首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermophilic l-asparaginases display high stability and activity at elevated temperatures. However, they are of limited use in leukemia therapy because of their low substrate affinity and reduced activity under physiological conditions. In an attempt to combine stability with activity at physiological conditions, 3 active-site mutants of Pyrococcus furiosus l-asparaginase (PfA) were developed. The mutants, specifically K274E, showed improved enzymatic properties at physiological conditions as compared to the wild type. All variants were thermodynamically stable and resistant to proteolytic digestion. None of the enzymes displayed glutaminase activity, a highly desirable therapeutic property. All variants showed higher and significant killing of human cell lines HL60, MCF7, and K562 as compared to the Escherichia coli l-asparaginase. Our study revealed that increased substrate accessibility through the active site loop plays a major role in determining activity. A new mechanistic insight has been proposed based on molecular dynamics simulated structures, where dynamic flipping of a critical Tyr residue is responsible for the activity of thermophilic l-asparaginases. Our study not only resulted in development of PfA mutants with combination of desirable properties but also gave a mechanistic insight about their activity.  相似文献   

2.
l-Asparaginase is now known to be a potent antineoplastic agent in animals and has given complete remission in some human leukemias. Extensive clinical trials of this enzyme, however, were not possible in the past because of inadequate production of this substance. We have developed practical procedures for producing l-asparaginase in yields of sufficient quantity and purity for more extensive clinical evaluation. The nutritional requirements for optimal production of biologically active l-asparaginase by a strain of Escherichia coli have been ascertained. The highest yields of enzyme were obtained when cells were grown aerobically in a corn steep medium. Good enzyme production was associated with media containing l-glutamic acid, l-methionine, and lactic acid. The addition of glucose to the medium, however, resulted in depressed production of l-asparaginase. Sodium ion appeared to suppress l-asparaginase production. With the procedure described for isolation of biologically active l-asparaginase from E. coli, stable l-asparaginase preparations with a specific activity of 620 IU per mg of protein (1,240-fold purification with 40% total recovery) were obtained.  相似文献   

3.
T Maejima  Y Ohya  S Mitsuhashi  M Inoue 《Plasmid》1987,18(2):120-126
The gene(s) for chromosome-mediated beta-lactamase production of Proteus vulgaris GN7919 was cloned into a unique EcoRI site of pACYC184 as an insert of a 14.2-kb fragment, which was further digested into two fragments with EcoRI, 4.9 and 9.3 kb. The restriction enzyme digestion pattern of the recombinant plasmid, designated pMS182, had no similarity to those of other chromosomal beta-lactamase genes cloned from gram-negative bacteria. Plasmid pMS182 enabled host Escherichia coli ML4953 to inducibly produce beta-lactamase which was identical to that of the parent P. vulgaris in substrate profile, molecular weight, and reactivity to antiserum raised against P. vulgaris GN7919 beta-lactamase. The pMS182-harboring E. coli were highly resistant to beta-lactam antibiotics, possibly based on inducible production of beta-lactamase.  相似文献   

4.
Abstract

The present study aims to exploit microbial potential from colder region to produce lipase enzyme stable at low temperatures. A newly isolated bacterium GBPI_508 from Himalayan environment, was investigated for the production of cold-active lipase emphasizing on its aggregation properties. Plate based assays followed by quantitative production of enzyme was estimated under different culture conditions. Further characterization of partially purified enzyme was done for molecular weight determination and activity and stability under varying conditions of pH, temperature, and in presence of organic solvents, inhibitors, and metal ions. The psychrotolerant bacterium was identified as Pseudomonas palleroniana following 16S rRNA gene sequencing. Maximum lipase production by GBPI_508 was recorded in 7?days at 25?°C utilizing yeast extract as nitrogen source and olive oil as substrate in the lipase production medium. Triton X-100 (1%) in the medium as emulsifier significantly enhanced the lipase production. Lipase produced by bacterium showed aggregation which was confirmed by dynamic light scattering and native PAGE. SDS-PAGE followed by zymogram analysis of partially purified enzyme showed two active bands of ~50?kDa and ~54?kDa. Optimum activity of partially purified enzymatic preparation was recorded at 40?°C while the activity remained nearly consistent from pH 7.0 to 12.0, whereas, maximum stability was recorded at pH values 7.0 and 11.0 at 25?°C. Interestingly, lipase in the partially purified fraction retained 60% enzyme activity at 10?°C. Medium chain pNP ester (C10) was the most preferred substrate for the lipase of GBPI_508. The lipase possessed >50% residual activity when incubated with different organic solvents (25% v/v) except toluene and dichloromethane which inhibited the activity below 50%. Partially purified enzyme was also stable in the presence of metal ions and inhibitors. The study suggests applicability of GBPI_508 lipase in low temperature conditions such as cold-active detergent formulations and cold bioremediation.  相似文献   

5.
Bacterial l-asparaginases are amidohydrolases that catalyse the conversion of l-asparagine to l-aspartate and ammonia and are used as anti-cancer drugs. The current members of this class of drugs have several toxic side effects mainly due to their associated glutaminase activity. In the present study, we report the molecular cloning, biochemical characterisation and in vitro cytotoxicity of a novel l-asparaginase from the pathogenic strain Helicobacter pylori CCUG 17874. The recombinant enzyme showed a strong preference for l-asparagine over l-glutamine and, in contrast to most l-asparaginases, it exhibited a sigmoidal behaviour towards l-glutamine. The enzyme preserved full activity after 2 h incubation at 45 °C. In vitro cytotoxicity assays revealed that different cell lines displayed a variable sensitivity towards the enzyme, AGS and MKN28 gastric epithelial cells being the most affected. These findings may be relevant both for the interpretation of the mechanisms underlying H. pylori associated diseases and for biomedical applications.  相似文献   

6.
《Process Biochemistry》2010,45(2):223-229
Bacterial l-asparaginase has been widely used as therapeutic agent in the treatment of various lymphoblastic leukemia diseases. Studies on localization and production of novel glutaminase-free l-asparaginase were performed using Pectobacterium carotovorum MTCC 1428. The localization of l-asparaginase was carried out using cell fractionation techniques. The activity of l-asparaginase was found to be 85 and 77% in the cytoplasm of P. carotovorum MTCC 1428 grown on medium containing l-asparagine and combination of l-asparagine and glucose respectively. Among the tested carbon sources, l-asparagine or the combination of l-asparagine and glucose was found to be the most suitable carbon sources to maximize the production of l-asparaginase. The maximum production of l-asparaginase was observed to be 14.56 U/ml (26.92 U/mg of protein) at 4 and 2 g/l of l-asparagine and glucose respectively. Yeast extract, l-asparagine and peptone have shown significant effect on the production of l-asparaginase. P. carotovorum MTCC 1428 has assimilated l-asparagine as an essential carbon source for maximizing the production of l-asparaginase.  相似文献   

7.
AIMS: Evaluation of fermentation process parameter interactions for the production of l-asparaginase by isolated Staphylococcus sp. - 6A. METHODS AND RESULTS: Fractional factorial design of experimentation (L18 orthogonal array of Taguchi methodology) was adopted to optimize nutritional (carbon and nitrogen sources), physiological (incubation temperature, medium pH, aeration and agitation) and microbial (inoculum level) fermentation factors. The experimental results and software predicted enzyme production values were comparable. CONCLUSION: Incubation temperature, inoculum level and medium pH, among all fermentation factors, were major influential parameters at their individual level, and contributed to more than 60% of total l-asparaginase production. Interaction data of selected fermentation parameters could be classified as least and most significant at individual and interactive levels. Aeration and agitation were most significant at interactive level, but least significant at individual level, and showed maximum severity index and vice versa at enzyme production. SIGNIFICANCE AND IMPACT OF THE STUDY: All selected factors showed impact on l-asparaginase enzyme production by this isolated microbial strain either at the individual or interactive level. Incubation temperature, inoculum concentration, pH of the medium and nutritional source (glucose and ammonium chloride) had impact at individual level, while aeration, agitation and incubation time showed influence at interactive level. Significant improvement (ninefold increase) in enzyme production by this microbial isolate was noted under optimized environment.  相似文献   

8.
L-myo-Inositol-1-phosphate synthetase was purified from baker's yeast, grown in a fermenter in an inositol-deficient medium and analyzed using a new HPLC assay for inositol. This enzyme was used in a procedure, developed from methods partially described in the literature, for the medium scale production and purification of L-myo-inositol 1-phosphate. The identity and purity of the product were confirmed by 1H and 31P NMR spectroscopy.  相似文献   

9.
Changes in catalase activity during the development of the Rhizobium-legume symbiosis as well as its response in salinized plants of Phaseolus vulgaris and Medicago sativa, was studied. Besides, it was examined the behavior of the enzyme, isolated from leaves and root nodules, during in vitro incubation with NaCl doses. Nodule catalase activities of both legumes were assayed with several enzyme inhibitors and also purified. Leaf catalase activity of Phaseolus vulgaris and Medicago sativa decreased and increased respectively throughout the ontogeny, but root nodule catalase kept a high and stable value. This last result suggests that both legumes require the maintenance of high nodule catalase in nitrogen-fixing nodules. Under salt stress conditions leaf and nodule catalase activity decreased in both, grain and pasture legumes. Because catalase from leaf of Medicago sativa and nodules of Phaseolus vulgaris were relatively sensitive to NaCl during in vitro experiments, the detoxifying role of this enzyme for H(2)O(2) should be limited in such conditions. Both catalases, from determinate and indeterminate nodules, were affected neither by oxygen nor superoxide radicals but showed a strong (Phaseolus vulgaris) or partial (Medicago sativa) inhibition with dithiothreitol, dithionite and beta-mercaptoethanol. Besides, cyanide was the most potent inhibitor of nodule catalases. Finally, catalases partially purified by immobilized metal ion affinity chromatography migrated at 42 (Phaseolus vulgaris) and 46kDa (Medicago sativa) on SDS-PAGE, whereas native forms on sephacryl S-300 columns exhibited a molecular mass of 59 and 48kDa (Phaseolus vulgaris) and 88 and 53kDa (Medicago sativa).  相似文献   

10.
The L-amino acid degrading enzyme gene from Proteus vulgaris was cloned and the nucleotide sequence of the enzyme gene was clarified. An open reading frame of 1,413 bp starting at an ATG methionine codon was found, which encodes a protein of 471 amino acid residues, the calculated molecular weight of which is 51,518. The amino acid sequence of P. vulgaris was 58.6% identical with the L-amino acid deaminase of P. mirabilis. A significantly conserved sequence was found around the FAD-binding sequence of flavo-proteins. The partially purified wild and recombinant enzymes had the same substrate specificity for L-amino acids to form the respective keto-acids, however not for D-amino acids.  相似文献   

11.
The ability of marine bacteria A. piscicida to produce exoproteases that were able to lyse human blood clots has been studied. Optimal conditions for biosynthesis of these enzymes have been found. The enzyme has been partially purified. In concentration of 1 mg/ml it has activity corresponding to that of 500 micrograms/l plasmine and 100 micrograms/ml trypsine. The enzyme activity was completely inhibited after incubation in human blood plasma.  相似文献   

12.
K B Li  K Y Chan 《Applied microbiology》1983,46(6):1380-1387
Lactobacillus acidophilus IFO 3532 was found to produce only intracellular alpha-glucosidase (alpha-D-glucoside glucohydrolase; EC 3.2.1.20). Maximum enzyme production was obtained in a medium containing 2% maltose as inducer at 37 degrees C and at an initial pH of 6.5. The enzyme was formed in the cytoplasm and accumulated as a large pool during the logarithmic growth phase. Enzyme production was strongly inhibited by 4 microM CuSO4, 40 microM CoCl2, and beef extract; MnSO4 and the presence of proteose peptone and yeast extract in the medium greatly enhanced enzyme production. A 16.6-fold purification of alpha-glucosidase was achieved by (NH4)2SO4 fractionation and DEAE-cellulose column chromatography. The enzyme showed high specificity for maltose. The Km for alpha-p-nitrophenyl-beta-D-glucopyranoside was 11.5 mM, and the Vmax for alpha-p-nitrophenyl-beta-D-glucopyranoside hydrolysis was 12.99 mumol/min per mg of protein. The optimal pH and temperature for enzyme activity were 5.0 and 37 degrees C, respectively. The enzyme activity was inhibited by Hg2+, Cu2+, Ni2+, Zn2+, Ca2+, Co2+, urea, rose bengal, and 2-iodoacetamide, whereas Mn2+, Mg2+, L-cysteine, L-histidine, Tris, and EDTA stimulated enzyme activity. Transglucosylase activity was present in the partially purified enzyme, and isomaltose was the only glucosyltransferase product. Amylase activity in the purified preparation was relatively weak, and no isomaltase activity was detected.  相似文献   

13.
An α-l,3-glucanase was detected in the culture supernatant of a micro-organism, which was isolated from soil on agar medium containing α-l,3-glucan as sole carbon source. The isolated strain was characterized as a strain of Streptomyces, tentatively named KI-8. This enzyme required α-l,3-glucosidic linkage as an inducer. The optimum conditions for enzyme production were studied.

The enzyme was purified by (NH4)2SO4 precipitation, column chromatography on DEAE-cellulose and P(phospho)-cellulose. To eliminate the concomitant β-l,3-glucanase activity, partially purified enzyme preparation was passed through a column packed with pachyman. Final purification was accomplished by the adsorption chromatography using Sephadex G-150 from which the α-l,3-glucanase was eluted with a solution of α-1,3-linked gluco-oligo-saccharides. The purified enzyme was electrophoretically homogeneous and had a molecular weight of approximately 78,000 by SDS-polyacrylamide gel electrophoresis.  相似文献   

14.
A bacterial strain WJ-98 found to produce active extracellular keratinase was isolated from the soil of a poultry factory. It was identified asParacoccus sp. based on its 16S rRNA sequence analysis, morphological and physiological characteristics. The optimal culture conditions for the production of keratinase byParacoccus sp. WJ-98 were investigated. The optimal medium composition for keratinase production was determined to be 1.0% keratin, 0.05% urea and NaCl, 0.03% K2HPO4, 0.04% KH2PO4, and 0.01% MgCl2·6H2O. Optimal initial pH and temperature for the production of keratinase were 7.5 and 37°C, respectively. The maximum keratinase production of 90 U/mL was reached after 84 h of cultivation under the optimal culturing conditions. The keratinase fromParacoccus sp. WJ-98 was partially purified from a culture broth by using ammonium sulfate precipitation, ion-exchange chromatography on DEAE-cellulose, followed by gel filtration chromatography on Sephadex G-75. Optimum pH and temperature for the enzyme reaction were pH 6.8 and 50°C, respectively and the enzymes were stable in the pH range from 6.0 to 8.0 and below 50°C. The enzyme activity was significantly inhibited by EDTA, Zn2+ and Hg2+. Inquiry into the characteristics of keratinase production from these bacteria may yield useful agricultural feed processing applications.  相似文献   

15.
A Penicillium simplicissimum strain has been found to produce an inducible extracellular lipase. Triolein was the best inducer for the enzyme production with the highest activity being achieved after 48 h of incubation. The purified lipase showed a molecular weight of 56,000 by SDS-PAGE. The enzyme exhibited a high ratio of apolar amino acids. The lipase was stable in the pH range of 5-7 and at 50 degrees C for 15 min. The optimum assay conditions were 37 degrees C and pH 5.0. The enzyme showed a high stability in water immiscible organic solvents. Lipase from P. simplicissimum is nonspecific and hydrolyses each of the three bonds of triacylglycerols.  相似文献   

16.
Cultural and nutritional requirements for maximum l-asparaginase synthesis were determined. Conventional aerobic and anaerobic fermentations were not satisfactory. The former yielded larger quantities of cells containing minimal amounts of l-asparaginase, whereas the latter supplied only minute amounts of bacteria that contained an abundance of enzyme. However, the combination of these classical methods, i.e., allowing growth to proceed aerobically until the mid to late exponential phase and then forcing the facultative microbial cells toward anaerobic metabolism by static incubation, produced 2.6 international units of enzyme per ml of fermentation broth when glucose was present. Enzyme synthesis was not induced by terminating aeration-agitation in the absence of glucose, nor was it induced in the presence of glucose when aeration was continued. Use of 0.2 m phosphate buffer resulted in a constant pH near the optimum value of 7.5 during l-asparaginase formation. Addition of 0.05% l-asparagine prior to induction was also beneficial, but other amino acids or their catabolites failed to increase biosynthesis of l-asparaginase.  相似文献   

17.
l-asparaginase, an enzyme used in the treatment of acute lymphocytic leukemia, is found in the serum of only a few mammalian groups, including the guinea pig and its close relatives in the superfamily Cavioidea. This report describes the purification and characterization of l-asparaginase from guinea pig serum. Antiserum against the purified enzyme cross-reacted with sera from other Cavioidean species but not with mouse serum. Relatively weak cross-reaction with unpurified l-asparaginase in guinea pig liver indicates a significant degree of evolutionary divergence.  相似文献   

18.
A phyllospheric bacterial culture, previously reported to partially replace nitrogen fertilizer (B. R. Patti and A. K. Chandra, Plant Soil 61:419-427, 1981) was found to contain a fluorescent pseudomonas which was identified as Pseudomonas putida and a Corynebacterium sp. The P. putida isolate was found to produce an extracellular cutinase when grown in a medium containing cutin, the polyester structural component of plant cuticle. The Corynebacterium sp. grew on nitrogen-free medium but could not produce cutinase under any induction conditions tested, whereas P. putida could not grow on nitrogen-free medium. When cocultured with the nitrogen-fixing Corynebacterium sp., the P. putida isolate grew in a nitrogen-free medium, suggesting that the former provided fixed N2 for the latter. These results suggest that the two species coexist on the plant surface, with one providing carbon and the other providing reduced nitrogen for their growth. The presence of cutin in the medium induced cutinase production by P. putida. However, unlike the previously studied fungal systems, cutin hydrolysate did not induce cutinase. Thin-layer chromatographic analysis of the products released from labeled apple fruit cutin showed that the extracellular enzyme released all classes of cutin monomers. This enzyme also catalyzed hydrolysis of the model ester substrates, p-nitrophenyl esters of fatty acids, and optimal conditions were determined for a spectrophotometric assay with p-nitrophenyl butyrate as the substrate. It did not hydrolyze triacyl glycerols, indicating that the cutinase activity was not due to a nonspecific lipase. It showed a broad pH optimum between 8.0 and 10.5 with 3H-labeled apple cutin as the substrate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Optimal culture conditions for microbial production of tryptophan synthetase were studied. It was found that on cultivation of Escherichia coli 476, a tryptophan auxotroph, in a medium containing 5g/liter glycerol as C source, supplemented with 1 g/liter of acid-treated peptone, cells with high tryptophan synthetase activity could be obtained.

The enzyme was extracted from cells and 3-fold purified by heat treatment and ammonium sulfate precipitation. The overall yield of the isolation procedure was 60%.

The partially purified tryptophan synthetase was entrapped in cellulose triacetate fibres. Under storage conditions, in refrigerator, the entrapped enzyme was stable at least for 6 months. The activity of the entrapped enzyme was about 75% with respect to the free enzyme.

Similar behaviour for the free and entrapped enzyme was observed as to the effect of temperature and pH on the enzymic activity. The operational stability of the entrapped tryptophan synthetase was very good (activity unchanged after 50 days) provided the accumulation of indole on the fibres was avoided.  相似文献   

20.
Proteus bacilli play a particularly important role in urinary tract infections (UTI). Fimbriae and adherence ability and hemolysins production (HpmA, HlyA) are one of the factors of pathogenicity of these bacteria. In this paper we describe the invasion of HCV T-29 transitional bladder urothelial cells carcinoma strains of P. penneri, as well as P. vulgaris strains belonging to different serogroups. The cytotoxic effect was observed at 8 hour of incubation of the tested cells with P. vulgaris O21 and the same effect (complete lysis) at 6 hours by P. vulgaris O4 (this strain manifests maximal activity in the production of HlyA hemolysin). P. penneri strains, produce different types of fimbriae, expressed similar bacterial invasiveness. The hydrophobic properties of 25 P. vulgaris strains were also tested and only 3 strains occur to have hydrophobic cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号