首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incubation for 48 hours of C6 glioma cell cultures with 10?4M tricyclic antidepressant desipramine gave rise to a quantitative increase of total lipids and to qualitative modifications of glycosphingolipids involving detection by thin-layer chromatography of spots migrating according to cerebroside and sulfatide and presence of an abnormal ganglioside pattern. These lipid modifications were associated with the appearance of stereospecific binding of opiates (dihydromorphine) with a dissociation constant of 30–60 nM. These results favor an important role of lipids in opioid receptor function.  相似文献   

2.
Effects of antidepressant drugs on histamine-H1 receptors in the brain   总被引:1,自引:0,他引:1  
H Hall  S O Ogren 《Life sciences》1984,34(6):597-605
The histamine-H1 receptor blocking properties of a number of structurally different antidepressant drugs have been evaluated using a 3H-mepyramine binding assay and a guinea-pig ileum preparation. The tricyclic antidepressants all inhibited the histamine-H1 receptor. Some newer antidepressant drugs, such as zimelidine and nomifensine were devoid of activity while others, such as iprindole and mianserin were very potent. It is concluded that antagonistic effects on the histamine-H1 receptor is not associated with the therapeutic efficacy in depression, but may contribute to the sedative effects of the antidepressant drugs.  相似文献   

3.
Although tricyclic antidepressants have been in existence since the 1940s when they were discovered upon screening iminodibenzyl derivatives for other potential therapeutic uses, their mechanism of action has remained unclear [A. Goodman Gilman, T.W. Rall, A.S. Nies, P. Taylor, Goodman and Gilman's The Pharmacological Basis of Therapeutics, eighth ed., Pergamon Press, New York, 1990]. In addition to their ability to hinder the reuptake of biogenic amines, there is mounting evidence that the tricyclic antidepressants inhibit glutamate transmission. Here, intrinsic tryptophan fluorescence spectroscopy is used to document the binding of desipramine, a member of the tricyclic antidepressant family, to a well-defined extracellular glutamate binding domain (S1S2) of the GluR2 subunit of the amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor. The binding is distinct from those of other known effectors of the receptor, including the endogenous sulfated neurosteroids pregnenolone sulfate and 3alpha-hydroxy-5beta-pregnan-20-one sulfate, and is consistent with a conformational change upon binding that is allosterically transmitted to the channel region of the receptor.  相似文献   

4.
Specific high-affinity binding of 3H-imipramine has been demonstrated in the brain of various species including man. These binding sites have many of the characteristics to be expected for a pharmacological receptor and appear to be associated with the neuronal uptake mechanism for serotonin. Different antidepressant treatments like chronic administration of tricyclic antidepressants, chronic electroshock or sleep-deprivation result in decreases in the density of 3H-imipramine binding sites in normal animals. 3H-imipramine binding sites have also been found in blood platelets from different species including man. These sites are identical to those described in the brain. Clinical studies have shown that untreated severely depressed patients have a lower density of 3H-imipramine binding sites in their platelets when compared with control volunteers of the same age and sex. Longitudinal studies indicate that the low density of 3H-imipramine binding sites does not change during treatment with tricyclic antidepressant drugs and the subsequent clinical recovery from depression. 3H-imipramine binding in brain and platelets is proposed as a useful research tool in biochemical and clinical studies in affective disorders.  相似文献   

5.
OBJECTIVE: To examine inceptions and discontinuations of antidepressants in general practice. DESIGN: An observational study analysing data from an ongoing cross sectional postal survey. Every three months a representative sample of 250 doctors recorded prescribing activity for four weeks. This provided 4000 general practitioner weeks of recording per year. SETTING: A representative panel of general practitioners in England, Wales, and Scotland. SUBJECTS: Patients who began a new course of an antidepressant or had their treatment stopped or changed by the general practitioner between 1 July 1990 and 30 June 1995. MAIN OUTCOME MEASURES: Numbers of patients prescribed a new course of antidepressant; numbers discontinuing treatment; the ratio of antidepressant discontinuations to antidepressant inceptions; reasons for discontinuation; proportion of switches to another antidepressant. RESULTS: There were 13,619 inceptions and 3934 discontinuations of selective serotonin reuptake inhibitors and tricyclic antidepressants during the study. The number of newly prescribed courses of antidepressants increased by 116%, mostly due to an increase in prescribing of serotonin reuptake inhibitors. The ratio of total discontinuations to inceptions was significantly lower for serotonin reuptake inhibitors (22%) than for tricyclic antidepressants (33%). Differences persisted when controlled for age and sex of patients and severity of depression. However, there was more switching away from selective serotonin reuptake inhibitors when they failed (72%) than from tricyclic antidepressants (58%). CONCLUSIONS: Selective serotonin reuptake inhibitors are less likely than tricyclic antidepressants to be discontinued. A prospective study is needed in general practice to assess the implications of differences in discontinuation rates and switches on clinical and economic outcomes.  相似文献   

6.
It has been recently reported that most of the antidepressant drugs block histamine H1 and H2 receptors in the brain under in vitro conditions and it has been suggested that this may be related in part to their therapeutic effect. Since the in vitro and in vivo effects of these drugs may differ, we studied the effect of treatment with antidepressant drugs on histamine receptor sensitivity in the guinea pig brain and observed that chronic treatment with tricyclic antidepressants or phenelzine (an MAO inhibitor) causes a reduction in histamine receptor sensitivity. This reduction is probably mediated through two different mechanisms, since only tricyclic antidepressants cause a reduction after acute treatment. Although some of the side effects of antidepressant treatment may be related to the blockade of histamine receptors, these results do not support the assumption that this effect of antidepressant treatment contributes to their clinical effects.  相似文献   

7.
The effects of 20 tricyclic and 12 chemically unrelated ‘atypical’ antidepressant drugs on the noradrenaline (NA) receptor coupled adenylate cyclase system were investigated in slices of the rat cerebral cortex. While no changes occurred after a single dose, 14 tricyclic compounds down-regulated the receptor system when administered for 9 days. Six tricyclic antidepressants (trimipramine, butriptyline, noxiptyline, doxepine, dosulepine, propizepine) failed to desensitize the NA sensitive adenylate cyclase although some were potent inhibitors of the neuronal uptake of NA. Using the two optically active enantiomers of oxaprotiline inhibition of NA uptake was observed with the (+)-enantiomer while the (?)-enantiomer had only weak inhibitory potency. However, in contrast to published data, both enantiomers and the racemate administered at 30 mg/kg for 9 days did down-regulate the NA receptor coupled adenylate cyclase. Therefore, the experiments were repeated with Sprague-Dawley rats from a different supplier. Now, data published earlier were reproducible, only the racemate and the (+)-enantiomer of oxaprotiline being significantly active on the desensitization of the NA sensitive adenylate cyclase. Using F-344, Long Evans and Wistar rats significant differences were found in the response of the adrenoceptor coupled adenylate cyclase to a 9 day treatment with 30 mg/kg imipramine. Although some of the atypical antidepressants are potent inhibitors of the biogenic amine uptake systems none of these compounds lead to statistically significant changes of the NA stimulated cAMP formation after a 9-day treatment period. Only with the NA uptake inhibitor tandamine and with the serotonin uptake inhibitors zimelidine and fluoxetine a trend toward adrenergic down-regulation was recognized. Using enantiomers of mianserin only the (?)-isomer which is a poor NA uptake inhibitor, was slightly active. It thus appears that the therapeutic action of antidepressant drugs cannot generally be related to postsynaptic adaptive changes in the sensitivity of the noradrenergic adenylate cyclase receptor system. Variabilities in pharmacokinetics and in NA sensitivity of the cAMP generating system in various rat strains and possibly in different animal species may be important factors determining whether β-receptor down-regulation will occur during chronic treatment with antidepressant drugs.  相似文献   

8.
The hypothesis that depression is caused solely by a decrease in synaptic availability of monoaminergic neurotransmitters has been questioned over the past two decades. Based on accumulating data, it seems more plausible that cross-talk exists between neurotransmitters in the CNS, including the glutamatergic system. Glutamate, the major fast excitatory neurotransmitter in the CNS, is the natural agonist for the ionotropic glutamate receptors, a family of ligand-gated ion channels including NMDA (N-methyl-D-aspartate), AMPA (amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid), and kainate receptors. In this work, we show that five tricyclic antidepressants bind to the S1S2 domain of the GluR2 subunit of the AMPA receptor. A combination of fluorescence quenching, Stern-Volmer analyses, and protease protection assays differentiate the binding of each antidepressant. These analyses provide no evidence for the binding of the selective serotonin reuptake inhibitor, fluoxetine, to this domain. The data presented provides further support for a role of the glutamatergic system in antidepressant activity.  相似文献   

9.
[3H]Mepyramine binds with high affinity to membranes from brain of human, rat, guinea-pig, rabbit and mouse with drug specificity indicating an association with histamine H1receptors. Considerable species differences occur in the affinity of [3H]mepyramine, with guinea-pig and human having 34 times greater affinity than rat, mouse or rabbit. The greater affinity of [3H]mepyramine in guinea-pig than in rat is attributable both to faster association and slower dissociation rates in guinea-pig. Species differences in affinity for H1 receptor sites occur for some antihistamines but not for others. Some tricyclic antidepressant and neuroleptic drugs are extremely potent inhibitors of [3H]mepyramine binding, exceeding in potency any H1 antihistamines examined. The tricyclic antidepressant doxepin and the neuroleptic clozapine are the most potent of all drugs examined in competing for [3H]mepyramine binding. The regional distribution of specific [3H]mepyramine binding differs considerably in the various species examined.  相似文献   

10.
Four weeks old (weanling) female rats were treated with the tricyclic antidepressant and histamine/serotonin receptor blocker mianserin for studying its faulty hormonal imprinting effect. Measurements were done four months later. Brain serotonin levels significantly decreased in four regions (hippocampus, hypothalamus, striatum and brainstem), without any change in the cortex. Sexual activity of the treated and control rats was similar. Cerebrospinal fluid nocistatin level was one magnitude higher in the treated rats, than in the controls. The density of uterine estrogen receptors was significantly reduced, while binding capacity of glucocorticoid receptors of liver and thymus remained at control level. The results call attention to the possibility of 1. a broad spectrum imprinting at the time of weaning by a receptor level acting non-hormone molecule 2. imprinting of the brain in a non-neonatal period of life and 3. a very durable (lifelong?) effect of the late imprinting with an antidepressant.  相似文献   

11.
This note reports the interaction of three currently used tricyclic antidepressant drugs (clomipramine, imipramine and amitriptyline) with delta, mu and kappa opioid binding sites in the bovine adrenal medulla. Clomipramine was the only drug interacting with delta and mu sites. On the contrary, all three drugs showed a significant interactions with subtypes of the kappa binding site. Clomipramine was the most active on the kappa 2 and kappa 3 subtypes while amitriptyline showed the highest interaction with the kappa 1 subtype. On the contrary the tricyclic cyproheptadine did not present any interaction with opioid binding sites in our system. This interaction between tricyclic antidepressants and opioid binding sites might be the origin of their analgesic action.  相似文献   

12.
In the experiments the effect of late hormonal imprinting to the liver glucocorticoid receptors were studied. Three-week-old (weanling) female rats were treated with five molecules acting at receptor level and four weeks later receptor kinetic analysis was done on liver glucocorticoid receptors. The tricyclic antidepressant, histamine and serotonin receptor blocker mianserin positively influenced receptor density and negatively receptor affinity. Vitamin D3 and the environmental pollutant benzpyrene elevated receptor density. Mifepristone (RU 486) which is bound by progesterone- and glucorticoid-receptor without postreceptorial effects was ineffective as well, as the H1 receptor blocker chlorpheniramine. The results demonstrate that receptor-level-acting foreign molecules can durably influence the binding capacity of glucocorticoid receptors, however, this is not a general phenomenon and it is not dependent on the type of receptors (membrane or cytosol). Those molecules were effective which 1. have receptor in the same receptor family (vitamin D3) and have postreceptorial effect, or 2. have a structure similar to steroids (benzpyrene) or 3. deeply influenced steroid receptors in earlier experiments (mianserin). This effect should be considered before administering such type of medicaments.  相似文献   

13.
In the rat hypothalamus [3H]imipramine binding is inhibited by tricyclic and nontricyclic antidepressant drugs in a complex manner, with biphasic curves and Hill coefficients less than 1.0. 5-Hydroxytryptamine (serotonin) inhibited with high affinity a decreasing proportion of the [3H]imipramine binding sites as the [3H]imipramine concentration was raised. In the absence of sodium ions, IC50 values for the inhibition by tricyclic and nontricyclic antidepressants were increased by approximately 1,000-fold, and the inhibition curves became classically monophasic with Hill coefficients close to 1.0. These data are interpreted as suggesting that [3H]imipramine binds to two independent sites in the rat hypothalamus. One site is sodium-dependent with a high affinity for the drugs tested; the other is sodium-independent and has a low affinity for these drugs.  相似文献   

14.
Antisera against 2-aminoimipramine covalently coupled to albumin have been raised in two rabbits. Both antisera bind imipramine and related tricyclic compounds as if to a single class of sites with high affinity and high titres. Displacement/inhibition assays showed that the affinities of various tricyclic compounds for the antisera showed a good correlation with the affinities of these drugs for the tricyclic antidepressant inhibitory sites on plasma-membrane 5-hydroxytryptamine carriers of human platelets and rat brain cortex. 5-Hydroxytryptamine and 5-hydroxytryptamine-uptake-selective drugs did not inhibit [3H]imipramine binding to antisera. The anti-imipramine antibodies were purified using imipramine-Sepharose affinity chromatography and were shown to be IgG class by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and protein A-Sepharose precipitation.  相似文献   

15.
Under normal metabolic conditions glucose is an important energy source for the mammalian brain. Positron Emission Tomography studies of the central nervous system have demonstrated that tricyclic antidepressant medications alter cerebral metabolic function. The mode by which these drugs perturb metabolism is unknown. In the present study the interactions of tricyclic antidepressants with the GLUT1 glucose transport protein is examined. Amitriptyline, nortriptyline, desipramine, and imipramine all inhibit the influx of 3-O-methyl glucose into resealed erythrocytes. This inhibition is observed with drug concentrations in the millimolar range. All four antidepressants also noncompetitively displace cytochalasin B binding to GLUT1. The K(I) for this displacement ranges from 0.56 to 1.43 millimolar. This value is in a range greater than that associated with clinical doses and this effect may not be directly applicable to side effects observed with normal use. The observed interaction of these drugs with GLUT1 may reflect an affinity for other glucose-transport or glucose-binding proteins, and may possibly contribute to tricyclic antidepressant toxicity.  相似文献   

16.
A new class of corticotropin releasing factor 1 (CRF1) receptor antagonists characterized by a tricyclic core ring was designed and synthesized. Novel tricyclic derivatives 2ae were designed as CRF1 receptor antagonists based on conformation analysis of our original 2-anilinobenzimidazole CRF1 receptor antagonist. The synthesized tricyclic derivatives 2ae showed CRF1 receptor binding activity with IC50 values of less than 400?nM, and the 1,2,3,4-tetrahydropyrimido-[1,2-a]benzimidazole derivative 2e was selected as a lead compound with potent in vitro CRF1 receptor binding activity (IC50?=?7.1?nM). To optimize the pharmacokinetic profiles of lead compound 2e, we explored suitable substituents on the 1-position and 6-position, leading to the identification of compound 42c-R, which exhibited potent CRF1 receptor binding activity (IC50?=?58?nM) with good oral bioavailability (F?=?68% in rats). Compound 42c-R exhibited dose-dependent inhibition of [125I]-CRF binding in the frontal cortex (5 and 10?mg/kg, p.o.) as well as suppression of locomotor activation induced by intracerebroventricular administration of CRF in rats (10?mg/kg, p.o.). These results suggest that compound 42c-R successfully binds CRF1 receptors in the brain and exhibits the potential to be further examined for clinical studies.  相似文献   

17.
There are now many potentials for the development of more effective, better tolerated, and more rapidly acting antidepressants acting in association and/or beyond the monoamine hypothesis. One of these possibilities is the development of antidepressant drugs with melatonin agonist property. This holds much promise since various affective disorders, including depression, are characterized by abnormal patterns of circadian rhythms. In line with this, the melatoninergic agonist properties of agomelatine, an antidepressant with proven clinical efficacy, may represent a new concept for the treatment of depression. By way of behavioral studies in rodents, it has been shown that administration of agomelatine can mimic the action of melatonin in the synchronization of circadian rhythm patterns. Interest in agomelatine has increased in recent times due to its prospective use as a novel antidepressant agent, as demonstrated in a number of animal studies using well-validated animal models of depression (including the forced swimming test, the learned helplessness, the chronic mild stress). Interestingly, the melatoninergic agonist property of agomelatine may not, alone, be sufficient to sustain its clear antidepressant-like activity. Recent results from receptor binding and in vivo studies gave support to the notion that agomelatine's effects are also mediated via its function as a competitive antagonist at the 5-HT2C receptor. Finally, thanks to its absence of binding with a broad range of receptors and enzymes, agomelatine is particularly safe and devoid of all the deleterious effects reported with tricyclics and SSRIs.  相似文献   

18.
Binding of the tricyclic antidepressant imipramine (IMI) to neutral and negatively charged lipid membranes was investigated using a radioligand binding assay combined with centrifugation or filtration. Lipid bilayers were composed of brain phosphatidylcholine (PC) and phosphatidylserine (PS). IMI binding isotherms were measured up to IMI concentration of 0.5 mmol/l. Due to electrostatic attraction, binding between the positively charged IMI and the negatively charged surfaces of PS membranes was augmented compared to binding to neutral PC membranes. After correction for electrostatic effects by means of the Gouy-Chapman theory, the binding isotherms were described both by surface partition coefficients and by binding parameters (association constants and binding capacities). It was confirmed that binding of IMI to model membranes is strongly affected by negatively charged phospholipids and that the binding is heterogeneous; in fact, weak surface adsorption and incorporation of the drug into the hydrophobic core of lipid bilayer can be seen and characterized. These results support the hypothesis suggesting that the lipid part of biological membranes plays a role in the mechanism of antidepressant action.  相似文献   

19.
Antagonists of the glycoprotein GPIIb/IIIa are a promising class of antithrombotic agents offering potential advantages over present antiplatelet agents (i.e., aspirin and ticlopidine). Novel tricyclic nonpeptidal GPIIb/IIIa antagonists have been prepared and evaluated in vitro as antagonists of fibrinogen binding to the purified GPIIb/IIIa receptor and as inhibitors of platelet aggregation. The work presented demonstrates the robustness of the benzodiazepinedione (BZDD) scaffold, which can be functionalized at the N1---C2 amide as well as at C7, to provide structural diversity and allow optimization of the physiochemical and pharmacological properties of the BZDD based GPIIb/IIIa antagonists. In addition, the resulting new class of tricyclic GPIIb/IIIa antagonists could be used to probe for additional binding interactions on the GPIIb/IIIa receptor and perhaps lead to BZDD based GPIIb/IIIa antagonists with increased potency. The tricyclic molecules reported herein demonstrate that a heterocyclic ring can be fused to the benzodiazepinedione scaffold with retention of anti-aggregatory potency and in the case of tetrazole 30i, increased potency relative to the bicyclic analogue 1c.  相似文献   

20.
In experimental learned helplessness in mice determined by preliminary inavoidable aversive exposure, activity of tricyclic antidepressants (desipramine, chlorimipramine, amitryptyline), type A MAO inhibitors (pyrazidol), and atypical (zimelidine, trazodon, befuralin) antidepressants as well as that of potential antidepressants (LIS-30, DZK-153) were determined upon chronic administration. The tricyclic compounds, befuralin and DZK-153 removed learned helplessness only after 14 days of administration. The substances with a predominant serotoninomimetic action (zimelidin, trazodon in high doses, pyrazidol, LIS-30) showed high efficacy following 6 days of administration. Single administration of the substances under study did not make it possible to disclose their specific antidepressant activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号