首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this investigation was to determine whether long-term, heavy resistance training would cause adaptations in rat skeletal muscle structure and function. Ten male Wistar rats (3 weeks old) were trained to climb a 40-cm vertical ladder (4 days/week) while carrying progressively heavier loads secured to their tails. After 26 weeks of training the rats were capable of lifting up to 800 g or 140% of their individual body mass for four sets of 12–15 repetitions per session. No difference in body mass was observed between the trained rats and age-matched sedentary control rats. Absolute and relative heart mass were greater in trained rats than control rats. When expressed relative to body mass, the mass of the extensor digitorum longus (EDL) and soleus muscles was greater in trained rats than control rats. No difference in absolute muscle mass or maximum force-producing capacity was evident in either the EDL or soleus muscles after training, although both muscles exhibited an increased resistance to fatigue. Individual fibre hypertrophy was evident in all four skeletal muscles investigated, i.e. EDL, soleus, plantaris and rectus femoris muscles of trained rats, but muscle fibre type proportions within each of the muscles tested remained unchanged. Despite an increased ability of the rats to lift progressively heavier loads, this heavy resistance training model did not induce gross muscle hypertrophy nor did it increase the force-producing capacity of the EDL or soleus muscles. Accepted: 17 September 1997  相似文献   

2.
While endurance exercise training has been shown to enhance insulin action in skeletal muscle, the effects of high resistance strength training are less clear. The purpose of this study was to determine the rate of glucose uptake in skeletal muscle in which compensatory hypertrophy was induced by synergist muscle ablation. Basal and insulin mediated [3H] 2-deoxyglucose uptake were measured in soleus and EDL muscles using the perfused rat hindquarter preparation. Neither basal nor insulin mediated glucose uptake, when expressed per gram muscle, were enhanced in hypertrophied soleus muscles compared with control muscles, despite a twofold increase in mass (P less than 0.01). In the EDL, muscle mass increased 60% with synergist ablation (P less than 0.01), however insulin mediated glucose uptake was not different from that of control muscles. The basal rate of glucose uptake in hypertrophied EDL muscles was increased twofold over that of control muscles (P less than 0.05), possibly due to changes in neural input and/or loading. These results suggest that the stimulus for development of increased muscle mass is different from that for metabolic adaptations.  相似文献   

3.
Although the soleus muscle comprises only 6% of the ankle plantar flexor mass in the rat, a major role in stance and walking has been ascribed to it. The purpose of this study was to determine if removal of the soleus muscle would result in adaptations in the remaining gastrocnemius and plantaris muscles due to the new demands for force production imposed on them during stance or walking. A second purpose was to determine whether the mass or the fiber type of the muscle(s) removed was a more important determinant of compensatory adaptations. Male Sprague-Dawley rats underwent bilateral removal of soleus muscle, plantaris muscle, or both muscles. For comparison, compensatory hypertrophy was induced in soleus and plantaris muscles by gastrocnemius muscle ablation. After forty days, synergist muscles remaining intact were removed. Mass, and oxidative, glycolytic, and contractile enzyme activities were determined. Despite its role in stance and slow walking, removal of the soleus muscle did not elicit a measurable alteration in muscle mass, or in citrate synthase, lactate dehydrogenase, or myofibrillar ATPase activity in gastrocnemius or plantaris muscles. Similarly, removal of the plantaris muscle, or soleus and plantaris muscles, had no effect on the gastrocnemius muscle, suggesting that this muscle was able to easily meet the new demands placed on it. These results suggest that amount of muscle mass removed, rather than fiber type, is the most important stimulus for compensatory hypertrophy. They also suggest that slow-twitch motor units in the gastrocnemius muscle play an important role during stance and locomotion in the intact animal.  相似文献   

4.
During the post-weaning growth and maturation period (25/90 days after birth), rat limb muscles are submitted to specific adaptations. Our aim was to characterize the mechanical properties of two muscles that are opposite in terms of fibre-type distribution, the soleus and the extensor digitorum longus (EDL) muscles of male Wistar rats. Results showed a fast-to-slow fibre-type transition in soleus while no modification in fibre-type distribution was observed in EDL. A growth-induced increase in muscle force was observed. Soleus underwent an increase in twitch kinetics, but EDL showed no modification. Resistance to fatigue was higher in 90-day-old soleus but not modified in the EDL. Surprisingly, analysis of maximal shortening velocity showed a decrease in both soleus and EDL. Finally, tension/extension curves indicated a growth-induced increase in series elastic stiffness in the two muscles. These results suggest that during this growth period, skeletal muscles are submitted to differential adaptations. Moreover, whereas adaptation of biomechanical properties observed can be explained partly by an adaptation of fibre profile in soleus, this is not the case for EDL. It is suggested that changes in muscle architecture, which are often disregarded, could explain some variations in mechanical properties, especially when muscles undergo an increase in both mass and length.  相似文献   

5.
In the present study we have compared the effects of leucine supplementation and its metabolite β-hydroxy-β-methyl butyrate (HMB) on the ubiquitin-proteasome system and the PI3K/Akt pathway during two distinct atrophic conditions, hindlimb immobilization and dexamethasone treatment. Leucine supplementation was able to minimize the reduction in rat soleus mass driven by immobilization. On the other hand, leucine supplementation was unable to provide protection against soleus mass loss in dexamethasone treated rats. Interestingly, HMB supplementation was unable to provide protection against mass loss in all treatments. While solely fiber type I cross sectional area (CSA) was protected in immobilized soleus of leucine-supplemented rats, none of the fiber types were protected by leucine supplementation in rats under dexamethasone treatment. In addition and in line with muscle mass results, HMB treatment did not attenuate CSA decrease in all fiber types against either immobilization or dexamethasone treatment. While leucine supplementation was able to minimize increased expression of both Mafbx/Atrogin and MuRF1 in immobilized rats, leucine was only able to minimize Mafbx/Atrogin in dexamethasone treated rats. In contrast, HMB was unable to restrain the increase in those atrogenes in immobilized rats, but in dexamethasone treated rats, HMB minimized increased expression of Mafbx/Atrogin. The amount of ubiquitinated proteins, as expected, was increased in immobilized and dexamethasone treated rats and only leucine was able to block this increase in immobilized rats but not in dexamethasone treated rats. Leucine supplementation maintained soleus tetanic peak force in immobilized rats at normal level. On the other hand, HMB treatment failed to maintain tetanic peak force regardless of treatment. The present data suggested that the anti-atrophic effects of leucine are not mediated by its metabolite HMB.  相似文献   

6.
Beta(2)-adrenoceptor agonists such as fenoterol are anabolic in skeletal muscle, and because they promote hypertrophy and improve force-producing capacity, they have potential application for enhancing muscle repair after injury. No previous studies have measured the beta(2)-adrenoceptor population in regenerating skeletal muscle or determined whether fenoterol can improve functional recovery in regenerating muscle after myotoxic injury. In the present study, the extensor digitorum longus (EDL) muscle of the right hindlimb of deeply anesthetized rats was injected with bupivacaine hydrochloride, which caused complete degeneration of all muscle fibers. The EDL muscle of the left hindlimb served as the uninjured control. Rats received either fenoterol (1.4 mg x kg(-1) x day(-1)) or an equal volume of saline for 2, 7, 14, or 21 days. Radioligand binding assays identified a approximately 3.5-fold increase in beta(2)-adrenoceptor density in regenerating muscle at 2 days postinjury. Isometric contractile properties of rat EDL muscles were measured in vitro. At 14 and 21 days postinjury, maximum force production (P(o)) of injured muscles from fenoterol-treated rats was 19 and 18% greater than from saline-treated rats, respectively, indicating more rapid restoration of function after injury. The increase in P(o) in fenoterol-treated rats was due to increases in muscle mass, fiber cross-sectional area, and protein content. These findings suggest a physiological role for beta(2)-adrenoceptor-mediated mechanisms in muscle regeneration and show clearly that fenoterol hastens recovery after injury, indicating its potential therapeutic application.  相似文献   

7.
The purpose of this study was to determine whether skeletal muscle mass, myofibrillar adenosinetriphosphatase activity, and the expression of myosin heavy (MHC) and light chain subunits are differentially affected in juvenile (4 wk) and young adult (12 wk) rats by a hypertrophic growth stimulus. Hypertrophy of the plantaris or soleus was studied 4 wk after ablation of either two [gastrocnemius (GTN) and soleus or plantaris] or one (GTN) synergistic muscle(s). There was no difference in the relative magnitude of hypertrophy because of age. Plantaris myofibrillar adenosinetriphosphatase activity was decreased 21 and 12% in juvenile and adult rats, respectively, as a result of ablation of both the GTN and soleus. Slow myosin light chain isoforms (1s and 2s) were expressed to a greater extent in hypertrophied plantaris muscles of both ages, but the increase in 1s was greater in juvenile rats. The relative expression of slow beta-MHC in hypertrophied plantaris muscles increased by 470 and 350%, whereas MHC IIb decreased by 70 and 33% in juvenile and adult rats, respectively. The relative expression of MHC IIa increased (56%) in the plantaris after ablation in juvenile rats only. These shifts in myosin subunit expression and the increases in mass were generally about one-half the magnitude when only the GTN was removed. There were no detectable myosin shifts in hypertrophied soleus muscles. Although the extent of muscle hypertrophy is similar, the shifts in myosin subunits were greater in juvenile than in young adult rats.  相似文献   

8.
We used intact fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles from rats and mice to test the hypothesis that exogenous application of an oxidant would increase maximum isometric force production (P(o)) of slow-twitch muscles to a greater extent than fast-twitch skeletal muscles. Exposure to an oxidant, hydrogen peroxide (H(2)O(2); 100 microM to 5 mM, 30 min), affected P(o) of rat muscles in a time- and dose-dependent manner. P(o) of rat soleus muscles was increased by 8 +/- 1 (SE) and 14 +/- 1% (P < 0.01) after incubation with 1 and 5 mM H(2)O(2), respectively, whereas in mouse soleus muscles P(o) was only increased after incubation with 500 microM H(2)O(2). P(o) of rat EDL muscles was affected by H(2)O(2) biphasically; initially there was a small increase (3 +/- 1%), but then P(o) diminished significantly after 30 min of treatment. In contrast, all concentrations of H(2)O(2) tested decreased P(o) of mouse EDL muscles. A reductant, dithiothreitol (DTT; rat = 10 mM, mouse = 1 mM), was added to quench H(2)O(2), and it reversed the potentiation in P(o) in rat soleus but not in rat EDL muscles or in any H(2)O(2)-treated mouse muscles. After prolonged equilibration (30 min) with 5 mM H(2)O(2) without prior activation, P(o) was potentiated in rat soleus but not EDL muscles, demonstrating that the effect of oxidation in the soleus muscles was also dependent on the activation history of the muscle. The results of these experiments demonstrate that P(o) of both slow- and fast-twitch muscles from rats and mice is modified by redox modulation, indicating that maximum P(o) of mammalian skeletal muscles is dependent on oxidation.  相似文献   

9.
Phosphoglycerate mutase (PGM) and creatine phosphokinase (CK) occur as three isozymes (types MM, MB and BB) in mammals and these exhibit similar transitions during skeletal muscle development. To study the influence of innervation on this transition and on the maintenance of the isozyme phenotype in mature muscle, we have determined the changes produced by sciatic neurectomy in neonatal and adult rat hindlimb muscles. In 40-day-old rats, denervation decreased both PGM and CK activity, the effect being more pronounced in the fast-twitch extensorum digitorum longus (EDL) and gastrocnemius muscles than in the slow-twitch soleus muscle. It also produced a progressive increase in the proportion of MB- and BB-PGM isozymes in EDL and gastrocnemius but not in soleus, and an increase of MB- and BB-CK isozymes in all three muscles. In 5-day-old rats, denervation prevented the developmental increase of PGM and CK activity in all three muscles. Denervation also prevented the normal decrease in the relative amounts of the MB and BB isozymes of both enzymes which occur during postnatal muscle development. These results can be explained by the different effects of denervation upon slow and fast muscles, and by the distinct distribution of PGM and CK isozymes in rat type I and II muscle fibers.  相似文献   

10.
Over the last decade, we have attempted to determine if mammalian skeletal muscle's steady-level force development as established by mechanical and stimulation parameters can be increased or decreased by physiological signals. In these experiments, nitric oxide (NO), endothelin-1 (ET-1), adenosine (Ado), and beta-adrenergic agonists (beta) modified force production in the soleus and (or) the extensor digitorum longus (EDL) of the mouse. NO and beta increased the force produced by 0.5-s tetanic contractions at 0.6 contractions/min in both muscles. While EDL did not respond to either Ado or ET-1, the developed force of the soleus was amplified by Ado but attenuated by ET-1. Increased cAMP analogue concentrations amplified developed force in both muscles, but a cGMP analogue had no effect on either muscle. Following an increase in the contraction frequency of the soleus, the increased force in response to NO disappeared, as did the decreased force to ET-1. The increase in force due to a cAMP analogue disappeared during fatigue but reappeared quickly during recovery. Thus, steady-level developed force can be modified by a number of substances that can be released from locations in the body or muscle. The response to a given compound is determined by a complex interaction of metabolic and intracellular signals on the force-generating cascade.  相似文献   

11.
Intramuscular injection of bupivacaine causes complete degeneration of fibers in extensor digitorum longus (EDL) muscles of rats, followed by complete regeneration within 60 days. Previous studies have shown that regenerated EDL muscles are protected from contraction-induced injury 60 days after bupivacaine injection. It is possible that these regenerated muscles have altered length-tension relations because of fiber remodeling. We tested the hypothesis that length-tension relations are different in bupivacaine-injected and noninjected control muscles. EDL and soleus muscles of the right hindlimb of deeply anesthetized rats were injected with bupivacaine and then allowed to recover for 7, 14, 21, or 60 days (7D, 14D, 21D, 60D), and isometric contractile properties were assessed. Muscles of the contralateral limb were not injected and served as control. EDL muscles recovered from bupivacaine injection more rapidly than soleus muscles, with mass restored to control levels at 21D, and isometric tetanic force (P(o)) restored to control at 60D. In contrast, mass and P(o) of injected soleus muscles was not restored to control even at 60D. In 7D EDL muscles, length-tension curves were shifted leftward compared with control, but in 21D and 60D EDL muscles length-tension curves were right shifted significantly (treatment x muscle length: P < 0.001). Although no clear shift in the position of the length-tension curve was observed in regenerating soleus muscles, force production was enhanced on the descending limb of the curve in 60D soleus muscles (treatment x relative muscle length: P < 0.01). The rightward shift in the length-tension curve of EDL muscles 60 days after bupivacaine injection is likely to contribute to the mechanism for their previously observed protection from contraction-induced injury.  相似文献   

12.
Calpains are Ca2+ cysteine proteases that have been proposed to be involved in the cytoskeletal remodeling and wasting of skeletal muscle. Cumulative evidence also suggests that β2-agonists can lead to skeletal muscle hypertrophy through a mechanism probably related to calcium-dependent proteolytic enzyme. The aim of our study was to monitor calpain activity as a function of clenbuterol treatment in both slow and fast phenotype rat muscles. For this purpose, for 21?days we followed the time course of the calpain activity and of the ubiquitous calpain 1 and 2 autolysis, as well as muscle remodeling in the extensor digitorum longus (EDL) and soleus muscles of male Wistar rats treated daily with clenbuterol (4?mg·kg-1). A slow to fast fiber shift was observed in both the EDL and soleus muscles after 9?days of treatment, while hypertrophy was observed only in EDL after 9?days of treatment. Soleus muscle but not EDL muscle underwent an early apoptonecrosis phase characterized by hematoxylin and eosin staining. Total calpain activity was increased in both the EDL and soleus muscles of rats treated with clenbuterol. Moreover, calpain 1 autolysis increased significantly after 14?days in the EDL, but not in the soleus. Calpain 2 autolysis increased significantly in both muscles 6 hours after the first clenbuterol injection, indicating that clenbuterol-induced calpain 2 autolysis occurred earlier than calpain 1 autolysis. Together, these data suggest a preferential involvement of calpain 2 autolysis compared with calpain 1 autolysis in the mechanisms underlying the clenbuterol-induced skeletal muscle remodeling.  相似文献   

13.
Increasing the intramuscular stores of total creatine [TCr = creatine (Cr) + creatine phosphate (CrP)] can result in improved muscle performance during certain types of exercise in humans. Initial uptake of Cr is accompanied by an increase in cellular water to maintain osmotic balance, resulting in a decrease in myoplasmic ionic strength. Mechanically skinned single fibers from rat soleus (SOL) and extensor digitorum longus (EDL) muscles were used to examine the direct effects on the contractile apparatus of increasing [Cr], increasing [Cr] plus decreasing ionic strength, and increasing [Cr] and [CrP] with no change in ionic strength. Increasing [Cr] from 19 to 32 mM, accompanied by appropriate increases in water to maintain osmolality, had appreciable beneficial effects on contractile apparatus performance. Compared with control conditions, both SOL and EDL fibers showed increases in Ca2+ sensitivity (+0.061 ± 0.004 and +0.049 ± 0.009 pCa units, respectively) and maximum Ca2+-activated force (to 104 ± 1 and 105 ± 1%, respectively). In contrast, increasing [Cr] alone had a small inhibitory effect. When both [Cr] and [CrP] were increased, there was virtually no change in Ca2+ sensitivity of the contractile apparatus, and maximum Ca2+-activated force was 106 ± 1% compared with control conditions in both SOL and EDL fibers. These results suggest that the initial improvement in performance observed with Cr supplementation is likely due in large part to direct effects of the accompanying decrease in myoplasmic ionic strength on the properties of the contractile apparatus. ergogenic aid; muscle contraction; fatigue  相似文献   

14.
The effects of 10 mM (high) and 70 microM (physiologically relevant) caffeine on force, work output, and power output of isolated mouse extensor digitorum longus (EDL) and soleus muscles were investigated in vitro during recovery from fatigue at 35 degrees C. To monitor muscle performance during recovery from fatigue, we regularly subjected the muscle to a series of cyclical work loops. Force, work, and power output during shortening were significantly higher after treatment with 10 mM caffeine, probably as a result of increased Ca2+ release from the sarcoplasmic reticulum. However, the work required to relengthen the muscle also increased in the presence of 10 mM caffeine. This was due to a slowing of relaxation and an increase in muscle stiffness. The combination of increased work output during shortening and increased work input during lengthening had different effects on the two muscles. Net power output of mouse soleus muscle decreased as a result of 10 mM caffeine exposure, whereas net power output of the EDL muscle showed a transient, significant increase. Treatment with 70 microM caffeine had no significant effect on force, work, or power output of EDL or soleus muscles, suggesting that the plasma concentrations found when caffeine is used to enhance performance in human athletes might not directly affect the contractile performance of fatigued skeletal muscle.  相似文献   

15.
Hypotheses were tested that the deficit in maximum isometric force normalized to muscle cross-sectional area (i.e., specific Po, N/cm2) of hypertrophied muscle would return to control value with time and that the rate and magnitude of adaptation of specific force would not differ between soleus and plantaris muscles. Ablation operations of the gastrocnemius and plantaris muscles or the gastrocnemius and soleus muscles were done to induce hypertrophy of synergistic muscle left intact in female Wistar rats (n = 47) at 5 wk of age. The hypertrophied soleus and plantaris muscles and control muscles from other age-matched rats (n = 22) were studied from days 30 to 240 thereafter. Po was measured in vitro at 25 degrees C in oxygenated Krebs-Ringer bicarbonate. Compared with control values, soleus muscle cross-sectional area increased 41-15% from days 30 to 240 after ablation, whereas Po increased 11 and 15% only at days 60 and 90. Compared with control values, plantaris muscle cross-sectional area increased 52% at day 30, 40% from days 60 through 120, and 15% at day 240. Plantaris muscle Po increased 25% from days 30 to 120 but at day 240 was not different from control value. Changes in muscle architecture were negligible after ablation in both muscles. Specific Po was depressed from 11 to 28% for both muscles at all times. At no time after the ablation of synergistic muscle did the increased muscle cross-sectional area contribute fully to isometric force production.  相似文献   

16.
Aim of this study is to analyze the effect of chronic administration of beta agonist isoproterenol hydrochloride (60 mg kg(-1) day(-1); 30 days) on soleus (a slow type) and extensor digitorum longus (EDL, a fast type) muscles in young mice. Isoproterenol resulted in significant increase in muscle weight to whole body weight ratio with no increase in hypertrophy index in soleus muscle. A significant increase in noncontractile protein collagen is also observed in both muscles but more prominent in soleus muscle. Collagen proliferation is also analyzed on sodium dodecyle sulphate polyacrylamide gel electrophoresis (SDS-PAGE) of pepsin soluble and Cyanogen Bromide (CN Br) treated pepsin insoluble collagen. Isoproterenol remolded the myofibrillar proteins in both muscles but significant increase in myofibrillar ATPase activity occurred only in soleus muscle. It is concluded that growth stimulatory effect of isoproterenol hydrochloride is more prominent in soleus than FDL muscle. Isoproterenol augmented the proliferation of non-contractile protein collagen in soleus and EDL muscles. The transformation in myofibrillar proteins caused by isoproterenol might lead to an enhancement of contractile performance.  相似文献   

17.
The purpose of this work is to study the influence of aging, training, and food restriction on skeletal muscle mass and fiber number. Male Fischer 344 rats (n = 49) at 3 mo postpartum were assigned to three groups: 1) sedentary control (confined to cage), 2) exercise trained (18 m/min, 8 degrees grade, 20 min/day, 5 days/wk), or 3) food restricted (alternate days of free access and no access to food). At 12 and 27 mo postpartum the soleus and extensor digitorum longus (EDL) muscles were excised, weighed, and fiber number was quantified after HNO3 digestion. At 27 mo the masses of soleus and EDL muscles of sedentary control rats were 83 and 70%, respectively, of 12-mo values (138 +/- 5 and 151 +/- 4 mg). At 27 mo, soleus muscle mass of trained rats was 113% of sedentary control values, whereas EDL muscle mass was unaffected by training. At 27 mo, food restriction had no effect on the mass of both muscles compared with 27-mo sedentary control values. Fiber number was not affected by training or food restriction in both muscles. Fiber number for soleus and EDL muscles of combined groups declined with age by 5.6 and 4.2%, respectively. With aging, the small loss of muscle fibers can account at most for approximately 25% of the observed skeletal muscle atrophy.  相似文献   

18.
Run training can increase the mass of soleus muscle grafts, yet values remain lower than nongrafted muscle even with continued training. Thus we tested the hypothesis that nerve-implant soleus grafts of rats previously run trained would be refractory to the hypertrophic stimulus of ablation of synergistic muscle. We also compared the magnitude of growth of the nerve-implant soleus graft after ablation with that reported by others for the nerve-intact soleus graft. We studied eight groups that differed relative to the combination and order of treatments (running and ablation of synergistic muscle) and the graft age at the time of the ablation operation and study. Graft mass, protein concentration, and histochemical fiber composition were measured. Compared with grafts from cage-sedentary rats, the mass and protein content of the nerve-implant soleus grafts were higher (16-63%) at all times after ablation. When the ablation operation was performed at 56 days postgrafting, there was a 33% increase in protein content of the soleus graft by 84 days for cage-sedentary animals. This increase was twofold greater (P less than or equal to 0.02) than the 15% increase that followed ablation for the grafts from the animals that had been run trained before the ablation operation. Four weeks of run training before the ablation operation impaired the adaptive response of muscle grafts to the ablation of synergistic muscles, which may reflect alterations in motor unit recruitment and/or satellite cell activity. Ablation of synergistic muscles resulted in an absolute growth of the nerve-implant soleus grafts that was comparable with that reported for nerve-intact soleus grafts.  相似文献   

19.
The aim of this study was to utilize a rodent model of resistance exercise to compare training with creatine supplementation with training alone. We tested the hypothesis that creatine supplementation during high resistance training would result in greater increases in muscle mass, contractile force, and superior resistance to fatigue compared with training alone. Two groups of rats underwent training of the tibialis anterior muscle (TA) for 4 weeks without creatine (NCr group) or with creatine (0.5 g.kg(-1).d(-1)) (CrT group). The relative loads in each animal were held constant during the training protocol. Training resulted in comparable significant increases in muscle contractile force in both the NCr and CrT groups. Creatine supplementation did not result in a significant increase in fatigue resistance and resulted in a significant decrease in postfatigue recovery compared with training alone. Training resulted in a significant increase in muscle dry weight in both groups, whereas muscle wet weight gains in the CrT group were double the gains in the NCr group. The data from this study suggest that for creatine to have a beneficial effect on muscle strength and mass beyond training alone, the workloads need to be adjusted. That is, any potential benefit of creatine to enable a greater lifting volume during resistance training needs to be incorporated into the training regime for creatine to be effective.  相似文献   

20.
Because optimal overload-induced skeletal muscle hypertrophy requires ANG II, we aimed to determine the effects of blocking ANG II production [via angiotensin-converting enzyme (ACE) inhibition] on potential mediators of hypertrophy in overloaded skeletal muscle, namely, myonuclear addition and fibroblast content. In a 2 x 2 design, adult (200-225 g) female Sprague-Dawley rats were placed into one of four groups (n = 8/group): 7-day skeletal muscle overload, sham operation, 7-day skeletal muscle overload with ACE inhibition, or sham operation with ACE inhibition. Functional overloads of the plantaris and soleus muscles were produced via bilateral surgical ablation of the synergistic gastrocnemius muscle, and ACE inhibition was accomplished by the addition of the ACE inhibitor enalapril maleate to the animals' daily drinking water (0.3 mg/ml). Myonuclear addition and extrasarcolemmal nuclear proliferation, as measured by in vivo 5-bromo-2'-deoxyuridine labeling, were significantly (P < or = 0.05) increased by overload in both the slow-twitch soleus and fast-twitch plantaris muscles. Furthermore, ACE inhibition attenuated these overload-induced increases in the soleus muscle but not in the plantaris muscle. However, the effect of ACE inhibition on soleus extrasarcolemmal nuclei was not likely due to differences in fibroblast content because overload elicited significant increases in vimentin-positive areas in soleus and plantaris muscles, and these areas were unaffected by ACE inhibition in either muscle. There was no effect of ACE inhibition on any measure in sham-operated muscles. Collectively, these data indicate that ANG II may mediate the satellite cell response to overload in slow-twitch soleus but not in fast-twitch plantaris muscles and that this effect may occur independently of changes in fibroblast content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号