首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During exposure to hypoxia newborns hypoventilate following a brief period of hyperventilation. Failure of integration of the afferent signals from peripheral O2 chemoreceptors due to immaturity of the central respiratory centers could explain this paradoxical respiratory response. To test this hypothesis we have utilized anesthetized, paralyzed, mechanically ventilated newborn piglets and lambs (less than 11 days) and old piglets (19-35 days). The vagus nerves were cut in each animal. Respiratory activity was quantified by integration of phrenic neural activity. A carotid sinus nerve (CSN) was isolated and electrically stimulated for periods of 1-6 min. In all three groups of animals respiratory activity was continuously elevated throughout the period of CSN stimulation. After CSN stimulation respiratory activity immediately declined about 25% from the stimulated value. Thereafter respiratory activity declined in an exponential fashion toward the initial control level of respiratory activity. The time constant of this latter decay was 84.2 s in the young piglets, 83.2 s in the old piglets, and 63.0 s in the lambs. These results indicate that the respiratory centers of newborn piglets and lambs can maintain integration of continuous afferent CSN activity. Further, the respiratory afterdischarge that follows CSN stimulus cessation is similar to that of adults. These studies indicate that, during periods of O2 sufficiency, the central respiratory centers of newborns respond in a qualitatively similar manner to CSN stimulation as do adult cats.  相似文献   

2.
The topographic relationship between previously identified medullary ventral surface respiratory chemosensitive regions and brain surface extracellular fluid (ECF) acid production during acute hypoxia was explored in anesthetized, paralyzed, and artificially ventilated cats. Glass pH electrodes (0.8-mm diam, sheathed in stainless steel tubing) were mounted in mechanical contact with surfaces of medullary surface or adjacent pyramids, pons, spinal cord, or parietal cortex. Isocapnic hypoxia of 5 min [at arterial O2 saturation (SaO2) = 48 +/- 10%] reduced pH over rostral (Mitchell) and caudal (Loeschcke) areas by 0.12 +/- 0.09 and 0.07 +/- 0.04, respectively (n = 10, P < 0.05). Change in pH (delta pH) was proportional to desaturation with slopes 100 delta pH/delta SaO2 of 0.45 (rostral) and 0.20 (caudal) (R = 0.91 and 0.88, respectively). pH drop usually began within 3 min of hypoxia, became stable between 5 and 15 min, began to rise within 2 min of reoxygenation, and returned to control within 10 min. During equally hypoxic tests, intermediate area (Schl?fke), pons, and spinal cord surfaces showed no significant acid shift. Parietal cortex ECF pH dropped more slowly but steadily by 0.079 +/- 0.034 during 20 min at SaO2 = 50% after a small but significant initial alkaline shift, and acidification of cortical surface continued for > 5 min after reoxygenation. We conclude that medullary ventral chemosensitive regions produce more lactic acid during hypoxia than neighboring brain surfaces.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
To determine if depression of central respiratory output during progressive brain hypoxia (PBH) can be generalized to other brain stem outputs, we examined the effect of PBH on the tonic (tSCS) and inspiratory-synchronous (iSCS) components of preganglionic superior cervical sympathetic (SCS) nerve activity. Peak phrenic and SCS activity were measured in nine anesthetized, paralyzed, peripherally chemodenervated, vagotomized cats. PBH was produced by inhalation of 0.5% CO in 40% O2 while blood pressure and end-tidal CO2 were maintained constant. A progressive reduction in arterial O2 content from 14.3 +/- 0.6 to 4.5 +/- 0.3 vol% caused a 79 +/- 7% depression of peak phrenic activity and an 84 +/- 10% reduction of iSCS activity, but tSCS activity increased 42 +/- 21%. During CO2 rebreathing, iSCS activity increased in parallel with peak phrenic activity while tSCS activity was unchanged. The slopes of the CO2 responses of both phrenic (6.3 +/- 1.2%max/mmHg) and iSCS (4.6 +/- 0.8%max/mmHg) activity were unaffected by PBH. In four of nine hypocapnic and three of nine hypoxic studies, inspiratory activity in the SCS nerve was observed even after completely silencing the phrenic neurogram.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Changes in local brain stem perfusion that alter extracellular fluid Pco2 and/or [H+] near central chemoreceptors may contribute to the decrease in respiration observed during hypoxia after peripheral chemoreceptor denervation and to the delayed decrease observed during hypoxia in the newborn. In this study, we measured the changes in respiration and brain stem blood flow (BBF) during 2-4 min of hypoxic hypoxia in both intact and denervated piglets and calculated the changes in brain stem Pco2 and [H+] that would be expected to occur as a result of the changes in BBF. All animals were anesthetized, spontaneously breathing, and between 2 and 7 days of age. Respiratory and other variables were measured before and during hypoxia in all animals, and BBF (microspheres) was measured in a subgroup of intact and denervated animals at 0, 30, and 260 s and at 0 and 80 s, respectively. During hypoxia, minute ventilation increased and then decreased (biphasic response) in the intact animals but decreased only in the denervated animals. BBF increased in a near linear fashion, and calculated brain stem extracellular fluid Pco2 and [H+] decreased over the first 80 s both before and after denervation. We speculate that a rapid increase in BBF during acute hypoxia decreases brain stem extracellular fluid Pco2 and [H+], which, in turn, negatively modulate the increase in respiratory drive produced by peripheral chemoreceptor input to the central respiratory generator.  相似文献   

5.
Acute isocapnic intermittent hypoxia elicits time-dependent, serotonin-dependent enhancement of phrenic motor output in anesthetized rats (phrenic long-term facilitation, pLTF). In adult rats, pLTF is enhanced by chronic intermittent hypoxia (CIH). To test the hypothesis that early postnatal CIH induces persistent modifications of ventilation and pLTF, we exposed male Sprague-Dawley rat pups on their first day of life to a CIH profile consisting of alternating room air and 10% oxygen every 90 s for 30 days during daylight hours (RAIH) or to comparable exposures consisting of room air throughout (RARA). One month after cessation of CIH, respiratory responses were recorded using whole body plethysmography, and integrated phrenic nerve activity was recorded in urethane-anesthetized, vagotomized, paralyzed, and ventilated rats at baseline and after exposures to three 5-min hypoxic episodes [inspired O2 fraction (FiO2)=0.11] separated by 5 min of hyperoxia (FiO2=0.5). RAIH rats displayed greater normoxic ventilation and also increased burst frequency compared with RARA rats (P<0.01). Ventilatory responses to hypoxia and short-term phrenic responses during acute hypoxic challenges were reduced in RAIH rats (P<0.01). Although pLTF was present in both RAIH and RARA rats, it was diminished in RAIH rats (minute activity: 74+/-2% in RARA vs. 55+/-5% in RAIH at 60 min; P<0.01). Thus we conclude that early postnatal CIH modifies normoxic and hypoxic ventilatory and phrenic responses that persist at 1 mo after cessation of CIH (i.e., metaplasticity) and markedly differ from previously reported increased neural plasticity changes induced by CIH in adult rats.  相似文献   

6.
Ventral medullary blood flow was measured in 33 chloralose-urethan anesthetized cats during 60 min of isocapnia-hypoxia, mild hypocapnia-hypoxia, or severe hypocapnia-hypoxia. In an additional group of six animals we measured ventral medullary extracellular fluid (ECF) pH during mild hypocapnia-hypoxia. The increase in blood flow during hypoxia was reduced by mild hypocapnia and eliminated by severe hypocapnia. With the exception of an initial decrease in ECF [H+], which occurred during the first 10 min of mild hypocapnia-hypoxia, ECF [H+] increased progressively throughout the exposure and recovery periods and was significantly elevated from the control value by the first 10 min of the recovery period. The results suggest that hypocapnia affects the hypoxic cerebrovascular response of the ventral medulla and that this phenomenon could affect the regulation of ventral medullary ECF [H+].  相似文献   

7.
We studied the ventilatory response to hypoxia in 11 unanesthetized newborn kittens (n = 54) between 2 and 36 days of age by use of a flow-through system. During quiet sleep, with a decrease in inspired O2 fraction from 21 to 10%, minute ventilation increased from 0.828 +/- 0.029 to 1.166 +/- 0.047 l.min-1.kg-1 (P less than 0.001) and then decreased to 0.929 +/- 0.043 by 10 min of hypoxia. The late decrease in ventilation during hypoxia was related to a decrease in tidal volume (P less than 0.001). Respiratory frequency increased from 47 +/- 1 to 56 +/- 2 breaths/min, and integrated diaphragmatic activity increased from 14.9 +/- 0.9 to 20.2 +/- 1.4 arbitrary units; both remained elevated during hypoxia (P less than 0.001). Younger kittens (less than 10 days) had a greater decrease in ventilation than older kittens. These results suggest that the late decrease in ventilation during hypoxia in the newborn kitten is not central but is due to a peripheral mechanism located in the lungs or respiratory pump and affecting tidal volume primarily. We speculate that either pulmonary bronchoconstriction or mechanical uncoupling of diaphragm and chest wall may be involved.  相似文献   

8.
Both isocapnic and poikilocapnic hypoxia may elicit a biphasic respiratory response, during which an initial ventilatory stimulation is followed by a reduction in breathing and diaphragm (DIA) electrical activity. To ascertain whether during adulthood other respiratory muscles have biphasic hypoxic responses similar to the DIA, in nine anesthetized cats electromyograms (EMG) were recorded from the DIA, genioglossus (GG), and triangularis sterni (TS) (n = 7) muscles during poikilocapnic hypoxia. DIA and GG EMG started at 60 +/- 4 and 9 +/- 3 units, respectively, during O2 breathing, increased to a maximum of 100 units during the 10-min hypoxic stimulus, and subsequently declined to 81 +/- 6 and 58 +/- 12 units, respectively, by the end of 10 min of hypoxia. The time course of the increase and subsequent decline was similar for the DIA and GG and for GG activity during both inspiration and expiration. Furthermore the degree to which GG EMG declined after reaching its peak activity level correlated with the magnitude of the respective decline in DIA EMG (r = 0.79, P less than 0.02). The TS, in contrast, was maximally active either during O2 breathing or very early during hypoxia, and its activity declined progressively thereafter (to 13 +/- 6% of its peak value at the end of 10 min of hypoxia). The degree to which TS EMG declined did not correlate with the degree to which DIA or GG EMG declined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Episodic hypoxia evokes a sustained augmentation of respiratory motor output known as long-term facilitation (LTF). Phrenic LTF is prevented by pretreatment with the 5-hydroxytryptamine (5-HT) receptor antagonist ketanserin. We tested the hypothesis that 5-HT receptor activation is necessary for the induction but not maintenance of phrenic LTF. Peak integrated phrenic nerve activity (integralPhr) was monitored for 1 h after three 5-min episodes of isocapnic hypoxia (arterial PO(2) = 40 +/- 2 Torr; 5-min hyperoxic intervals) in four groups of anesthetized, vagotomized, paralyzed, and ventilated Sprague-Dawley rats [1) control (n = 11), 2) ketanserin pretreatment (2 mg/kg iv; n = 7), and ketanserin treatment 0 and 45 min after episodic hypoxia (n = 7 each)]. Ketanserin transiently decreased integralPhr, but it returned to baseline levels within 10 min. One hour after episodic hypoxia, integralPhr was significantly elevated from baseline in control and in the 0- and 45-min posthypoxia ketanserin groups. Conversely, ketanserin pretreatment abolished phrenic LTF. We conclude that 5-HT receptor activation is necessary to initiate (during hypoxia) but not maintain (following hypoxia) phrenic LTF.  相似文献   

10.
Acute and chronic hypoxic pulmonary hypertension in guinea pigs   总被引:1,自引:0,他引:1  
To determine whether the strength of acute hypoxic vasoconstriction predicts the magnitude of chronic hypoxic pulmonary hypertension, we performed serial studies on guinea pigs. Unanesthetized, chronically catheterized guinea pigs increased mean pulmonary arterial pressure (PAP) from 11 +/- 0.5 to 13 +/- 0.7 Torr in acute hypoxia (10% O2 for 65 min). The response was maximal at 5 min, remained stable for 1 h, and was reversible on return to room air. Cardiac index did not change with acute hypoxia or recovery. Guinea pigs exposed to chronic hypoxia increased PAP, measured in room air 1 h after removal from the hypoxic chamber, to 18 +/- 1 Torr by 5 days with little further increase in PAP to 20 +/- 1 Torr after 21 days. Cardiac index fell from 273 +/- 12 to 206 +/- 7 ml.kg-1.min-1 (P less than 0.05) after 21 days of hypoxia. Medial thickness of pulmonary arteries adjacent to terminal bronchioles and alveolar ducts increased significantly by 10 days. The magnitude of the pulmonary vasoconstriction to acute hypoxia persisted and was unabated during the development and apparent stabilization of chronic hypoxic pulmonary hypertension, suggesting that if vasoconstriction is the stimulus for remodeling, then the importance of the stimulus lessens with duration of hypoxia. In individual animals followed serially, we found no correlation between the magnitude of the acute vasoconstrictor response before chronic hypoxia and the severity of chronic pulmonary hypertension that subsequently developed either because the initial response was small and variable or because vasoconstriction may not be the sole stimulus for vascular remodeling in the guinea pig.  相似文献   

11.
We studied the effects of removing cyclic pulmonary afferent neural information on respiratory pattern generation in anesthetized dogs. Phrenic neural output during spontaneous breathing (SB) was compared with that occurring during constant-flow ventilation (CFV) at several levels of eucapnic hypoxemia. Hypoxia caused an increase in both the frequency and the amplitude of the moving time average (MTA) phrenic neurogram during both SB and CFV. The change in frequency as arterial saturation was reduced from 90 to 60% during SB was significantly higher than that during CFV [SB, 32.3 +/- 10.9 (SD) breaths/min; CFV, 10.3 +/- 5.8 breaths/min; P = 0.001]. By contrast, the increase in the amplitude of the MTA phrenic neurogram was smaller (SB, 0.62 +/- 0.68 units; CFV, 1.35 +/- 0.81 units; P = 0.01). The changes in frequency with hypoxia during both modes of ventilation resulted primarily from a shortening of expiratory time. Both inspiratory time and expiratory time were greater during CFV than during SB, but their change in response to hypoxia was not significantly different. We conclude that the amplitude response of the MTA phrenic neurogram to hypoxia is similar to that seen during hypercapnia; in the presence of phasic afferent feedback the MTA amplitude response is decreased and the frequency response is increased relative to the response observed in the absence of phasic afferents.  相似文献   

12.
Brain extracellular potassium [( K+]ec) in the ventral respiratory group of the medulla and the phrenic neurogram were recorded in anesthetized vagotomized peripherally chemodenervated ventilated cats during progressive isocapnic carbon monoxide (CO) hypoxia. During hypoxia, the phrenic neurogram was progressively depressed and became silent when arterial O2 content (CaO2) was reduced by 62 +/- 3% (SE). Gasping was seen in the phrenic neurogram when CaO2 was reduced by 78 +/- 1%. Medullary [K+]ec, an indicator of energy production failure due to O2 insufficiency, was 3.2 +/- 0.4 mM before hypoxia and was statistically unchanged at the onset of phrenic apnea during CO hypoxia (4 +/- 0.7 mM). By the onset of gasping, [K+]ec had increased to 6.1 +/- 1 mM, a value that tended to be different from control (P less than 0.1). After initiation of gasping, the rate of rise of [K+]ec increased, and [K+]ec reached a maximum value of 14.3 +/- 2.7 mM before hypoxia was terminated. With reoxygenation, [K+]ec returned to control levels within 20 min. On the basis of these results, we have drawn two major conclusions. 1) Hypoxic depression to the point of phrenic apnea does not appear to be caused by medullary energy insufficiency as measured by loss of [K+]ec homeostasis. 2) The rapid rise in [K+]ec in the medulla that characterizes severe hypoxia is closely associated with the onset of gasping in the phrenic neurogram, suggesting that gasping may serve as a marker for loss of medullary ionic homeostasis and thus onset of medullary energy insufficiency during hypoxia.  相似文献   

13.
In a previous work, we showed that the adult cat demonstrates a ventilatory decline during sustained hypoxia (the "roll off" phenomenon) and that the mechanism responsible for this secondary decrease in ventilation lies within the central nervous system (J. Appl. Physiol. 63: 1658-1664, 1987). In this study, we sought to determine whether central dopaminergic mechanisms could have a role in the roll off. We studied the effects of haloperidol, a peripheral and centrally acting dopamine receptor antagonist, on the ventilatory response to sustained isocapnic hypoxia (end-tidal PO2 40-50 Torr, 20-25 min) in awake cats. In vehicle control cats (n = 5), sustained hypoxia elicited a biphasic respiratory response, during which an initial ventilatory stimulation is followed by a 24 +/- 6% (P less than 0.01) reduction. In contrast, in haloperidol- (0.1 mg/kg) treated cats (n = 5) the ventilatory roll off was virtually abolished (-1 +/- 1%; P = NS). We also measured ventilatory, carotid sinus nerve (CSN) and phrenic nerve (PhN) responses to sustained isocapnic hypoxia in anesthetized animals (n = 6) to explore the influence of haloperidol on peripheral and central response during the roll off. Control responses to hypoxia showed an initial increase in ventilation, PhN, and CSN activity, followed by a subsequent decline in ventilation and PhN activity of 17 +/- 3 and 17 +/- 5%, respectively (P less than 0.05). In contrast, CSN activity remained unchanged during the roll off. Administration of haloperidol (1 mg/kg) reduced the initial increment in ventilation, while the initial increase in CSN activity was augmented.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
In awake animals, our laboratory recently showed that the hypoxic ventilatory response of adult male (but not female) rats previously subjected to neonatal maternal separation (NMS) is 25% greater than controls (Genest SE, Gulemetova R, Laforest S, Drolet G, and Kinkead R. J Physiol 554: 543-557, 2004). To begin mechanistic investigations of the effects of this neonatal stress on respiratory control development, we tested the hypothesis that, in male rats, NMS enhances central integration of carotid body chemoafferent signals. Experiments were performed on two groups of adult male rats. Pups subjected to NMS were placed in a temperature-controlled incubator 3 h/day from postnatal day 3 to postnatal day 12. Control pups were undisturbed. At adulthood (8-10 wk), rats were anesthetized (urethane; 1.6 g/kg), paralyzed, and ventilated with a hyperoxic gas mixture [inspired O2 fraction (Fi(O2)) = 0.5], and phrenic nerve activity was recorded. The first series of experiments aimed to demonstrate that NMS-related enhancement of the inspiratory motor output (phrenic) response to hypoxia occurs in anesthetized animals also. In this series, rats were exposed to moderate, followed by severe, isocapnic hypoxia (Fi(O2) = 0.12 and 0.08, respectively, 5 min each). NMS enhanced both the frequency and amplitude components of the phrenic response to hypoxia relative to controls, thereby validating the use of this approach. In a second series of experiments, NMS increased the amplitude (but not the frequency) response to unilateral carotid sinus nerve stimulation (stimulation frequency range: 0.5-33 Hz). We conclude that enhancement of central integration of carotid body afferent signal contributes to the larger hypoxic ventilatory response observed in NMS rats.  相似文献   

15.
Determining response dynamics of hypoxic air hunger may provide information of use in clinical practice and will improve understanding of basic dyspnea mechanisms. It is hypothesized that air hunger arises from projection of reflex brain stem ventilatory drive ("corollary discharge") to forebrain centers. If perceptual response dynamics are unmodified by events between brain stem and cortical awareness, this hypothesis predicts that air hunger will exactly track ventilatory response. Thus, during sustained hypoxia, initial increase in air hunger would be followed by a progressive decline reflecting biphasic reflex ventilatory drive. To test this prediction, we applied a sharp-onset 20-min step of normocapnic hypoxia and compared dynamic response characteristics of air hunger with that of ventilation in 10 healthy subjects. Air hunger was measured during mechanical ventilation (minute ventilation = 9 +/- 1.4 l/min; end-tidal Pco(2) = 37 +/- 2 Torr; end-tidal Po(2) = 45 +/- 7 Torr); ventilatory response was measured during separate free-breathing trials in the same subjects. Discomfort caused by "urge to breathe" was rated every 30 s on a visual analog scale. Both ventilatory and air hunger responses were modeled as delayed double exponentials corresponding to a simple linear first-order response but with a separate first-order adaptation. These models provided adequate fits to both ventilatory and air hunger data (r(2) = 0.88 and 0.66). Mean time constant and time-to-peak response for the average perceptual response (0.36 min(-1) and 3.3 min, respectively) closely matched corresponding values for the average ventilatory response (0.39 min(-1) and 3.1 min). Air hunger response to sustained hypoxia tracked ventilatory drive with a delay of approximately 30 s. Our data provide further support for the corollary discharge hypothesis for air hunger.  相似文献   

16.
Episodic hypoxia induces a persistent augmentation of respiratory activity, termed long-term facilitation (LTF). Phrenic LTF saturates in anesthetized animals such that additional episodes of stimulation cause no further increase in LTF magnitude. The present study tested the hypothesis that 1) ventilatory LTF also saturates in awake rats and 2) more severe hypoxia and hypoxic episodes increase the effectiveness of eliciting ventilatory LTF. Minute ventilation was measured in awake, male Sprague-Dawley rats by plethysmography. LTF was elicited by five episodes of 10% O(2) poikilocapnic hypoxia (magnitude: 17.3 +/- 2.8% above baseline, between 15 and 45 min posthypoxia, duration: 45 min) but not 12 or 8% O(2). LTF was also elicited by 10, 20, and 72 episodes of 12% O(2) (19.1 +/- 2.2, 18.9 +/- 1.8, and 19.8 +/- 1.6%; 45, 60, and 75 min, respectively) but not by three or five episodes. These results show that there is a certain range of hypoxia that induces ventilatory LTF and that additional hypoxic episodes may increase the duration but not the magnitude of this response.  相似文献   

17.
The present study was designed to investigate the effects of hypoxia on lung mechanics in the newborn cat and to determine if vagal efferent innervation to the airways is involved in the response. We studied 11 animals, aged 2-7 days, anesthetized with a mixture of chloralose-urethane administered intraperitoneally. A tracheal cannula was inserted just below the larynx and following paralysis (pancuronium bromide), mechanical ventilation was initiated. A pneumothorax was created by a midline thoracotomy and an end-expiratory load was applied to maintain functional residual capacity. Animals were placed in a flow plethysmograph from which measurements of transpulmonary pressure, flow, and volume, mean inspiratory resistance, and dynamic compliance of the lung were calculated. The experimental protocol consisted of a series of 8-min trials, each preceded by a controlled volume history. The hypoxia challenge was composed of 1 min of ventilation with 40% O2, followed by 5 min exposure to 10% O2 and 2 min of recovery. In the majority of animals (7 out of 11), hypoxia had no effect on lung mechanics compared with control trials. Four animals responded to hypoxia with an increase in resistance and a decrease in compliance. Resistance remained elevated throughout the hypoxia with an average maximal increase of 47.2 +/- 22.2% (SD). Dynamic compliance was significantly decreased at the 2nd, 3rd, and 4th min only of hypoxia. Bilateral vagotomy abolished the response in the four animals and hypoxia had no effect on mechanics postvagotomy. Our data suggest that in most cases changes in lung mechanics do not play a causal role in the biphasic ventilatory response to hypoxia seen in the newborn.  相似文献   

18.
We examined abdominal muscle minute electromyographic (EMG) activity (peak moving time average EMG x respiratory rate) during eupnea, hyperoxic hypercapnia (8% CO2-40% O2-balance N2), and hypoxia (13% O2) in 12 anesthetized (0.5% halothane) newborn piglets. In addition, we assessed the role of vagal afferent pathways in the abdominal muscles' response to ventilatory chemostimulation by examining abdominal EMG activity (EMGab) before and after bilateral cervical vagotomy in five animals. Phasic expiratory EMGab was observed in 11 of 12 piglets during eupnea. Hypercapnia was associated with a sustained augmentation of minute EMGab (444 +/- 208% control). In contrast, hypoxia consistently augmented (1 min, 193 +/- 33% control) then diminished (5 min, 126 +/- 39% control) minute EMGab. Vagotomy resulted in a decline in peak moving time average EMGab by approximately one-half (48 +/- 18% control); the abdominal muscles' response to ventilatory chemostimulation, however, was qualitatively unchanged. We conclude that 1) expiration during eupnea in anesthetized newborn piglets is associated with phasic EMGab; 2) both hypercapnia and hypoxia augment minute EMGab; however, only hypercapnia is associated with sustained augmentation; and 3) although vagal afferents have a role in modulating the base-line level of EMGab, other extravagal mechanisms appear to determine the pattern of EMGab in response to ventilatory chemostimulation.  相似文献   

19.
The influence of cardiovascular changes on ventilation has been demonstrated in adult animals and humans (Jones, French, Weissman & Wasserman, 1981; Wasserman, Whipp & Castagna 1974). It has been suggested that neonatal hypoxic ventilatory depression may be related to some of the hemodynamic changes that occur during hypoxia (Brown & Lawson, 1988; Darnall, 1985; Suguihara, Bancalari, Bancalari, Hehre & Gerhardt, 1986). To test the possible relationship between the cardiovascular and ventilatory response to hypoxia in the newborn, eleven sedated spontaneously breathing piglets (age: 5.9 +/- 1.6 days; weight: 1795 +/- 317 g; SD) were studied before and after alpha adrenergic blockade with phenoxybenzamine. Minute ventilation (VE) was measured with a pneumotachograph, cardiac output (CO) by thermodilution and total and regional brain blood flow (BBF) with radiolabeled microspheres. Measurements were performed while the animals were breathing room air and after 10 min of hypoxia induced by breathing 10% O2. Hypoxia was again induced one hour after infusion of phenoxybenzamine (6 mg/kg over 30 min). After 10 min of hypoxia, in the absence of phenoxybenzamine, the animals responded with marked increases in VE (P less than 0.001), CO (P less than 0.001), BBF, and brain stem blood flow (BSBF) (P less than 0.02). However, the normal hemodynamic response to hypoxia was eliminated after alpha adrenergic blockade. There were significant decreases in systemic arterial blood pressure, CO, and BBF during hypoxia after phenoxybenzamine infusion; nevertheless, VE increased significantly (P less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
To investigate models of plasticity in respiratory motor output, we determined the effects of chronic unilateral phrenicotomy and/or exercise on time-dependent responses to episodic hypoxia in the contralateral phrenic nerve. Anesthetized (urethane), ventilated, and vagotomized rats were presented with three, 5-min episodes of isocapnic hypoxia (11% O(2)), separated by 5 min of hyperoxia (50% O(2)). Integrated phrenic (and hypoglossal) nerve discharge were recorded before and during each hypoxic episode, for the first 5 min after the first hypoxic episode, and at 30 and 60 min after the final episode. Of 36 rats, one-half were sedentary while the other one-half had free access to a running wheel; each of these groups was split into three subgroups: 1) unoperated, 2) chronic left phrenicotomy (27-37 days), and 3) sham operated. Neither unilateral phrenicotomy nor running wheel activity influenced the short-term hypoxic phrenic response (during hypoxia) or long-term facilitation (posthypoxia). Posthypoxia frequency decline was exaggerated in phrenicotomized-sedentary rats relative to unoperated-sedentary rats (change in burst frequency = -23+/-4 vs. -11 +/-5 bursts/min, respectively; 5 min posthypoxia; P<0.05), an effect that was eliminated by spontaneous exercise. The results indicate that neither voluntary running nor unilateral phrenicotomy has major effects on time-dependent hypoxic phrenic responses, with the exception of an unexpected effect of phrenicotomy on posthypoxia frequency decline in sedentary rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号