetized, vagotomized, and ventilated rats from four inbred strains: Brown Norway (BN), Fischer 344 (FS), Lewis (LW), and Piebald-viral-Glaxo (PVG). During baseline, burst frequency was higher in PVG than LW rats (P < 0.05), phrenic burst amplitude was higher in PVG vs. other strains (P < 0.05), and hypoglossal burst amplitude was higher in PVG and BN vs. FS and LW (P < 0.05). During hypoxia, burst frequency did not change in BN or LW rats, but it increased in PVG and FS rats. The phrenic amplitude response was smallest in PVG vs. other strains (P < 0.05), and the hypoglossal response was similar among strains. Short-term potentiation posthypoxia was slowest in FS and fastest in LW rats (P < 0.05). Posthypoxia frequency decline was absent in PVG, but it was observed in all other strains. Augmented breaths were observed during hypoxia in FS rats only. Thus genetic differences exist in the time domains of the hypoxic response, and these are differentially expressed in hypoglossal and phrenic nerves. Furthermore, genetic diversity observed in hypoxic ventilatory responses in unanesthetized rats may arise from multiple neural mechanisms.  相似文献   

3.
Nitric oxide (NO) is a regulating factor in respiration. The question was whether NO synthase (NOS) blockade would affect posthypoxic ventilatory behavior similarly in two rat strains with known differences in steady-state hypoxic and hypercapnic responses and in posthypoxic ventilatory behavior. Ventilatory behavior [respiratory frequency (f) and minute ventilation (VE)] was measured by body plethysmography on unanesthetized, unrestrained adult male Sprague-Dawley (SD; n = 8) and Brown Norway rats (BN; n = 8) at baseline and 1 min after rapid transition to 100% O(2) after 5 min of isocapnic hypoxia (10% O(2)-3% CO(2)-balance N(2)). Testing was performed 30 min after intraperitoneal injection of either saline (vehicle) or 100 mg/kg of N(G)-nitro-L-arginine methyl ester (L-NAME). Resting f and VE increased after L-NAME in both strains, more markedly in SD compared with BN (77 vs. 47% for f, and 42 vs. 16% for VE, respectively; P < 0.05). With vehicle, posthypoxic f and VE decline (Dejours phenomenon) was present only in BN and was absent in SD. With L-NAME, the Dejours phenomena were still present in BN but also were apparent in SD (f: 95.3 vs. 134.4 beats/min at baseline; VE: 66.3 vs. 88.8 ml/min at baseline; P < 0.05). Thus NOS blockade results in a strain-specific alteration in resting ventilation and uncovers the Dejours phenomenon in the SD strain.  相似文献   

4.
To investigate the contribution of the peripheral chemoreceptors to the susceptibility to posthyperventilation apnea, we evaluated the time course and magnitude of hypocapnia required to produce apnea at different levels of peripheral chemoreceptor activation produced by exposure to three levels of inspired P(O2). We measured the apneic threshold and the apnea latency in nine normal sleeping subjects in response to augmented breaths during normoxia (room air), hypoxia (arterial O2 saturation = 78-80%), and hyperoxia (inspired O2 fraction = 50-52%). Pressure support mechanical ventilation in the assist mode was employed to introduce a single or multiple numbers of consecutive, sigh-like breaths to cause apnea. The apnea latency was measured from the end inspiration of the first augmented breath to the onset of apnea. It was 12.2 +/- 1.1 s during normoxia, which was similar to the lung-to-ear circulation delay of 11.7 s in these subjects. Hypoxia shortened the apnea latency (6.3 +/- 0.8 s; P < 0.05), whereas hyperoxia prolonged it (71.5 +/- 13.8 s; P < 0.01). The apneic threshold end-tidal P(CO2) (Pet(CO2)) was defined as the Pet(CO2)) at the onset of apnea. During hypoxia, the apneic threshold Pet(CO2) was higher (38.9 +/- 1.7 Torr; P < 0.01) compared with normoxia (35.8 +/- 1.1; Torr); during hyperoxia, it was lower (33.0 +/- 0.8 Torr; P < 0.05). Furthermore, the difference between the eupneic Pet(CO2) and apneic threshold Pet(CO2) was smaller during hypoxia (3.0 +/- 1.0 Torr P < 001) and greater during hyperoxia (10.6 +/- 0.8 Torr; P < 0.05) compared with normoxia (8.0 +/- 0.6 Torr). Correspondingly, the hypocapnic ventilatory response to CO2 below the eupneic Pet(CO2) was increased by hypoxia (3.44 +/- 0.63 l.min(-1).Torr(-1); P < 0.05) and decreased by hyperoxia (0.63 +/- 0.04 l.min(-1).Torr(-1); P < 0.05) compared with normoxia (0.79 +/- 0.05 l.min(-1).Torr(-1)). These findings indicate that posthyperventilation apnea is initiated by the peripheral chemoreceptors and that the varying susceptibility to apnea during hypoxia vs. hyperoxia is influenced by the relative activity of these receptors.  相似文献   

5.
The present study examined the effect of transfer of portions of chromosome 1 that includes (FHH.1(BN) AR(+) strain) or excludes (control FHH.1(BN) AR(-) strain) a 4.3-Mb region from the Brown Norway (BN) rat that restores the autoregulation (AR) of renal blood flow (RBF) on the development of hypertension and renal injury in congenic strains of Fawn Hooded Hypertensive (FHH) rats. FHH and control AR(-) rats exhibited poor autoregulation of RBF, and glomerular capillary pressure (Pgc) rose by 19 ± 2 mmHg in FHH rats when renal perfusion pressure (RPP) was increased from 100 to 150 mmHg. In contrast, RBF was well autoregulated in the AR(+) strain, and Pgc only increased by 3 ± 1 mmHg when RPP was increased over this range. Baseline mean arterial pressure (MAP) at 12 wk of age was similar in all strains and averaged 122 mmHg. MAP increased significantly in FHH rats and was significantly higher by 12 mmHg in 21-wk-old FHH rats than in the FHH.1(BN) congenic strains. Protein excretion rose from 5 ± 1 to 397 ± 29 mg/day in 6- vs. 21-wk-old FHH rats. In contrast, protein excretion only increased to 139 ± 21 mg/day in the control AR(-) strain, and it did not increase significantly in the AR(+) strain. Glomerular permeability to albumin was similar in all strains at 6 wk of age. It increased significantly in 9-wk-old FHH and control AR(-) rats, but not in the AR(+) strain. The levels of matrix metalloproteinase (MMP)-2 and transforming growth factor (TGF)-β2 protein were significantly higher in the renal cortex of 9-wk-old FHH rats compared with the levels seen in the AR(+) strain. These data indicate that transfer of a 4.3-Mb region of BN chromosome 1 into the FHH genetic background improves autoregulation of RBF, normalizes Pgc, and slows the progression of renal disease.  相似文献   

6.
Cerebral arterial myogenic and autoregulatory responses are impaired in Fawn Hooded hypertensive (FHH) rats. Cerebral autoregulatory responses are restored in the congenic rat strain in which a segment of chromosome 1 from the Brown Norway (BN) rat was transferred into the FHH genetic background (FHH.1BN). The impact of this region on cerebral arterial dilator responses remains unknown. Aminopeptidase is a gene that was transferred into the FHH genetic background to generate the FHH.1BN rats and is responsible for degradation of the vasodilator bradykinin. Thus, we hypothesized that FHH rats will have increased aminopeptidase P levels with impaired cerebral arterial responses to bradykinin compared to BN and FHH.1BN rats. We demonstrated higher cerebral arterial expression of aminopeptidase P in FHH compared to BN rats. Accordingly, we demonstrated markedly impaired cerebral arterial dilation to bradykinin in FHH compared to BN rats. Interestingly, aminopeptidase P expression was lower in FHH.1BN compared to FHH rats. Decreased aminopeptidase P levels in FHH.1BN rats were associated with increased cerebral arterial bradykinin-induced dilator responses. Aminopeptidase P inhibition by apstatin improved cerebral arterial bradykinin dilator responses in FHH rats to a level similar to FHH.1BN rats. Unlike bradykinin, cerebral arterial responses to acetylcholine were similar between FHH and FHH.1BN groups. These findings indicate decreased bradykinin bioavailability contributes to impaired cerebral arterial dilation in FHH rats. Overall, these data indicate an important role of aminopeptidase P in the impaired cerebral arterial function in FHH rat.  相似文献   

7.
Ventilatory sensitivity to CO(2) in awake adult Brown Norway (BN) rats is 50-75% lower than in adult Sprague-Dawley (SD) and salt-sensitive Dahl S (SS) rats. The purpose of the present study was to test the hypothesis that this difference would be apparent during the development of CO(2) sensitivity. Four litters of each strain were divided into four groups such that rats were exposed to 7% inspired CO(2) for 5 min in a plethysmograph every third day from postnatal day (P) 0 to P21 and again on P29 and P30. From P0 to P14, CO(2) exposure increased pulmonary ventilation (Ve) by 25-50% in the BN and SD strains and between 25 to over 200% in the SS strain. In all strains beginning around P15, the response to CO(2) increased progressively reaching a peak at P19-21 when Ve during hypercapnia was 175-225% above eucapnia. There were minimal changes in CO(2) sensitivity between P21 and P30, and at both ages there were minimal between-strain differences. At P30, the response to CO(2) in the SS and SD strains was near the adult response, but the response in the BN rats was 100% greater at P30 than in adults. We conclude that 1) CO(2)-sensing mechanisms, and/or mechanisms downstream from the chemoreceptors, change dramatically at the age in rats when other physiological systems are also maturing ( approximately P15), and 2) there is a high degree of age-dependent plasticity in CO(2) sensitivity in rats, which differs between strains.  相似文献   

8.
The genetic basis for differences in the regulation of breathing is certainly multigenic. The present paper builds on a well-established genetic model of differences in breathing using inbred mouse strains. We tested the interactive effects of hypoxia and hypercapnia in two strains of mice known for variation in hypercapnic ventilatory sensitivity (HCVS); i.e., high gain in C57BL/6J (B6) and low gain in C3H/HeJ (C3) mice. Strain differences in the magnitude and pattern of breathing were measured during normoxia [inspired O(2) fraction (Fi(O(2))) = 0.21] and hypoxia (Fi(O(2)) = 0.10) with mild or severe hypercapnia (inspired CO(2) fraction = 0.03 or 0.08) using whole body plethysmography. At each level of Fi(O(2)), the change in minute ventilation (Ve) from 3 to 8% CO(2) was computed, and the strain differences between B6 and C3 mice in HCVS were maintained. Inheritance patterns showed potentiation effects of hypoxia on HCVS (i.e., CO(2) potentiation) unique to the B6C3F1/J offspring of B6 and C3 progenitors; i.e., the change in Ve from 3 to 8% CO(2) was significantly greater (P < 0.01) with hypoxia relative to normoxia in F1 mice. Linkage analysis using intercross progeny (F2; n = 52) of B6 and C3 progenitors revealed two significant quantitative trait loci associated with variable HCVS phenotypes. After normalization for body weight, variation in Ve responses during 8% CO(2) in hypoxia was linked to mouse chromosome 1 (logarithm of the odds ratio = 4.4) in an interval between 68 and 89 cM (i.e., between D1Mit14 and D1Mit291). The second quantitative trait loci linked differences in CO(2) potentiation to mouse chromosome 5 (logarithm of the odds ratio = 3.7) in a region between 7 and 29 cM (i.e., centered at D5Mit66). In conclusion, these results support the hypothesis that a minimum of two significant genes modulate the interactive effects of hypoxia and hypercapnia in this genetic model.  相似文献   

9.
We hypothesized that, in male rats, 10% fructose in drinking water would depress ventilatory responsiveness to acute hypoxia (10% O2 in N2) and hypercapnia (5% CO2 in O2) that would be depressed further by exposure to intermittent hypoxia. Minute ventilation (Ve) in air and in response to acute hypoxia and hypercapnia was evaluated in 10 rats before fructose feeding (FF), during 6 wk of FF, and after FF was removed for 2 wk. During FF, five rats were exposed to intermittent air and five to intermittent hypoxia for 13 days. Six rats given tap water acted as control and were exposed to intermittent air and subsequently intermittent hypoxia. In FF rats, plasma insulin levels increased threefold in the rats exposed to intermittent hypoxia and during washout returned to levels observed in rats exposed to intermittent air. During FF, ventilatory responsiveness to acute hypoxia was depressed because of decreased tidal volume (Vt) responsiveness. During washout, Ve decreased as a result of decreased Vt and frequency of breathing, and the ventilatory responsiveness to hypoxia in intermittent hypoxia rats did not recover. In all rats, the ventilatory responses to hypercapnia were decreased during FF and recovered after washout because of an increased Vt responsiveness. In the control group, hypoxic responsiveness was not depressed after intermittent hypoxia and was augmented after washout. Thus FF attenuated the ventilatory responsiveness of conscious rats to hypoxia and hypercapnia. Intermittent hypoxia interacted with FF to increase insulin levels and depress ventilatory responses to acute hypoxia that remained depressed during washout.  相似文献   

10.
During ventilatory acclimatization to hypoxia (VAH), time-dependent increases in ventilation lower Pco(2) levels, and this persists on return to normoxia. We hypothesized that plasticity in the caudal nucleus tractus solitarii (NTS) contributes to VAH, as the NTS receives the first synapse from the carotid body chemoreceptor afferents and also contains CO(2)-sensitive neurons. We lesioned cells in the caudal NTS containing the neurokinin-1 receptor by microinjecting the neurotoxin saporin conjugated to substance P and measured ventilatory responses in awake, unrestrained rats 18 days later. Lesions did not affect hypoxic or hypercapnic ventilatory responses in normoxic control rats, in contrast to published reports for similar lesions in other central chemosensitive areas. Also, lesions did not affect the hypercapnic ventilatory response in chronically hypoxic rats (inspired Po(2) = 90 Torr for 7 days). These results suggest functional differences between central chemoreceptor sites. However, lesions significantly increased ventilation in normoxia or acute hypoxia in chronically hypoxic rats. Hence, chronic hypoxia increases an inhibitory effect of neurokinin-1 receptor neurons in the NTS on ventilatory drive, indicating that these neurons contribute to plasticity during chronic hypoxia, although such plasticity does not explain VAH.  相似文献   

11.
The pattern of breathing during sleep could be a heritable trait. Our intent was to test this genetic hypothesis in inbred mouse strains known to vary in breathing patterns during wakefulness (Han F, Subramanian S, Dick TE, Dreshaj IA, and Strohl KP. J Appl Physiol 91: 1962-1970, 2001; Han F, Subramanian S, Price ER, Nadeau J, and Strohl KP, J Appl Physiol 92: 1133-1140, 2002) to determine whether such differences persisted into non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Measures assessed in C57BL/6J (B6; Jackson Laboratory) and two A/J strains (A/J Jackson and A/J Harlan) included ventilatory behavior [respiratory frequency, tidal volume, minute ventilation, mean inspiratory flow, and duty cycle (inspiratory time/total breath time)], and metabolism, as performed by the plethsmography method with animals instrumented to record EEG, electromyogram, and heart rate. In all strains, there were reductions in minute ventilation and CO2 production in NREM compared with wakefulness (P < 0.001) and a further reduction in REM compared with NREM (P < 0.001), but no state-by-stain interactions. Frequency showed strain (P < 0.0001) and state-by-strain interactions (P < 0.0001). The A/J Jackson did not change frequency in REM vs. NREM [141 +/- 15 (SD) vs. 139 +/- 14 breaths/min; P = 0.92], whereas, in the A/J Harlan, it was lower in REM vs. NREM (168 +/- 14 vs. 179 +/- 12 breaths/min; P = 0.0005), and, in the B6, it was higher in REM vs. NREM (209 +/- 12 vs. 188 +/- 13 breaths/min; P < 0.0001). Heart rate exhibited strain (P = 0.003), state (P < 0.0001), and state-by-strain interaction (P = 0.017) and was lower in NREM sleep in the A/J Harlan (P = 0.035) and B6 (P < 0.0001). We conclude that genetic background affects features of breathing during NREM and REM sleep, despite broad changes in state, metabolism, and heart rate.  相似文献   

12.
Patients with chronic bronchial asthma show a depressed ventilatory response to hypoxia (DVH), but the underlying mechanism remains unclear. We tested whether DVH existed in ovalbumin (Ova)-treated guinea pigs, an established animal model of asthma. Twelve guinea pigs were exposed to Ova (1% in saline) or saline aerosol (control) for 5 min, 5 days/wk, for 2 wk. After completing aerosol exposure, the animals were anesthetized and exposed to systemic hypoxia. Ova treatment had no effects on animal body weight, baseline cardiorespiratory variables, or arterial blood O2 and CO2 tensions, but it attenuated the ventilatory response to hypoxia (10 breaths of pure N2) by 65% (P < 0.05). When the animals were subjected to intracarotid injections of sodium cyanide (20 microg) and doxapram (2 mg) to selectively stimulate carotid chemoreceptors, the ventilatory responses were reduced by 50% (P < 0.05) and 74% (P < 0.05), respectively. In contrast, Ova exposure failed to affect the ventilatory response to CO2 (7% CO2-21% O2-balance N2 for 5 min; P > 0.05). Furthermore, the apneic response evoked by stimulating bronchopulmonary C fibers (PCFs) with right atrial injection of capsaicin (5 microg) was markedly increased in the Ova-sensitized group (5.02 +/- 1.56 s), compared with the control group (1.82 +/- 0.45 s; P < 0.05). These results suggest that Ova sensitization induces a DVH in guinea pigs, which probably results from an attenuation of the carotid chemoreceptor-mediated ventilatory excitation and an enhancement of the PCF-mediated ventilatory inhibition.  相似文献   

13.
In a previous work, we showed that the adult cat demonstrates a ventilatory decline during sustained hypoxia (the "roll off" phenomenon) and that the mechanism responsible for this secondary decrease in ventilation lies within the central nervous system (J. Appl. Physiol. 63: 1658-1664, 1987). In this study, we sought to determine whether central dopaminergic mechanisms could have a role in the roll off. We studied the effects of haloperidol, a peripheral and centrally acting dopamine receptor antagonist, on the ventilatory response to sustained isocapnic hypoxia (end-tidal PO2 40-50 Torr, 20-25 min) in awake cats. In vehicle control cats (n = 5), sustained hypoxia elicited a biphasic respiratory response, during which an initial ventilatory stimulation is followed by a 24 +/- 6% (P less than 0.01) reduction. In contrast, in haloperidol- (0.1 mg/kg) treated cats (n = 5) the ventilatory roll off was virtually abolished (-1 +/- 1%; P = NS). We also measured ventilatory, carotid sinus nerve (CSN) and phrenic nerve (PhN) responses to sustained isocapnic hypoxia in anesthetized animals (n = 6) to explore the influence of haloperidol on peripheral and central response during the roll off. Control responses to hypoxia showed an initial increase in ventilation, PhN, and CSN activity, followed by a subsequent decline in ventilation and PhN activity of 17 +/- 3 and 17 +/- 5%, respectively (P less than 0.05). In contrast, CSN activity remained unchanged during the roll off. Administration of haloperidol (1 mg/kg) reduced the initial increment in ventilation, while the initial increase in CSN activity was augmented.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
M Fatemian  P A Robbins 《Journal of applied physiology》2001,90(4):1607-14; discussion 1606
The ventilatory sensitivity to CO2, in hyperoxia, is increased after an 8-h exposure to hypoxia. The purpose of the present study was to determine whether this increase arises through an increase in peripheral or central chemosensitivity. Ten healthy volunteers each underwent 8-h exposures to 1) isocapnic hypoxia, with end-tidal PO2 (PET(O2)) = 55 Torr and end-tidal PCO2 (PET(CO2)) = eucapnia; 2) poikilocapnic hypoxia, with PET(O2) = 55 Torr and PET(CO2) = uncontrolled; and 3) air-breathing control. The ventilatory response to CO2 was measured before and after each exposure with the use of a multifrequency binary sequence with two levels of PET(CO2): 1.5 and 10 Torr above the normal resting value. PET(O2) was held at 250 Torr. The peripheral (Gp) and the central (Gc) sensitivities were calculated by fitting the ventilatory data to a two-compartment model. There were increases in combined Gp + Gc (26%, P < 0.05), Gp (33%, P < 0.01), and Gc (23%, P = not significant) after exposure to hypoxia. There were no significant differences between isocapnic and poikilocapnic hypoxia. We conclude that sustained hypoxia induces a significant increase in chemosensitivity to CO2 within the peripheral chemoreflex.  相似文献   

15.
Ventilatory acclimatization to hypoxia (VAH) consists of a progressive increase in ventilation and decrease in end-tidal Pco(2) (Pet(CO(2))). Underlying VAH, there are also increases in the acute ventilatory sensitivities to hypoxia and hypercapnia. To investigate whether these changes could be induced with very mild alterations in end-tidal Po(2) (Pet(O(2))), two 5-day exposures were compared: 1) mild hypoxia, with Pet(O(2)) held at 10 Torr below the subject's normal value; and 2) mild hyperoxia, with Pet(O(2)) held at 10 Torr above the subject's normal value. During both exposures, Pet(CO(2)) was uncontrolled. For each exposure, the entire protocol required measurements on 13 consecutive mornings: 3 mornings before the hypoxic or hyperoxic exposure, 5 mornings during the exposure, and 5 mornings postexposure. After the subjects breathed room air for at least 30 min, measurements were made of Pet(CO(2)), Pet(O(2)), and the acute ventilatory sensitivities to hypoxia and hypercapnia. Ten subjects completed both protocols. There was a significant increase in the acute ventilatory sensitivity to hypoxia (Gp) after exposure to mild hypoxia, and a significant decrease in Gp after exposure to mild hyperoxia (P < 0.05, repeated-measures ANOVA). No other variables were affected by mild hypoxia or hyperoxia. The results, when combined with those from other studies, suggest that Gp varies linearly with Pet(O(2)), with a sensitivity of 3.5%/Torr (SE 1.0). This sensitivity is sufficient to suggest that Gp is continuously varying in response to normal physiological fluctuations in Pet(O(2)). We conclude that at least some of the mechanisms underlying VAH may have a physiological role at sea level.  相似文献   

16.
Anuran amphibians are known to exhibit an intermittent pattern of pulmonary ventilation and to exhibit an increased ventilatory response to hypoxia and hypercarbia. However, only a few species have been studied to date. The aquatic frog Pipa carvalhoi inhabits lakes, ponds and marshes that are rich in nutrients but low in O(2). There are no studies of the respiratory pattern of this species and its ventilation during hypoxia or hypercarbia. Accordingly, the aim of the present study was to characterize the breathing pattern and the ventilatory response to aquatic and aerial hypoxia and hypercarbia in this species. With this purpose, pulmonary ventilation (V(I)) was directly measured by the pneumotachograph method during normocapnic normoxia to determine the basal respiratory pattern and during aerial and aquatic hypercarbia (5% CO(2)) and hypoxia (5% O(2)). Our data demonstrate that P. carvalhoi exhibits a periodic breathing pattern composed of single events (single breaths) of pulmonary ventilation separated by periods of apnea. The animals had an enhanced V(I) during aerial hypoxia, but not during aquatic hypoxia. This increase was strictly the result of an increase in the breathing frequency. A pronounced increase in V(I) was observed if the animals were simultaneously exposed to aerial and aquatic hypercarbia, whereas small or no ventilatory responses were observed during separately administered aerial or aquatic hypercarbia. P. carvalhoi primarily inhabits an aquatic environment. Nevertheless, it does not respond to low O(2) levels in water, although it does so in air. The observed ventilatory responses to hypercarbia may indicate that this species is similar to other anurans in possessing central chemoreceptors.  相似文献   

17.
This study determined whether "living high-training low" (LHTL)-simulated altitude exposure increased the hypoxic ventilatory response (HVR) in well-trained endurance athletes. Thirty-three cyclists/triathletes were divided into three groups: 20 consecutive nights of hypoxic exposure (LHTLc, n = 12), 20 nights of intermittent hypoxic exposure (four 5-night blocks of hypoxia, each interspersed with 2 nights of normoxia, LHTLi, n = 10), or control (Con, n = 11). LHTLc and LHTLi slept 8-10 h/day overnight in normobaric hypoxia (approximately 2,650 m); Con slept under ambient conditions (600 m). Resting, isocapnic HVR (DeltaVE/DeltaSp(O(2)), where VE is minute ventilation and Sp(O(2)) is blood O(2) saturation) was measured in normoxia before hypoxia (Pre), after 1, 3, 10, and 15 nights of exposure (N1, N3, N10, and N15, respectively), and 2 nights after the exposure night 20 (Post). Before each HVR test, end-tidal PCO(2) (PET(CO(2))) and VE were measured during room air breathing at rest. HVR (l. min(-1). %(-1)) was higher (P < 0.05) in LHTLc than in Con at N1 (0.56 +/- 0.32 vs. 0.28 +/- 0.16), N3 (0.69 +/- 0.30 vs. 0.36 +/- 0.24), N10 (0.79 +/- 0.36 vs. 0.34 +/- 0.14), N15 (1.00 +/- 0.38 vs. 0.36 +/- 0.23), and Post (0.79 +/- 0.37 vs. 0.36 +/- 0.26). HVR at N15 was higher (P < 0.05) in LHTLi (0.67 +/- 0.33) than in Con and in LHTLc than in LHTLi. PET(CO(2)) was depressed in LHTLc and LHTLi compared with Con at all points after hypoxia (P < 0.05). No significant differences were observed for VE at any point. We conclude that LHTL increases HVR in endurance athletes in a time-dependent manner and decreases PET(CO(2)) in normoxia, without change in VE. Thus endurance athletes sleeping in mild hypoxia may experience changes to the respiratory control system.  相似文献   

18.
The relationship between CO2 and ventilatory response to sustained hypoxia was examined in nine normal young adults. At three different levels of end-tidal partial pressure of CO2 (PETCO2, approximately 35, 41.8, and 44.3 Torr), isocapnic hypoxia was induced for 25 min and after 7 min of breathing 21% O2, isocapnic hypoxia was reinduced for 5 min. Regardless of PETCO2 levels, the ventilatory response to sustained hypoxia was biphasic, characterized by an initial increase (acute hypoxic response, AHR), followed by a decline (hypoxic depression). The biphasic response pattern was due to alteration in tidal volume, which at all CO2 levels decreased significantly (P less than 0.05), without a significant change in breathing frequency. The magnitude of the hypoxic depression, independent of CO2, correlated significantly (r = 0.78, P less than 0.001) with the AHR, but not with the ventilatory response to CO2. The decline of minute ventilation was not significantly affected by PETCO2 [averaged 2.3 +/- 0.6, 3.8 +/- 1.3, and 4.5 +/- 2.2 (SE) 1/min for PETCO2 35, 41.8, and 44.3 Torr, respectively]. This decay was significant for PETCO2 35 and 41.8 Torr but not for 44.3 Torr. The second exposure to hypoxia failed to elicit the same AHR as the first exposure; at all CO2 levels the AHR was significantly greater (P less than 0.05) during the first hypoxic exposure than during the second. We conclude that hypoxia exhibits a long-lasting inhibitory effect on ventilation that is independent of CO2, at least in the range of PETCO2 studied, but is related to hypoxic ventilatory sensitivity.  相似文献   

19.
We recently reported that the myogenic responses of the renal afferent arteriole (Af-Art) and middle cerebral artery (MCA) and autoregulation of renal and cerebral blood flow (RBF and CBF) were impaired in Fawn Hooded hypertensive (FHH) rats and were restored in a FHH.1BN congenic strain in which a small segment of chromosome 1 from the Brown Norway (BN) containing 15 genes including dual-specificity protein phosphatase-5 (Dusp5) were transferred into the FHH genetic background. We identified 4 single nucleotide polymorphisms in the Dusp5 gene in FHH as compared with BN rats, two of which altered CpG sites and another that caused a G155R mutation. To determine whether Dusp5 contributes to the impaired myogenic response in FHH rats, we created a Dusp5 knockout (KO) rat in the FHH.1BN genetic background using a zinc-finger nuclease that introduced an 11 bp frame-shift deletion and a premature stop codon at AA121. The expression of Dusp5 was decreased and the levels of its substrates, phosphorylated ERK1/2 (p-ERK1/2), were enhanced in the KO rats. The diameter of the MCA decreased to a greater extent in Dusp5 KO rats than in FHH.1BN and FHH rats when the perfusion pressure was increased from 40 to 140 mmHg. CBF increased markedly in FHH rats when MAP was increased from 100 to 160 mmHg, and CBF was better autoregulated in the Dusp5 KO and FHH.1BN rats. The expression of Dusp5 was higher at the mRNA level but not at the protein level and the levels of p-ERK1/2 and p-PKC were lower in cerebral microvessels and brain tissue isolated from FHH than in FHH.1BN rats. These results indicate that Dusp5 modulates myogenic reactivity in the cerebral circulation and support the view that a mutation in Dusp5 may enhance Dusp5 activity and contribute to the impaired myogenic response in FHH rats.  相似文献   

20.
Prolonged exposure to hypoxia is accompanied by decreased hypoxic ventilatory response (HVR), but the relative importance of peripheral and central mechanisms of this hypoxic desensitization remain unclear. To determine whether the hypoxic sensitivity of peripheral chemoreceptors decreases during chronic hypoxia, we measured ventilatory and carotid sinus nerve (CSN) responses to isocapnic hypoxia in five cats exposed to simulated altitude of 5,500 m (barometric pressure 375 Torr) for 3-4 wk. Exposure to 3-4 wk of hypobaric hypoxia produced a decrease in HVR, measured as the shape parameter A in cats both awake (from 53.9 +/- 10.1 to 14.8 +/- 1.8; P less than 0.05) and anesthetized (from 50.2 +/- 8.2 to 8.5 +/- 1.8; P less than 0.05). Sustained hypoxic exposure decreased end-tidal CO2 tension (PETCO2, 33.3 +/- 1.2 to 28.1 +/- 1.3 Torr) during room-air breathing in awake cats. To determine whether hypocapnia contributed to the observed depression in HVR, we also measured eucapnic HVR (PETCO2 33.3 +/- 0.9 Torr) and found that HVR after hypoxic exposure remained lower than preexposed value (A = 17.4 +/- 4.2 vs. 53.9 +/- 10.1 in awake cats; P less than 0.05). A control group (n = 5) was selected for hypoxic ventilatory response matched to the baseline measurements of the experimental group. The decreased HVR after hypoxic exposure was associated with a parallel decrease in the carotid body response to hypoxia (A = 20.6 +/- 4.8) compared with that of control cats (A = 46.9 +/- 6.3; P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号