首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Melanosis observed in association with prolonged chlorpromazine therapy has become a serious problem in mental institutions. Skin pigmentation has produced an appearance which is cosmetically undesirable. Ocular deposits have caused visual impairment. Diffuse visceral involvement has been accompanied by functional disturbances of the involved organs.Withholding chlorpromazine did not diminish the pigment deposits already present in eight patients with chlorpromazine-induced melanosis. Therefore therapy for existing cases and means of preventing this side effect were investigated. A method of blocking melanin synthesis by depressing tyrosinase activity was devised. A copperchelating agent, D-penicillamine, was administered for a period of four weeks (300 mg. three times daily for six days each week, with mineral supplement substituted on the seventh day). Four of six days patients thus treated improved markedly as evidenced by diminution of skin pigmentation. Urinary copper excretion was substantially increased during the trial period. An alternative method of treatment designed to stimulate melatonin production by the pineal gland was employed. Two patients were kept in darkness for a period of four weeks. One improved markedly, the other only slightly.  相似文献   

2.
Melanocytes, which produce the pigment melanin, are known to be closely regulated by neighboring keratinocytes. However, how keratinocytes regulate melanin production is unclear. Here we report that melanin production in melanoma cells (B16F10 and MNT-1) was increased markedly on a keratinocyte-derived extracellular matrix compared with a melanoma cell-derived extracellular matrix. siRNA-mediated reduction of keratinocyte-derived laminin-332 expression decreased melanin synthesis in melanoma cells, and laminin-332, but not fibronectin, enhanced melanin content and α-melanocyte-stimulating hormone-regulated melanin production in melanoma cells. Similar effects were observed in human melanocytes. Interestingly, however, laminin-332 did not affect the expression or activity of tyrosinase. Instead, laminin-332 promoted the uptake of extracellular tyrosine and, subsequently, increased intracellular levels of tyrosine in both melanocytes and melanoma cells. Taken together, these data strongly suggest that keratinocyte-derived laminin-332 contributes to melanin production by regulating tyrosine uptake.  相似文献   

3.
Malignant melanoma operative specimens from 3 patients, containing a substantial proportion of melanin as well as the MeWo cell line also containing the pigment, gave rise to human melanoma strains transplanted to nude mice and rats. All the strains demonstrated a rapid decrease in melanin production compared to the original material. The pigment was detectable by electron microscopy alone.  相似文献   

4.
The production of melanin in the hair and skin is tightly regulated by the melanocortin 1 receptor (MC1R) whose activation is controlled by two secreted ligands, alpha-melanocyte stimulating hormone (alphaMSH) and agouti signal protein (ASP). As melanin is extremely stable, lasting years in biological tissues, the mechanism underlying the relatively rapid decrease in visible pigmentation elicited by ASP is of obvious interest. In this study, the effects of ASP and alphaMSH on the regulation of melanin synthesis and on visible pigmentation were assessed in normal murine melanocytes and were compared with the quick depigmenting effect of the tyrosinase inhibitor, phenylthiourea (PTU). alphaMSH increased pheomelanin levels prior to increasing eumelanin content over 4 days of treatment. Conversely, ASP switched off the pigment synthesis pathway, reducing eu- and pheo-melanin synthesis within 1 day of treatment that was proportional to the decrease in tyrosinase protein level and activity. These results demonstrate that the visible depigmentation of melanocytes induced by ASP does not require the degradation of existing melanin but rather is due to the dilution of existing melanin by melanocyte turnover, which emphasizes the importance of pigment distribution to visible color.  相似文献   

5.
The purpose of this study was to investigate the effects of all-trans retinoic acid (RA) on the induction of transforming growth factor-beta (TGF-beta) that is concerned with the proliferation and melanin synthesis of chick retinal pigment epithelial (RPE) cells in vitro. Chick RPE cells were cultured in the presence or absence of RA and anti-TGF-beta antibody for 7 days. The effects of RA and pan-specific TGF-beta antibody on RPE cell proliferation were assessed by counting the number of cells, and their effects on melanin synthesis were evaluated by measuring the melanin content of the cells. TGF-beta activity in the culture supernatant of RPE cells was measured using CCL-64 cells. RA significantly inhibited RPE cell proliferation and increased melanin synthesis. The addition of pan-specific TGF-beta antibody to the culture blocked the inhibition of RPE cell proliferation and the increased melanin synthesis. RA induced TGF-beta production in the culture supernatant of RPE cells. These findings indicate that RA regulates the proliferation and melanin synthesis of RPE cells via induction of TGF-beta.  相似文献   

6.
Highly purified synthetic salmonid melanin concentrating hormone (MCH) and some analogs were investigated for their ability to concentrate the pigment in scale melanophores of the Chinese grass carp, Ctenopharyngodon idellus, to produce melanin dispersion in frog or lizard melanophores and to inhibit alpha-MSH in its action on mouse melanoma and rat adrenal glomerulosa cells in vitro. In the grass carp, MCH produced half-maximal pigment aggregation at 6 X 10(-11) M and its oxidized form at 7 X 10(-11) M. Replacement of the two methionines at position 3 and 6 with norvaline lowered the potency by a factor of 2.7 and with propargylglycine by a factor of about 7. Linear, Cys5,14-Acm-protected MCH was a full agonist of MCH but with a 345-fold lower potency. Iodinated MCH showed similar, low activity. In tetrapods, salmonid MCH and its analogs displayed only marginal pigment dispersion at concentrations greater than 10(-5) M. Alkali-treatment of MCH increased the pigment-dispersing potency by a factor of about 30 whereas the activity for pigment aggregation in the grass carp was destroyed. At high concentrations (10(-6), 10(-5) M) MCH also stimulated tyrosinase activity in B-16 mouse melanoma cells but did not modify the effects of alpha-MSH in this system. By contrast, when tested on rat adrenal glomerulosa cells, salmonid MCH had no effect alone but at a concentration of greater than 10(-10) M it slightly reduced corticosterone production by an alpha-MSH concentration of 10(-7) M. Aldosterone production was not affected and MCH did not influence the response to ACTH.  相似文献   

7.
A 1.5-kb genomic fragment isolated from Streptomyces avermitilis that directs the synthesis of a brown pigment in Escherichia coli was characterized. Since pigment production in recombinant E. coli was enhanced by the addition of tyrosine to the medium, it had been inferred that the cloned DNA might be associated with melanin biosynthesis. Hybridization studies, however, showed that the pigment gene isolated from S. avermitilis was unrelated to the Streptomyces antibioticus melC2 determinant, which is the prototype of melanin genes in Streptomyces spp. Sequence analysis of the 1.5-kb DNA that caused pigment production revealed a single open reading frame encoding a protein of 41.6 kDa (380 amino acids) that resembled several prokaryotic and eukaryotic 4-hydroxyphenylpyruvate dioxygenases (HPDs). When this open reading frame was overexpressed in E. coli, a protein of about 41 kDa was detected. This E. coli clone produced homogentisic acid (HGA), which is the expected product of the oxidation of 4-hydroxyphenylpyruvate catalyzed by an HPD, and also a brown pigment with characteristics similar to the pigment observed in the urine of alkaptonuric patients. Alkaptonuria is a genetic disease in which inability to metabolize HGA leads to increasing concentrations of this acid in urine, followed by oxidation and polymerization of HGA to an ochronotic pigment. Similarly, the production of ochronotic-like pigment in the recombinant E. coli clone overexpressing the S. avermitilis gene encoding HPD is likely to be due to the spontaneous oxidation and polymerization of the HGA accumulated in the medium by this clone.  相似文献   

8.
Although most of the Ascomycetes present DHN-melanin, some reports suggest that A. nidulans does not produce this type of melanin. In this study, we analyzed the pigment extracted from highly melanized strains (MEL1 and MEL2) of Aspergillus nidulans to determine the type of melanin present in this fungus. Our results showed that the pigment produced by MEL1 and MEL2 mutants possesses physical and chemical properties and UV- and IR-spectra very similar to synthetic DOPA-melanin. The characterization of this pigment in terms of its degradation products indicated the presence of indolic units, which were also found in synthetic DOPA-melanin. The analyses of the elemental composition showed that the pigment extracted from these mutants has a high percentage of nitrogen and, therefore, it cannot be DHN-melanin, which presents only trace of nitrogen. This observation was confirmed in the test with tricyclazole because this inhibitor of DHN-melanin biosynthesis did not suppress pigment production in the MEL1 and MEL2 strains. On the other hand, in a medium containing tropolone, an inhibitor of DOPA-melanin biosynthesis, the dark pigmentation of the colonies was not observed indicating that this compound inhibited melanin production in these strains. Taken together, the results obtained in this study indicate that melanin produced by these mutants is DOPA type, representing the first report on characterization of this type of melanin in A. nidulans.  相似文献   

9.
Cryptococcus neoformans melanizes in the environment and in mammalian tissues, but the process of melanization in either venue is mysterious given that this microbe produces melanin only from exogenous substrates. Understanding the process of melanization is important because melanization is believed to protect against various stresses in the environment, including UV radiation, and pigment production is associated with virulence. Melanization in C. neoformans requires the availability of diphenolic precursors. In contrast, many bacteria synthesize melanin from homogentisic acid (HGA). We report that C. neoformans strains representing all four serotypes can produce a brown pigment from HGA. The brown pigment was acid resistant and had the electron paramagnetic resonance spectrum of a stable free radical, qualities that identified it as a melanin. Melanin "ghost"-like particles obtained from pigmented C. neoformans cells were hydrophobic, fluorescent under a variety of irradiation wavelengths, negatively charged, insoluble in organic solvents and alcohols, resistant to degradation by strong acids, and vulnerable to bleaching. HGA melanization was laccase dependent and repressed by high concentrations of glucose. The ability of C. neoformans to utilize a bacterial melanin precursor compound suggests a new substrate source for melanization in the environment.  相似文献   

10.
Melanin biosynthesis by Frankia strain CeI5   总被引:1,自引:0,他引:1  
  相似文献   

11.
The skin pigment melanin is produced in melanocytes in highly specialized organelles known as melanosomes. Melanosomes are related to the organelles of the endosomal/lysosomal pathway and can have a low internal pH. In the present study we have shown that melanin synthesis in human pigment cell lysates is maximal at pH 6.8. We therefore investigated the role of intramelanosomal pH as a possible control mechanism for melanogenesis. To do this we examined the effect of neutralizing melanosomal pH on tyrosinase activity and melanogenesis in 11 human melanocyte cultures and in 3 melanoma lines. All melanocyte cultures (9 of 9) from Caucasian skin as well as two melanoma cell lines with comparable melanogenic activity showed rapid (within 24 h) increases in melanogenesis in response to neutralization of melanosomal pH. Chemical analysis of total melanin indicated a preferential increase in eumelanin production. Electron microscopy revealed an accumulation of melanin and increased maturation of melanosomes in response to pH neutralization. In summary, our findings show that: (i) near neutral melanosomal pH is optimal for human tyrosinase activity and melanogenesis; (ii) melanin production in Caucasian melanocytes is suppressed by low melanosomal pH; (iii) the ratio of eumelanin/phaeomelanin production and maturation rate of melanosomes can be regulated by melanosomal pH. We conclude that melanosomal pH is an essential factor which regulates multiple stages of melanin production. Furthermore, since we have recently identified that pink locus product (P protein) mediates neutralization of melanosomal pH, we propose that P protein is a key control point for skin pigmentation. We would further propose that the wide variations in both constitutive and facultative skin pigmentation seen in the human population could be associated with the high degree of P-locus polymorphism.  相似文献   

12.
Cryptococcus neoformans melanizes in the environment and in mammalian tissues, but the process of melanization in either venue is mysterious given that this microbe produces melanin only from exogenous substrates. Understanding the process of melanization is important because melanization is believed to protect against various stresses in the environment, including UV radiation, and pigment production is associated with virulence. Melanization in C. neoformans requires the availability of diphenolic precursors. In contrast, many bacteria synthesize melanin from homogentisic acid (HGA). We report that C. neoformans strains representing all four serotypes can produce a brown pigment from HGA. The brown pigment was acid resistant and had the electron paramagnetic resonance spectrum of a stable free radical, qualities that identified it as a melanin. Melanin “ghost”-like particles obtained from pigmented C. neoformans cells were hydrophobic, fluorescent under a variety of irradiation wavelengths, negatively charged, insoluble in organic solvents and alcohols, resistant to degradation by strong acids, and vulnerable to bleaching. HGA melanization was laccase dependent and repressed by high concentrations of glucose. The ability of C. neoformans to utilize a bacterial melanin precursor compound suggests a new substrate source for melanization in the environment.  相似文献   

13.
Sporothrix schenckii is the etiological agent of sporotrichosis, the main subcutaneous mycosis in Latin America. Melanin is an important virulence factor of S. schenckii, which produces dihydroxynaphthalene melanin (DHN-melanin) in conidia and yeast cells. Additionally, l-dihydroxyphenylalanine (l-DOPA) can be used to enhance melanin production on these structures as well as on hyphae. Some fungi are able to synthesize another type of melanoid pigment, called pyomelanin, as a result of tyrosine catabolism. Since there is no information about tyrosine catabolism in Sporothrix spp., we cultured 73 strains, including representatives of newly described Sporothrix species of medical interest, such as S. brasiliensis, S. schenckii, and S. globosa, in minimal medium with tyrosine. All strains but one were able to produce a melanoid pigment with a negative charge in this culture medium after 9 days of incubation. An S. schenckii DHN-melanin mutant strain also produced pigment in the presence of tyrosine. Further analysis showed that pigment production occurs in both the filamentous and yeast phases, and pigment accumulates in supernatants during stationary-phase growth. Notably, sulcotrione inhibits pigment production. Melanin ghosts of wild-type and DHN mutant strains obtained when the fungus was cultured with tyrosine were similar to melanin ghosts yielded in the absence of the precursor, indicating that this melanin does not polymerize on the fungal cell wall. However, pyomelanin-producing fungal cells were more resistant to nitrogen-derived oxidants and to UV light. In conclusion, at least three species of the Sporothrix complex are able to produce pyomelanin in the presence of tyrosine, and this pigment might be involved in virulence.  相似文献   

14.
Melanogenesis is a complex multistep process of high molecular weight melanins production by hydroxylation and polymerization of polyphenols. Melanins have a wide range of applications other than being a sun - protection pigment. Melanogenesis pathway exists from prokaryotes to eukaryotes. It has evolved over years owing to the fact that the melanin pigment has different roles in diverse taxa of organisms. Melanin plays a pivotal role in the existence of certain bacteria and fungi whereas in higher organisms it is a measure of protection against the harmful radiation. We have done a detailed study on various pathways known for melanin synthesis across species. It was divulged that melanin production is not restricted to tyrosine but there are other secondary metabolites that synthesize melanin in lower organisms. Furthermore the phylogenetic study of these paths was done to understand their molecular and cellular development. It has revealed that the melanin synthesis paths have co-evolved in several groups of organisms. In this study, we also introduce a method for the comparative analysis of a metabolic pathway to study its evolution based on similarity between enzymatic reactions.  相似文献   

15.
Melanin is a major virulence factor in pathogenic fungi that enhances the ability of fungal cells to resist immune clearance. Cryptococcus neoformans is an important human pathogenic fungus that synthesizes melanin from exogenous tissue catecholamine precursors during infection, but the type of melanin made in cryptococcal meningoencephalitis is unknown. We analyzed the efficacy of various catecholamines found in brain tissue in supporting melanization using animal brain tissue and synthetic catecholamine mixtures reflecting brain tissue proportions. Solid-state NMR spectra of the melanin pigment produced from such mixtures yielded more melanin than expected if only the preferred constituent dopamine had been incorporated, suggesting uptake of additional catecholamines. Probing the biosynthesis of melanin using radiolabeled catecholamines revealed that C. neoformans melanization simultaneously incorporated more than one catecholamine, implying that the pigment was polytypic in nature. Nonetheless, melanin derived from individual or mixed catecholamines had comparable ability to protect C. neoformans against ultraviolet light and oxidants. Our results indicate that melanin produced during infection differs depending on the catecholamine composition of tissue and that melanin pigment synthesized in vivo is likely to accrue from the polymerization of a mixture of precursors. From a practical standpoint, our results strongly suggest that using dopamine as a polymerization precursor is capable of producing melanin pigment comparable to that produced during infection. On a more fundamental level, our findings uncover additional structural complexity for natural cryptococcal melanin by demonstrating that pigment produced during human infection is likely to be composed of polymerized moieties derived from chemically different precursors.  相似文献   

16.
A strain of Aspergillus fumigatus from composted coffee and garden wastes utilized natural deproteinized insect, banana, hair, octopus, and synthetic tyrosine and dopa melanins as sole sources of carbon. With a sucrose supplement, degradation was essentially complete after 50 days in Czapek medium pH 6.5 at 30 degrees C. The catabolic rate differed for each substrate pigment, as did the molecular weight distribution of products accumulating in the medium. After incubation with L-[U-14C]melanin, over 50% was recovered in a dark fungal pigment, the remainder appearing as cell protein, chitin, lipid, CO2, and polar metabolites. When grown on melanin, the normally pale mycelia darkened with the production of a fungal allomelanin, with infrared spectrum and alkali fusion products differing from those of the substrate pigment. Isotope distribution in amino acids for A. fumigatus grown on labeled melanin supplemented with sucrose suggested separate pools for synthesis of cell proteins and melanoproteins. Deposition of allomelanin increased resistance of conidia, sterigma, and conidiophores to lytic carbohydrases as judged by scanning electron microscopy.  相似文献   

17.
The effect of various compounds on growth, melanin biosynthesis and cell differentiation was studied in a hyaline (SH25) and a pigmented (SH25B) strain of Microdochium bolleyi. Dark pigment production by the hyaline strain was induced by the presence of DOPA and indole in the medium, both of which are intermediates in the tyrosine pathway of melanin biosynthesis. These substrates also induced conidia and chlamydospore production, structures which were not normally seen in the hyaline strain. The systemic fungicide, tricyclazole, inhibited melanin synthesis in the pigmented strain but not the development of chlamydospore-like cell structures.  相似文献   

18.
The bacterium capable of producing melanin pigment in the presence of L-tyrosine was isolated from crop field soil sample and identified as Klebsiella sp. GSK based on morphological, biochemical and 16S rDNA sequencing. The polymerization of this pigment occurs outside the cell wall, which has granular structure as melanin ghosts. The chemical characterization of pigment particles showed acid resistant, alkali soluble, insoluble in most of the organic solvents and water. The pigment gets bleached when subjected to the action of oxidants as well as reductants. This pigment was precipitated with FeCl3, ammoniacal silver nitrate and potassium ferricynide. The pigment showed high absorbance in the UV region and decreased absorbance when shifted towards the visible region. The melanin pigment was further charecterized by FT-IR and EPR spectroscopy. A key enzyme 4-hydroxyphenylacetic acid hydroxylase catalyzes the formation of melanin pigment by hydroxylation of L-tyrosine was detected in this bacterium. Inhibition studies with specific inhibitor kojic acid and KCN proved that melanin is synthesized by DOPA-Melanin pathway.  相似文献   

19.
This paper is a review of what is known about the turnover of melanin in iris, choroid, and retinal pigment epithelium (RPE) of the adult vertebrate eye. Differences in size and structure of choroideal and retinal pigment epithelial melanin granules are shown by electron micrographs. The classical stages of melanin synthesis, including the premelanosome, are shown in the RPE of adult hamsters that had been exposed to intense light. Degradation or synthesis of melanin also seem to occur in the melanocytes of the choroid in these animals. It is postulated that all three pigmented eye tissues (iris, RPE, and choroid) of adult vertebrates form melanin granules in vivo. However, nothing is known about the amount of this turnover.  相似文献   

20.
Previously undescribed ocular and dermatologic complications of prolonged chlorpromazine therapy have been noted in 70 patients of a series of many thousands receiving similar therapy. All affected patients were women who had been receiving high doses of chlorpromazine, averaging 500 to 1500 mg. daily, for at least three to five years before the complications became apparent. Skin manifestations consisted of a peculiar purplish pigmentation of the skin of exposed areas of the face, neck and hands, characterized histologically by deposition of material with the staining properties of melanin in the superficial layers of the dermis, particularly in a perivascular distribution. Ocular complications consisted of granular opacity of the cornea and often of the lens as well, the latter producing a central stellate type of cataract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号