首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The function of bird song is closely linked to sexual selection through female choice and male–male competition, and thus variation in communication success is likely to have major fitness consequences for a singing male. A crucial constraint on signal transmission is imposed by background noise, which may include songs from other species. I investigated whether singing nightingales (Luscinia megarhynchos) avoid temporal overlap with the songs of other bird species in a playback experiment. I analysed the temporal song patterns of six males, each of which were exposed to songs of other species. The nightingales significantly avoided overlapping their songs with the playback songs, and started singing preferentially during the silent intervals between the heterospecific songs. This timing of song onset produced a greater variability in pause duration compared to the nightingales’ undisturbed solo singing. These findings suggest that birds adjust their song timing to avoid acoustic interference on short temporal scales, and thus are able to improve the efficiency of acoustic communication in complex sonic environments. Moreover, the results indicate that temporal song patterns can be affected by the songs of other species, and thus such influences should be taken into account when studying bird song in the field.  相似文献   

2.
Acoustic interactions are important for understanding intra‐ and interspecific communication in songbird communities from the viewpoint of soundscape ecology. It has been suggested that birds may divide up sound space to increase communication efficiency in such a manner that they tend to avoid overlap with other birds when they sing. We are interested in clarifying the dynamics underlying the process as an example of complex systems based on short‐term behavioral plasticity. However, it is very problematic to manually collect spatiotemporal patterns of acoustic events in natural habitats using data derived from a standard single‐channel recording of several species singing simultaneously. Our purpose here was to investigate fine‐scale spatiotemporal acoustic interactions of the great reed warbler. We surveyed spatial and temporal patterns of several vocalizing color‐banded great reed warblers (Acrocephalus arundinaceus) using an open‐source software for robot audition HARK (Honda Research Institute Japan Audition for Robots with Kyoto University) and three new 16‐channel, stand‐alone, and water‐resistant microphone arrays, named DACHO spread out in the bird's habitat. We first show that our system estimated the location of two color‐banded individuals’ song posts with mean error distance of 5.5 ± 4.5 m from the location of observed song posts. We then evaluated the temporal localization accuracy of the songs by comparing the duration of localized songs around the song posts with those annotated by human observers, with an accuracy score of average 0.89 for one bird that stayed at one song post. We further found significant temporal overlap avoidance and an asymmetric relationship between songs of the two singing individuals, using transfer entropy. We believe that our system and analytical approach contribute to a better understanding of fine‐scale acoustic interactions in time and space in bird communities.  相似文献   

3.
Despite numerous studies on the function of the avian dawn chorus, few studies have examined whether dawn singing may influence the singing of other species. Here, we built on our previous study which found male Brownish‐flanked Bush Warblers (Horornis fortipes) increase their dawn singing intensity after conspecific playback on the previous day. We reanalyzed those recordings to quantify the start of dawn singing in other nine sympatric songbird species. Ranking‐scaling analyses identified a distinctive sequential pattern of dawn singing among these bird species between the first and the second dawn chorus, and meta‐analysis showed a significant trend to singing earlier in the bird community accompanied by the increase in dawn singing intensity in Brownish‐flanked Bush Warbler. Species with songs most similar to that of the Brownish‐flanked Bush Warbler and species that were phylogenetically distantly related to the Brownish‐flanked Bush Warbler showed a greater shift in the onset of dawn singing. Our study is one of the few studies showing how bird song influences heterospecific singing, and this may influence the temporal organization of song activity in the community, and result in synchronization in singing activities among different species, such as singing in dawn and dusk chorus.  相似文献   

4.
Acoustic communication among birds plays an important role in attracting mates and defending territories. For the successful transmission of songs, individuals of different species often avoid singing at the same time to reduce acoustic interference from background noise and overlapping signals from heterospecifics. Such behavioural acoustic niche partitioning may occur especially among closely related species due to their ecological similarities. In this study, we recorded bird sounds in a subtropical forest in China in May–June 2019 and detected seven cuckoo species. Extracting characteristics of the cuckoo calls, we found that only four of the 21 pairs of species overlapped in frequency range, and 19 pairs were classified accurately using a linear discriminant analysis classifier based on their features. The remaining two species pairs could be separated based on temporal or spatial distribution patterns. We also analysed the temporal distribution patterns and overlap time of the calls, finding that the seven species exhibit partitioning in at least one of three acoustic dimensions (site, frequency, activity time). We conclude that the seven sympatric cuckoo species were strongly partitioned in acoustic signal space and minimally masked each other's signals.  相似文献   

5.
A rain forest dusk chorus consists of a large number of individuals of acoustically communicating species signaling at the same time. How different species achieve effective intra-specific communication in this complex and noisy acoustic environment is not well understood. In this study we examined acoustic masking interference in an assemblage of rain forest crickets and katydids. We used signal structures and spacing of signalers to estimate temporal, spectral and active space overlap between species. We then examined these overlaps for evidence of strategies of masking avoidance in the assemblage: we asked whether species whose signals have high temporal or spectral overlap avoid calling together. Whereas we found evidence that species with high temporal overlap may avoid calling together, there was no relation between spectral overlap and calling activity. There was also no correlation between the spectral and temporal overlaps of the signals of different species. In addition, we found little evidence that species calling in the understorey actively use spacing to minimize acoustic overlap. Increasing call intensity and tuning receivers however emerged as powerful strategies to minimize acoustic overlap. Effective acoustic overlaps were on average close to zero for most individuals in natural, multispecies choruses, even in the absence of behavioral avoidance mechanisms such as inhibition of calling or active spacing. Thus, call temporal structure, intensity and frequency together provide sufficient parameter space for several species to call together yet communicate effectively with little interference in the apparent cacophony of a rain forest dusk chorus.  相似文献   

6.
Comparing adaptations to noisy city environments with those to natural mountain environments on the community level can provide significant insights that allow an understanding of the impact of anthropogenic noise on invertebrates that employ loud calling songs for mate attraction, especially when each species has its distinct song, as in the case of cicadas. In this study, we investigated the partitioning strategy of cicada assemblages in city and mountain environments by comparing the acoustic features and calling activity patterns of each species, recorded using automated digital recording systems. Our comparison of activity patterns of seasonal and diel calling revealed that there was no significant temporal partitioning of cicada assemblages in either environment. In addition, there was no correlation between the acoustic distance based on spectral features and temporal segregation. Heterospecific spectral overlap was low in both city and mountain environments, although city and mountain cicada assemblages were subject to significantly different levels of anthropogenic or interspecific noise. Furthermore, for the common species found in both environments, the calling activity patterns at both seasonal and diel time scales were significantly consistent across sites and across environments. We suggest that the temporal calling activity is constrained by endogenous factors for each species and is less flexible in response to external factors, such as anthropogenic noise. As a result, cicada assemblages in city environments with low species diversity do not demonstrate a more significant temporal partitioning than those in mountain environments with high species diversity.  相似文献   

7.
Local environments can act as selective agents on some characteristics of birds’ songs, whereas other song traits may not reflect local genetic adaptation. Geographic variation in songs of two Australian bird species (red‐capped robins Petroica goodenovii, western gerygones Gerygone fusca) was studied to examine one component of the ‘habitat‐dependent selection’ hypothesis. This hypothesis suggests that: (1) the detailed spectral characteristics of male songs are an evolved response to local habitat conditions affecting signal propagation and detection and (2) parallel evolution of other fitness traits sets up the potential for assortative mating by female choice. To examine the first part of the hypothesis, I made comparisons among widespread mainland populations and an island population using two levels of analysis: a typological analysis of song morphology (phonology: notes, syllables, syntax, temporal pattern, repertoires) and a spectral analysis of acoustic characteristics of songs (mean frequency, Wiener entropy, frequency modulation) using an automated procedure of feature extraction (Sound Analysis Pro). Spectral analysis was also used to extract values of the same acoustic features from the background sound environment of each recorded population. The typological analysis revealed no differences among mainland populations of either species, but large differences between mainland songs and those on the island. In contrast, the spectral analysis revealed acoustic divergence among populations, both mainland and island. For both species, Wiener entropy of songs correlated negatively with that of the ambient sound environment, consistent with predictions of the habitat‐dependent selection hypothesis of environmental selection on signal design.  相似文献   

8.
Species in similar habitats are often similar in morphology or behaviour, attributed to adaptation to similar environmental selection pressures, sometimes mediated by competitive interactions. For passerine songs, similarity of phenotype in identical habitats and character displacement have been documented, the former due to adaptation to the acoustics of the habitat, and the latter due to competition for acoustic space among species. If these phenomena are widespread, they should lead to community convergence of bird songs. Here, we test if passerine communities in similar habitats converge in song attributes or in acoustic differentiation among species. We compared the songs of European and North American Mediterranean climate passerine communities in open and closed habitats. Song frequency varied across different habitats but not continents. This was independent of both phylogeny and body size, indicating community convergence due to acoustic adaptation, rather than species sorting or similarity as a by-product of another type of ecological convergence. We found little evidence for regular spacing in song features among species, as would be expected if acoustic competition shapes within-community structure. However, for one of five song components, the open habitat communities showed a similar distribution of phenotypes on each continent. The proportion of interspecific variation in song explained by these effects was small. The fact that songs are complex signals that vary in many dimensions may explain why competition for acoustic space seems to be of small importance in structuring songs in these passerine communities.  相似文献   

9.
Bird song is typically depicted as a male singing a long‐distance signal to potentially unknown receivers to (1) deter males and (2) attract females. Nevertheless, many songbirds sing from close distances to a known receiver; males of these species may be under more intense selective pressure to modify their songs depending on the sex of the receiver in order to convey different motivational states (aggression versus courtship) to the different sexes. In a laboratory setting, we examined how receiver sex affected within‐song variation of the close‐range singing behavior in the brown‐headed cowbird (Molothrus ater). Although we know that cowbird song is influenced by flock composition, it is still unclear as to how the cowbird modifies his song based on social context. Using a cross‐correlation analysis of each male's different song types, we found that pairs of songs were significantly more dissimilar if they were directed to females compared with songs directed to males. We subsequently tested whether there were any consistent spectral or temporal patterns in the songs males gave to females versus to males. Our results lend support for the Motivational Structural Rules Hypothesis as songs directed toward males had higher entropy (i.e., harshness) than the same song type directed toward females. Our results suggest that cowbirds may have evolved the ability to alter multiple dimensions of their singing behavior based on receiver sex.  相似文献   

10.
Acoustic signals play a fundamental role in avian territory defence and mate attraction. Several studies have now shown that spectral properties of bird song differ between urban and rural environments. Previously this has been attributed to competition for acoustic space as a result of low-frequency noise present in cities. However, the physical structure of urban areas may have a contributory effect. Here we investigate the sound degradation properties of woodland and city environments using both urban and rural great tit song. We show that although urban surroundings caused significantly less degradation to both songs, the transmission efficiency of rural song compared to urban song was significantly lower in the city. While differences between the two songs in woodland were generally minimal, some measures of the transmission efficiency of rural song were significantly lower than those of urban song, suggesting additional benefits to singing rural songs in this setting. In an attempt to create artificial urban song, we mimicked the increase in minimum frequency found several times previously in urban song. However, this did not replicate the same transmission properties as true urban song, suggesting changes in other song characteristics, such as temporal adjustments, are needed to further increase transmission of an avian signal in the city. We suggest that the structure of the acoustic environment, in addition to the background noise, plays an important role in signal adaptation.  相似文献   

11.
ABSTRACT The allometric relationship between body size and song frequency has been established in previous studies of temperate and tropical bird communities. However, the relationship between body size and the frequency of distress calls has been examined in only one study of temperate birds. We examined size‐frequency relationships in the distress calls and songs of a Neotropical bird community in northwestern Costa Rica. In 2008 and 2009, we recorded distress calls and determined the body mass of 54 mist‐netted birds representing 38 species, 35 genera, and 14 families. We obtained songs for these same species from sound libraries and commercially available compact discs. For each vocalization, we measured minimum frequency and frequency of maximum amplitude. Larger birds produced lower‐frequency distress calls and songs than smaller birds. Phylogenetically controlled analyses revealed that the frequency of maximum amplitude was negatively correlated with body mass for both distress calls and songs. Minimum frequency was negatively correlated with mass for distress calls, but not songs. Our analyses suggest that the influence of phylogeny on the relationship between frequency characteristics and body size is modest. Pair‐wise comparisons across 37 species revealed that distress calls and songs had similar minimum frequencies, but songs had significantly lower frequencies of maximum amplitude than distress calls. This difference may arise from differences in signal function. Lower‐frequency sounds should transmit farther through forest habitats and songs must often transmit longer distances to reach their intended audience than distress calls. Our results support the general theory that body size is negatively correlated with the frequency of acoustic signals by demonstrating that this pattern holds true for both distress calls and songs in a Neotropical bird community.  相似文献   

12.
13.
Understanding niche partitioning of closely related sympatric species is a fundamental goal in ecology. Acoustic communication space can be considered a resource, and the acoustic niche hypothesis posits that competition between species may lead to partitioning of communication space. Here, we compare the calling behavior of two sympatric Bornean hornbill species—the rhinoceros hornbill (Buceros rhinoceros) and the helmeted hornbill (Rhinoplax vigil)—to test for evidence of acoustic niche partitioning. Both hornbill species emit calls heard over many kilometers and have similar habitat preferences which is predicted to result in interspecific competition. We collected acoustic data on sympatric populations of both hornbill species using 10 autonomous recording units in Danum Valley Conservation Area, Sabah, Malaysia. We found that there was substantial spectral overlap between the calls of the two species, indicating the potential for competition for acoustic space. To test for evidence of acoustic niche partitioning, we investigated spatial and temporal patterns of calling in each species. Both hornbills were strictly diurnal and called throughout the day, and we were equally likely to detect both species at each of our recorders. We did not find evidence of temporal acoustic avoidance at a relatively coarse timescale when we divided our dataset into 1 h bins, but we did find evidence of temporal acoustic avoidance at a finer timescale when we used null models to compare the observed duration of overlapping calls to the expected amount of overlap due to chance.  相似文献   

14.
SYNOPSIS. Field crickets depend on acoustic organs to detectthe presence of potential predators as well as conspecific crickets.Predators are recognized largely on the basis of spectral frequenciesthat are contained in their acoustic signals. Puffs of air andvery low frequencies activate a cricket's cereal receptors andultrasonic frequencies activate their tympanal organs. Bothof these acoustic stimuli release "escape behavior," in theform of evasive movements. An identified neuron sensitive toultrasound is described. Crickets recognize singing conspecificsby both frequency and temporal properties of cricket songs;however species recognition requires specific temporal informationin calling songs. While previous studies have emphasized therole of songs on female behavior, males also recognize conspecificsongs; sexual differences in recognition behavior occur.  相似文献   

15.
Many animals defend territories against conspecific individuals using acoustic signals. In birds, male vocalizations are known to play a critical role in territory defence. Territorial acoustic signals in females have been poorly studied, perhaps because female song is uncommon in north‐temperate ecosystems. In this study, we compare male vs. female territorial singing behaviour in Neotropical rufous‐and‐white wrens Thryothorus rufalbus, a species where both sexes produce solo songs and often coordinate their songs in vocal duets. We recorded free‐living birds in Costa Rica using an eight‐microphone Acoustic Location System capable of passively triangulating the position of animals based on their vocalizations. We recorded 17 pairs of birds for 2–4 consecutive mornings and calculated the territory of each individual as a 95% fixed kernel estimate around their song posts. We compared territories calculated around male vs. female song posts, including separate analyses of solo vs. duet song posts. These spatial analyses of singing behaviour reveal that males and females use similarly sized territories with more than 60% overlap between breeding partners. Territories calculated based on solo vs. duet song posts were of similar size and similar degrees of overlap. Solos and duets were performed at similar distances from the nest for both sexes. Overall, male and female rufous‐and‐white wrens exhibit very similar spatial territorial singing behaviour, demonstrating congruent patterns of male and female territoriality.  相似文献   

16.
In singing insects, the song is an important component of the specific mate recognition system (SMRS). In communities of sympatric singing species, there is a partitioning of communication channels, the so-called “acoustic niches.” Within one community, the songs of different species always differ in temporal or frequency characters, i.e. occupy different acoustic niches. However, conspecific songs do not always act as an interspecific reproductive barrier, despite always being a SMRS component. The species that do not communicate acoustically due to allopatry, different timing of vocalization, inhabiting different biotopes, or unmatched food specializations can produce similar songs while forming reproductively isolated communities. Individuals of different sexes need not only to recognize a conspecific mate but also to evaluate its “quality.” The close-range signal (courtship song) provides more opportunities for choosing the “best” male than does the distant signal (calling song). In many species of Orthoptera, courtship includes not only acoustic but also vibrational, visual, chemical, and mechanical signals. An analysis of cricket songs showed the courtship songs to be on average more elaborate and variable than the calling songs. At the same time, due to the difference in mating behavior between the two groups, the acoustic component of courtship is used for mate quality evaluation to a greater extent in grasshoppers than in crickets. The courtship songs of grasshoppers are generally more elaborate in temporal structure than cricket songs; moreover, they may be accompanied by visual displays such as movements of various body parts. Thus, song evolution in grasshoppers is more strongly driven by sexual selection than that in crickets. According to the reinforcement hypothesis, the premating barrier between hybridizing species becomes stronger in response to reduced hybrid fitness. However, our behavioral experiments with two groups of hybridizing grasshopper species did not confirm the reinforcement hypothesis. We explain this, firstly, by a low level of genetic incompatibility between the hybridizing species and secondly, by high hybrid fitness when attracting a mate. A high competitive capability of hybrids may be accounted for by attractiveness of new elements in hybrid courtship songs. When we divide similar forms based on their songs, we in fact distinguish biological species using the criterion of their reproductive isolation. Acoustic differences between species are usually greater than morphological ones. Therefore, song analysis allows one to determine the real status of doubtful species-rank taxa, to distinguish species in a medley of sibling forms, and to reveal cryptic species in the cases when morphological studies fail to provide a univocal result. At the same time, songs are subject to intraspecific variation the range of which is different in different groups. Therefore, it is necessary to study which degree of difference corresponds to the species level before interpreting the status of some forms based on song comparisons. Besides, song similarities cannot indicate conspecificity of acoustically isolated forms; on the other hand, song differences between these forms prove that they are full-rank species.  相似文献   

17.
The two main functions of bird song are territory defence and mate attraction. Considerable progress has been made in understanding how species adjust the use of songs to serve these and other (presumed) functions of bird song, but the striking variety of singing behavior observable in wild birds remains enigmatic. Some species make do with simple songs and small repertoires, while others show large, complex repertoires and still others have evolved several distinct singing styles. In most species with distinct singing styles, however, the functions of singing styles are poorly understood. Two distinct singing styles (type I and II, respectively) have long been known in the reed bunting Emberiza schoeniclus, while a new third one has recently been reported to exist. We first quantitatively investigated the evidence for the existence of three singing styles. Then, we tested predictions of the mate attraction hypothesis, the mate guarding hypothesis and the territory defence hypothesis by examining the relations between singing style use with social and temporal factors. Cluster and discriminant analyses supported the existence of three (instead of two) singing styles, which could be differentiated based on four variables referring to song structure and complexity. Use of singing styles was related to male mating status (consistent with the mate attraction hypothesis), but not to female breeding stage (no support for the mate guarding hypothesis). Finally, use of singing styles differed in relation to time of day, with the dawn chorus of paired reed buntings consisting almost exclusively of songs of the recently discovered type III singing style and daytime singing primarily consisting of songs of long‐known type I (in unpaired males) or II singing styles (in paired males). Our findings suggest that one singing style (type I) primarily serves to attract a social mate, although an additional territorial function of this singing style cannot be dismissed. The function(s) of the other two singing styles, both only sung by paired males, are not related to attraction of a social mate or to the own female's fertility, but appear to be important in the context of territory defence and extra‐pair matings.  相似文献   

18.
Automated analysis of acoustic communities is a rapidly emerging approach for the characterization and monitoring of biodiversity. To evaluate its utility, we should verify that such ‘bioacoustics’ can accurately detect ecological signal in spatiotemporal acoustic data. Targeting the ‘Biological Dynamics of Forest Fragments Project’ sites in Brazil, we ask: What is the relative contribution of the spatial, temporal and habitat dimension to variation in bird acoustic communities in a previously fragmented tropical rainforest? Does the functional diversity of bird communities scale similarly to space and time as does species diversity, when both are recorded by bioacoustics means? Overall, is the imprint of landscape fragmentation 30 years ago still audible in the present‐day soundscape? We sampled forty‐four sites in secondary forest and 107 sites in old‐growth forest, resulting in 11 000 h of audio recordings. We detected 60 bird species with satisfactory precision and recovered a linear log–log relation between sampling time and species diversity. Sites in primary forest host more species than sites in secondary forest, but the difference decreased with sampling time, as the slope was slightly higher in secondary than primary forests. Functional diversity, as exposed by vocalizing birds, accumulates faster than does species diversity. The similarity among local communities decreases with distance in both time and space, but stability in time is remarkably high: two acoustic samples from the same site one year (or more) apart prove more similar than two samples taken at the same time but from sites situated just a few hundred meters apart. These findings suggest that habitat modification can be heard as a long‐lasting imprint on the soundscape of regenerating habitats and identify soundscape–area and soundscape–time relations as a promising tool for biodiversity research, applied biomonitoring and restoration ecology.  相似文献   

19.
Duetting is a collective behavior and might have multiple functions, including joint territory defense and mate guarding. An important step toward understanding the adaptive function of bird song is to determine if and how singing behavior varies seasonally. However, seasonal patterns for duetting species are different from the pattern described for species in which only the male sings, because song function may vary according to sex, singing role (initiator vs responder) and level of duet organization (individual vs pair). We investigated whether patterns of seasonal variation in duetting depends on these factors, which would suggest different interpretations of song function. We studied social pairs of a Neotropical bird species (rufous hornero Furnarius rufus) for seven consecutive months, recording vocal and territorial behaviors. Overall, partners coordinated 61% of their songs into duets and many song traits (song initiation rate, song output and duet rate) peaked in territorial contexts. Males engaged in territorial interactions with strangers more often, initiated more songs, and answered proportionately more of their partners’ songs than females. Male song initiation rate peaked during the pre‐ and post‐breeding stages, whereas females initiated more songs during the non‐breeding season. Both sexes answered partner songs faster and at higher rates during the pre‐breeding and female fertile stages. Partners duetted at a higher rate during the pre‐ and post‐breeding stages. Finally, song initiation rates and duet rate, but not song answering rates, correlated with frequency of territorial interactions with strangers. Although our findings indicate that song function may vary with sex, singing role and level of duet organization, our results suggest that in general duet functions to defend common territories and as a mutual mate guarding strategy in the rufous hornero.  相似文献   

20.
《Animal behaviour》1988,36(3):684-695
Males of the katydid Neoconocephalus spiza stridulate in a loud, chirping manner, but they are inhibited from singing during the uninterrupted songs of three sympatric congeners. Playback experiments using natural and synthetic stimuli showed that inhibition can be caused by any continuous or rapidly pulsing sound presented at an intensity greater than 40 dB sound pressure level and from 8 to 16 kHz in frequency, the approximate spectral range of the N. spiza chirps and the continuous songs of the congeneric species. In specific habitats where inhibiting species are absent, N. spiza sings primarily at night, but diurnal singing prevails where the inhibitors, all nocturnal, are found. Removal of the inhibiting species in a field experiment resulted in a rapid shift of the periodicity of N. spiza signalling from diurnal to nocturnal. This is the first reported case of a reversal in diel periodicity of singing caused by signal interference. It is argued that in a noisy environment, long-term temporal adjustments may be the most effective means of avoiding the problem of acoustic interference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号