首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The relation between the passage level of Marek's disease virus, C2 strain, and of herpesvirus of turkey (HVT), O1 strain, in cell culture and the level of the serological response of chickens to these viruses was examined. In both cases the immune response of chickens to these viruses decreased with increase in the number of in vitro passages of virus. Virus was not recovered from chickens inoculated with HVT highly passaged in vitro, which had become a high producer of cell-free virus in vitro, and grew equally well at 37 C and 41 C.  相似文献   

3.
4.
Marek's disease virus (MDV) showed only 0.3-0.6% homology in DNA sequence with herpesvirus of turkeys (HVT) at Tm-24.4 degrees C in spite of its antigenic similarity to the latter. Southern blot hybridization under stringent conditions showed that the homology between MDV and HVT is located in the restricted portion of these viral genomes. At Tm-49.6 degrees C, which permits the detection of homology with one base mismatch in three between the MDV and HVT DNAs, sequences with weak homology were found to be distributed over most of these viral genomes. No homology was detected between Epstein-Barr virus and either MDV or HVT DNA.  相似文献   

5.
A Kato  I Sato  T Ihara  S Ueda  A Ishihama  K Hirai 《Gene》1989,84(2):399-405
The genomes of two avian herpesviruses, Marek's disease virus type 1 (MDV1) and herpesvirus of turkey (HVT), share close homology only within certain DNA regions. One such homologous region of HVT DNA was cloned and sequenced. Two open reading frames (ORFs) were found in the long unique region, ORF1 encoding the glycoprotein A (gA), and ORF2 encoding a still unidentified protein. These two HVT-ORFs are located at almost the same positions as the homologous MDV1-ORFs. The nucleotide sequence homologies between HVT and MDV1 were 73% and 68% for ORF1 and ORF2, respectively. Both the 5'- and 3'-noncoding regions, however, are less conserved. The third letter within every codon of ORF1 and ORF2 showed a mismatch of greater than 50% between the two viruses. The amino acid (aa) sequence homologies between the corresponding putative viral proteins are 83% and 80% for ORF1 (gA) and ORF2, respectively. More than 90% homology was observed in the C-terminal region of ORF1 (gA). Furthermore, the deduced aa sequences for both of the ORFs in these two viruses showed considerable homology to two adjoining genes in herpes simplex virus type 1, the glycoprotein C and UL45 genes.  相似文献   

6.
7.
A bovine herpesvirus 1 variant (mar6) containing a mutation in a viral glycoprotein with a molecular weight of 130,000 (g130) was isolated by selecting for resistance to a neutralizing monoclonal antibody (130-6) directed against g130. Mar6 was completely resistant to neutralization by monoclonal antibody 130-6 in the presence and absence of complement, but was neutralized by polyvalent immune sera. The mar6 mutant synthesized and processed g130, but produced plaques which failed to react with monoclonal antibody 130-6 in an in situ immunoassay (black plaque). However, monoclonal antibody 130-6 was capable of binding and immunoprecipitating g130 from infected-cell extracts produced by lysis of mar6-infected cells with nonionic detergents. The mutation in mar6 was mapped by marker rescue with cloned bovine herpesvirus 1 restriction enzyme fragments to a 3.8-kilobase fragment at approximate map units 0.405 to 0.432. In addition, it was found that a DNA probe containing the glycoprotein B gene of herpes simplex type 1 hybridized uniquely to the same 3.8-kilobase fragment which was shown by marker rescue to contain the mutation site in the gene for bovine herpesvirus 1 g130.  相似文献   

8.
9.
10.
11.
Six cell lines derived from Marek's disease lymphomas of chickens and turkeys were investigated for the status of Marek's disease virus (MDV) DNA. In the transformed T- and B-cell lines, viral DNA could be detected by conventional Southern blot hybridization, by Gardella gel electrophoresis, and by in situ hybridization of metaphase and interphase chromosomes. Integration of viral DNA into the host cell chromosome was observed in all cell lines. Two to 12 integration sites of viral DNA could be detected in metaphase chromosome spreads. The integration sites were characteristic for the individual cell lines and were preferentially located at the telomers of large- and mid-sized chromosomes or on minichromosomes. In four of six cell lines, a minor population of latently infected cells supported the lytic cycle of MDV, giving rise to linear virion DNAs. In one of these cell lines, a third species of MDV DNA could be detected with properties reminiscent of covalently closed circular DNA. The finding that MDV integrates regularly into the genomes of latently infected cells is crucial to understanding the molecular biology of herpesvirus-induced tumors in the natural host.  相似文献   

12.
The presence of Marek's disease tumor-associated surface antigen (MATSA) was demonstrated by the direct and indirect membrane immunofluorescent tests, in chicks inoculated 7-10 days earlier with herpesvirus of turkeys (HVT), O1 strain. In in vitro cultures of spleen lymphocytes and ovaries obtained from these chicks, MATSA-positive cells were also detected after 1-7 days cultivation. A possible mechanism of protection by HVT vaccine against Marek's disease is proposed.  相似文献   

13.
The glycoprotein gB related to neutralization of Marek's disease virus (MDV) and herpesvirus of turkeys (HVT) is composed of several glycosylated polypeptides, which were immunoprecipitated with monoclonal antibodies and rabbit antiserum cross-reactive to MDV-gB and HVT-gB, and analyzed by SDS-polyacrylamide gel electrophoresis. The present pulse-chase experiments showed that the precursor forms of MDV- and HVT-gB were glycoproteins with molecular weights of 110K to 115K (gp115/110) and 115K (gp115), respectively. These precursor forms were processed to smaller gB's (gp63 and gp50 for MDV; gp62, gp52, and gp48 for HVT), at least in part by sialylation. The proteins synthesized in the presence of tunicamycin were two polypeptides of 88K and 83K in MDV-infected cells and a 90K polypeptide in HVT-infected cells, indicating the presence of unglycosylated precursor forms of MDV- and HVT-gB. Differences between virulent and avirulent MDV's and between HVT's with and without protective activity against Marek's disease were observed in the processed forms of MDV- and HVT-gB, especially at the processing step of sialylation.  相似文献   

14.
Hypervariable regions in the putative glycoprotein of hepatitis C virus.   总被引:25,自引:0,他引:25  
A comparison of the sequences of the putative glycoprotein region in three independent cDNA clones of hepatitis C virus and of sequences of four other clones revealed extensive genetic variation clustered and interspersed with highly conserved amino acid sequences. We obtained evidence for two hypervariable regions in the putative envelope glycoprotein, one region was assumed to be a potential antigenic site, as deduced from the hydrophilicity and analyses of secondary structures. These observations suggest the existence of a large pool of antigenic variants of hepatitis C virus, in Japan.  相似文献   

15.
The 57,000- to 65,000-dalton (Da) Marek's disease herpesvirus A (MDHV-A) antigen glycoprotein (gp57-65) has a 47,000-Da unglycosylated precursor polypeptide (pr47), as determined by immunological detection after cell-free translation of infected-cell mRNA. Cleavage of its signal peptide yielded a 44,000-Da precursor polypeptide molecule (pr44), detected both in vivo after tunicamycin inhibition of glycosylation and in vitro after dog pancreas microsome processing of pr47. High-resolution pulse-chase studies showed that pr44 was quickly glycosylated (within 1 min) to nearly full size, a rapid processing time consistent with a cotranslational mode of glycosylation. This major glycosylation intermediate was further modified 6 to 30 min postsynthesis (including the addition of sialic acid), and mature MDHV-A was secreted 30 to 120 min postsynthesis. Limited apparent secretion of pr44 occurred only in the first minute postsynthesis, in contrast to the later secretion of most of the MDHV-A polypeptide as the fully glycosylated form described above. In addition, in the presence of tunicamycin a small fraction of the newly synthesized MDHV-A protein appeared as a secreted, partially glycosylated, heterogeneously sized precursor larger than pr44. pr44 constituted the major fraction of the new MDHV-A made in the presence of the inhibitor but the precursor was smaller than mature MDHV-A. These data indicate that there is a minor glycosylation pathway not sensitive to tunicamycin and that normal glycosylation is not necessary for secretion. Collectively, the data demonstrate that the rapid release of most of the fully glycosylated form of MHDV-A from the cell shortly after synthesis is true secretion in a well-regulated and precisely programmed way and not the result of cell death and disruption.  相似文献   

16.
A cell line tentatively designated as MDCC-BO1(T), was established from spleen cells of an apparently healthy chicken inoculated with herpesvirus of turkey (HVT). BO1(T) cells were T lymphoblastoid cells and the more than 95% of them had Marek's disease (MD) tumor-associated surface antigen (MATSA). However, no viral internal antigens or membrane antigens could be demonstrated in them by immunofluorescence tests using chicken anti-HVT and -MD virus (MDV) sera. The virus could be rescued from BO1(T) cells by co-cultivation with chick embryo fibroblasts (CEF). The DNA of the rescued virus was characterized as HVT DNA by its sedimentation profile in a neutral glycerol gradient and its endonuclease Hind III cleavage-pattern. Ultrastructural studies on CEF infected with the rescued virus revealed the presence of HVT-like virions. However, DNA-DNA reassociation kinetics showed that the BO1(T) cells contained a few copies of NVT and also MDV genomes.  相似文献   

17.
A gene in equine herpesvirus 1 (EHV-1, equine abortion virus) homologous to the glycoprotein H gene of herpes simplex virus (HSV) was identified and characterised by its nucleotide and derived amino acid sequence. The EHV-1 gH gene is located at 0.47-0.49 map units and contains an open reading frame capable of specifying a polypeptide of 848 amino acids, including N- and C-terminal hydrophobic domains consistent with signal and membrane anchor regions respectively, and 11 potential sites for N-glycosylation. Alignment of the amino acid sequence with those published for HSV gH, varicella zoster virus gpIII, Epstein Barr virus gp85 and human cytomegalovirus p86 shows similarity of the EHV gene with the 2 other alpha-herpesviruses over most of the polypeptide, but only the C-terminal half could be aligned for all 5 viruses. The identical positioning of 6 cysteine residues and a number of highly conserved amino acid motifs supports a common evolutionary origin of this gene and is consistent with its role as an essential glycoprotein of the herpesvirus family. An origin of replication is predicted to occur at approximately 300 nucleotides downstream of the EHV-1 gH coding region, on the basis of similarity to other herpesvirus origins.  相似文献   

18.

Background  

Mammalian sex-chromosomes originated from a pair of autosomes. A step-wise cessation of recombination is necessary for the proper maintenance of sex-determination and, consequently, generates a four strata structure on the X chromosome. Each stratum shows a specific per-site nucleotide sequence difference (p-distance) between the X and Y chromosomes, depending on the time of recombination arrest. Stratum 4 covers the distal half of the human X chromosome short arm and the p-distance of the stratum is ~10%, on average. However, a 100-kb region, which includes KALX and VCX, in the middle of stratum 4 shows a significantly lower p-distance (1-5%), suggesting frequent sequence exchanges or gene conversions between the X and Y chromosomes in humans. To examine the evolutionary mechanism for this low p-distance region, sequences of a corresponding region including KALX/Y from seven species of non-human primates were analyzed.  相似文献   

19.
20.
So far, vaccination experiments against feline immunodeficiency virus have used in vitro-grown virus to challenge the vaccinated hosts. In this study, cats were vaccinated with fixed feline immunodeficiency virus-infected cells and challenged with plasma obtained from cats infected with the homologous virus diluted to contain 10 cat 50% infectious doses. As judged by virus culture, PCRs, and serological analyses performed over an 18-month period after the challenge, all of the vaccinated cats were clearly protected. Interestingly, prior to challenge most vaccines lacked antibodies capable of neutralizing a fresh isolate of the homologous virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号