首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four transformed cell lines were established from cultures of human embryo kidney (HEK) cells microinjected or transfected with cloned adenovirus 12 (Ad12) EcoRI-C DNA (0 through 16.5 map units of the left-hand end of the viral genome). Each cell line showed a different growth pattern. Southern blotting demonstrated that all of the cell lines contained Ad12-specific DNA sequences, but in the microinjected isolates these were at a much lower copy number than in the transfected isolate. Two cell lines (Ad12 HEK 1 and 3) appeared to contain tandemly repeated Ad12 EcoRI-C DNA fragments. Immunoprecipitation and Western blotting confirmed that Ad12 early region 1 (E1) proteins were being expressed by all four of the transformed cell lines, but indicated that E1A polypeptide expression was considerably less than E1B polypeptide expression. All of the Ad12-transformed HEK cell lines were tumorigenic when inoculated intracranially into athymic nude mice.  相似文献   

2.
Two "early" mRNA species in adenovirus type 2-transformed rat cells   总被引:3,自引:3,他引:0       下载免费PDF全文
mRNA isolated from adenovirus 2-infected HeLa cells at early times during the productive cycle and from two lines of adenovirus 2-transformed rat embryo cells (F17 and T2C4) was fractionated on sucrose gradients after disaggregation. Viral mRNA species were identified by hybridization across such gradients with the separated strands of restriction endonuclease fragments of 32P-labeled DNA known to be complementary to adeovirus 2 "early" and adenovirus 2-transformed cell mRNA. mRNA transcribed from the left-hand 14% of the adenovirus 2 genome was found to comprise two species, 16 to 17S and 20 to 21S: the same sized mRNA's were present both at early times during productive infection and in the two transformed rat cell lines. Direct comparison of the sequences present in these two mRNA species by additional saturation hybridizations suggests that they are not related to one another. Three additional regions of the adenovirus 2 genome, all of which are located in the right-hand 40% of the adenovirus 2 genome, are complementary to early mRNA sequences: each of these appears to specify one major mRNA species of about 22S. Thus, five major species of adenovirus type 2 early mRNA have been identified. Two of these, copied from the left-hand 14% of the viral genome, are also present in adenovirus 2-transformed rat cells.  相似文献   

3.
Rat embryo fibroblasts transformed by herpes simplex virus type 2 (HSV-2) were assayed for the expression of certain virus-specific glycoproteins on the surface membranes. Monospecific antisera to HSV-2-specific glycoproteins, designated gAgB, gC, and gX, were used in membrane immunofluorescence studies with HSV-2-transformed cell lines tREF-G-1, tREF-G-2, and a tumor-derived rat fibrosarcoma cells line produced in syngeneic rats inoculated with tREF-G-1 cells. Analysis of the three HSV-2-transformed cell lines showed that antisera to the gAgB and gX glycoproteins were reactive with these cells. In contrast, no significant reactivity was observed when anti-gC serum was reacted with the HSV-2-transformed cell lines. All three antiglycoprotein sera reacted positively with rat cells productively infected with HSV-2. Additionally, the HSV-2-transformed and tumor-derived cell lines showed positive internal immunofluorescence after reaction with antiserum to an early, nonstructural viral protein designated VP143 (molecular weight, 143,000). Infectivity of HSV-2 in standard plaque assays was neutralized by hyperimmune rat antisera to tREF-G-2 or rat fibrosarcoma cells and to HSV-2 virions and by sera from rats bearing the fibrosarcoma. Adsorption of rat-anti-HSV-2 serum with tREF-G-2 or rat fibrosarcoma cells reduced neutralizing activity to 10 and 12%, respectively, compared with 90% neutralization by antiserum adsorbed with nontransformed rat embryo fibroblast cells and 100% neutralization with unadsorbed antiserum. In summary, HSV-2-transformed rat cells retained and expressed genetic information necessary for the production of HSV-2 glycoproteins and a nonstructural protein after high passage in tissue culture or in the syngeneic host.  相似文献   

4.
Group I host range (hr) mutants of adenovirus type 5 are unable to transform rat embryo or rat embryo brain cells but induce an abnormal transformation of baby rat kidney cells. We established several transformed rat kidney cell lines and characterized them with respect to the transformed phenotype and the structure of the integrated viral DNA. The hr mutant-transformed cells, unlike wild-type virus transformants, were fibroblastic rather than epithelial, failed to grow in soft agar, and were also less tumorigenic in nude mice. Studies on the structure of the integrated viral DNA sequences showed that hr-transformed cells always contained the left end of the adenovirus DNA, but the size of the integrated DNA fragment varied among different lines, and a high percentage of the lines contained the entire viral genome colinearly integrated. The patterns of integration were maintained after prolonged growth in culture and after subcloning. Attempts to rescue infectious virus from lines which contained the entire genome were unsuccessful. Using immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, we analyzed the viral proteins expressed in hr-transformed cells. Results of these studies indicated that, like wild type-transformed cells, hr transformants expressed E1B proteins of molecular weight 58,000 and 19,000.  相似文献   

5.
Transformation of isolated rat hepatocytes with simian virus 40   总被引:3,自引:1,他引:2       下载免费PDF全文
Rat hepatocytes were transformed by simian virus 40 (SV40). Hepatocytes from two different strains of rats and a temperature-sensitive mutant (SV40tsA 1609), as well as wild-type virus were used. In all cases, transformed cells arose from approximately 50% of the cultures containing hepatocytes on collagen gels or a collagen gel-nylon mesh substratum. Cells did not proliferate in mock-infected cultures. SV40-transformed hepatocytes were epithelial in morphology, retained large numbers of mitochondria, acquired an increased nucleus to cytoplasm ratio, and contained cytoplasmic vacuoles. Evidence that these cells were transformed by SV40 came from the findings that transformants were 100% positive for SV40 tumor antigen expression, and that SV40 was rescued when transformed hepatocytes were fused with monkey cells. All SV40-transformed cell lines tested formed clones in soft agarose. Several cell lines transformed by SV40tsA 1609 were temperature dependent for colony formation on plastic dishes. Transformants were diverse in the expression of characteristic liver gene functions. Of eight cell lines tested, one secreted 24% of total protein as albumin, which was comparable to albumin production by freshly plated hepatocytes; two other cell lines produced 4.2 and 5.7%, respectively. Tyrosine aminotransferase activity was present in five cell lines tested but was inducible by dexamethasone treatment in only two. We conclude from these studies that adult, nonproliferating rat hepatocytes are competent for virus transformation.  相似文献   

6.
An adenovirus type 2 early glycoprotein with an apparent molecular weight of 19,000 (E19K) in sodium dodecyl sulfate-polyacrylamide gels has been extensively purified. Purification involved detergent solubilization of membrane fractions from infected cells, followed by affinity chromatography on a lectin column and DEAE-Sephadex chromatography. The purified material contained three polypeptides (E40K, E19K, E17.5K), with approximately 90% of the material in the E19K moiety. All three polypeptides yielded identical tryptic peptide maps. The E19K polypeptide contained glucosamine as revealed by [3H]glucosamine labeling of infected cells and amino acid analysis of the purified protein. Immunoprecipitation with a monospecific antiserum showed that the E19K polypeptide started to be synthesized at 2 h, with a maximal rate at 4 h after infection. It was also synthesized at a low rate late in the infectious cycle (12 to 24 h postinfection). Immunoprecipitation from three adenovirus type 2-transformed hamster embryo cell lines and two adenovirus type 2-transformed rat cell lines revealed that one of the hamster cell lines (ad2HE4) and one of the rat cell lines (A2T2C4) expressed this protein.  相似文献   

7.
The early and late gene products of human adenovirus type 12 (Ad12), as well as the viral proteins synthesized in an Ad12-transformed cell line, were identified by translation of viral mRNA in an in vitro protein-synthesizing system. Cytoplasmic RNA was isolated from permissive KB or nonpermissive BHK cells infected with Ad12 and from Ad12-transformed HA12/7 cells. Virus-specific RNA was selected by hybridization to Ad12 DNA covalently bound to cellulose. Viral RNA was then translated in a fractionated rabbit reticulocyte cell-free system or in wheat germ S-30 extracts. The proteins synthesized were characterized by immunoprecipitation and subsequent electrophoresis on sodium dodecyl sulfate-polyacrylamide gels. RNA prepared from KB cells late after infection with Ad12 elicited the synthesis of most of the structural polypeptides of the virion and at least two presumably nonstructural Ad12 proteins. When viral RNA isolated early after infection of KB cells with Ad12 was translated in vitro, 10 polypeptides were observed: E-68K, E-50K, E-42K, E-39K, E-34K, E-21K, E-19K, E-13K, E-12K, and E-10K. Ad12-specific RNA was also isolated from the Ad12-transformed hamster cell line HA12/7, which contains several copies of the Ad12 genome integrated in the host genome. The RNA codes for at least seven polypeptides with molecular weights very similar to those of the early viral proteins.  相似文献   

8.
A rat liver epithelial cell line designated LW 13 was established using a sequential sedimentation method.The cell line retained many normal proerties of liver epithelial cells and showed some structural and functional features resembling those of liver parenchymal cells,LW13 cells became malignant after the intrduction of exogenous transforming EJ Ha ras gene,Tumors produced by inoculation of the transformed cells into baby rats contained areas of poorly differentialted hepatocellular carcinoma,In situ hybridization analysis confirmed the random rather than specific integration of exogenous ras gene into host chromosomes.Furthermore,an at least tenfold increase in the expression of the endogenous c mys gene was detected among transformed cell lines,suggesting the involvement of the c myc proto oncogene in the in vitro transformation of rat liver epithelial cells by EJ Ha ras oncogene.  相似文献   

9.
Seven cell lines transformed by adenovirus type 5 and its DNA were obtained. It was shown that different cell lines contain the fragments of viral DNA which differ in length and number of copies per DNA of diploid cells. They contain from the left end 6% of the viral DNA to complete or almost complete viral genome. All studied cell lines were sensitive to reinfection with adenovirus type 5. They produced no virus being cocultivated with cell sensitive to the virus. No cell line was able to induce tumors even in immunosuppressed newborn rats. All cell lines formed colonies in soft agar. The level of virus-specific antigens was higher in cells that contained a large part of the viral genome. The methods used did not allow to correlate the biological properties of the transformed cells with the length and the number of copies of the integrated part of the viral genome.  相似文献   

10.
32P-labeled adenovirus 2 DNA was treated with restricting endonuclease from Escherichia coli strain RY-13 (Yoshimori, 1972) (EcoRI) or restricting endonuclease from Hemophilus parainfluenzae (Hpa I) and the resulting fragments of DNA were separated by gel electrophoresis. The kinetics of renaturation of each of the fragments and of complete adenovirus 2 DNA were measured in the presence of DNA extracted from nine lines of adenovirus 2-transformed rat cells and from control cells. Six of the transformed cell lines contained viral DNA sequences homologous to two of the seven Hpa I4 fragments and to part of one of the six EcoRI fragments. From the order of the fragments formed by EcoRI and Hpa I on the adenovirus 2 map we conclude that these cell lines contain only the segment of viral DNA that stretches from the left-hand end to a point about 14% along the viral genome. Thus, any viral function expressed in transformed cells must be coded by this small section of viral DNA. The three remaining lines of adenovirus 2-transformed rat cells are more complicated and contain not only the sequences from the left-hand end of the viral DNA, but also other segments of the viral genome. However, no adenovirus 2-transformed rat cell contained DNA sequences homologous to the complete viral genome.  相似文献   

11.
The appearance of differentiated hepatocytes in the adult rat pancreas as well as pancreatic-type tissue in the adult rat liver can be experimentally induced (Reddy et al.: J. Cell Biol., 98:2082-2090, 1984; Rao et al., J. Histochem. Cytochem., 34:197-201, 1986). These observations suggest a lineage relationship between cell compartments present in rat liver and pancreas. The present data demonstrate that epithelial cell lines with almost identical phenotypes can be established from adult rat liver and pancreas. The established cell lines showed similar morphologies as established by light- and electron-microscopic studies. The cell lines showed a unique expression pattern of intermediate filament proteins. Vimentin, actin, and beta-tubulin were present in all cell lines. In addition, simple epithelial type II cytokeratins 7 and 8 were found to be coexpressed with the type I cytokeratin 14 in several of the cell lines. Neither the type I cytokeratins 18 and 19, which are the normal partners for cytokeratins 8 and 7 in filament formation, nor the type II cytokeratin 5 could be detected despite the fact that filaments were formed by both cytokeratins 8 and 14. This suggests that cytokeratin 14 acts as an indiscriminate type I cytokeratin in filament formation in the established cell lines. The cell lines expressed the same sets of LDH and aldolase isoenzymes and identical sets of glutathione transferase subunits. In addition, the epithelial cell lines from liver and pancreas were equally sensitive to the growth-inhibitory effects of TGF-beta 1. No expression of tissue- or cell-specific proteins such as alpha-fetoprotein, albumin, amylase, elastase, or gamma-glutamyl transpeptidase were detected. The almost identical phenotypes of the hepatic and pancreatic cell lines suggest that they may be derived from a common primitive epithelial cell type present in both rat liver and pancreas. In contrast to parenchymal cells, these cells have an extended capacity for proliferation in vitro and may represent a progeny from a "precursor" or "stem" cell compartment in vivo.  相似文献   

12.
13.
Four cell lines derived from adenovirus type 12-induced rat brain tumors were studied. The polyploid cells displayed neuroepithelial characteristics and were transplantable into syngeneic rats and nude mice. In tissue culture the cells grew in monolayers and multilayers. A very high saturation density was reached, and the cells plated in agar and were easily agglutinated with low concentrations of concanavalin A. Between 2 and 11 copies of the viral genome per diploid cellular genome were detected by reassociation kinetics analysis in the different lines. The patterns of distribution of viral DNA sequences in these lines, as revealed by blot analysis, suggest colinear integration of the intact viral genome into the cellular DNA. The patterns of integration were stable after more than 15 months of prolonged tissue culture and after animal reimplantation. Integration patterns were identical in three of the tumor lines and different in another line. Viral sequences were transcribed. The extent of homology found toward adenovirus type 12 DNA in polyadenylated polysome-associated mRNA isolated from the tumor lines suggests that the early and some of the late genes of adenovirus type 12 DNA are transcribed in these tumor cells. Infectious virus was not rescuable from these lines.  相似文献   

14.
We have examined the arrangement of integrated avian sarcoma virus (ASV) DNA sequences in several different avian sarcoma virus transformed mammalian cell lines, in independently isolated clones of avian sarcoma virus transformed rat liver cells, and in morphologically normal revertants of avian sarcoma virus transformed rat embryo cells. By using restriction endonuclease digestion, agarose gel electrophoresis, Southern blotting, and hybridization with labeled avian sarcoma virus complementary DNA probes, we have compared the restriction enzyme cleavage maps of integrated viral DNA and adjacent cellular DNA sequences in four different mouse and rat cell lines transformed with either Bratislava 77 or Schmidt-Ruppin strains of avian sarcoma virus. The results of these experiments indicated that the integrated viral DNA resided at a different site within the host cell genome in each transformed cell line. A similar analysis of several independently derived clones of Schmidt-Ruppin transformed rat liver cells also revealed that each clone contained a unique cellular site for the integration of proviral DNA. Examination of several morphologically normal revertants and spontaneous retransformants of Schmidt-Ruppin transformed rat embryo cells revealed that the internal arrangement and cellular integration site of viral DNA sequences was identical with that of the transformed parent cell line. The loss of the transformed phenotype in these revertant cell lines, therefore, does not appear to be the result of rearrangement or deletions either within the viral genome or in adjacent cellular DNA sequences. The data presented support a model for ASV proviral DNA integration in which recombination can occur at multiple sites within the mammalian cell genome. The integration and maintenance of at least one complete copy of the viral genome appear to be required for continuous expression of the transformed phenotype in mammalian cells.  相似文献   

15.
We have used the Southern blotting technique to analyze the integration patterns of human adenovirus sequences in the DNA of four rat cell lines, F17, 8617, T2C4 and F4, which were transformed by Ad-2 virus, and 5RK clone 6, which was transformed by Ad-5 HindIII-G fragment. We have also analyzed the Ad-specific messenger RNAs synthesized in these cell lines, in 293 cells (an Ad-5 transformed human cell line), and in Ad-2 early infected human KB cells, using the RNA geltransfer hybridization technique. We were interested in whether the Ad sequences are integrated, what the integration patterns are, whether the transforming region is present in an intact form, and whether the transforming region and other early regions are expressed at the mRNA level.Our results show that the integration patterns of Ad sequences range from simple to quite complex. Cells from line 8617 contain a single copy of right-end sequences flanked by left-end sequences. T2C4 cells have four different left-end sequences and two different right-end sequences. 5RK cells contain multiple different pieces of left-end sequences. In agreement with the results of Sambrook et al. (1979a,b), F17 cells contain a single copy of the left 17% of the genome, and F4 cells contain multiple copies of the right 5% of the genome fused to the left ~ 68% of the genome. The complete Ad genome is not present in any of the cell lines, and different regions may not be equimolar. There are no specific sites on the cellular or viral genome at which integration occurs. In 8617, F17 and F4 cells the Ad-2 sequences appear to be located close together on a single chromosome, suggesting that the Ad sequences in these cells arose from a single integration event. F17, 8617, T2C4, F4, and probably 5RK, cells all have an intact early region E1a (map position 1·3–4·6); F17, 8617, T2C4 and F4 cells also have E1b (m.p. 4·6–11·2) intact. E1a and E1b are the regions responsible for transformation. 8617 cells also have an intact early region E4 (m.p. 99-91·5) and T2C4 cells have an intact early region E3 (m.p. 76–86).Ad-2 early infected KB cells were shown to synthesize major E1a-specific mRNAs of 13 S, 12 S and 9 S, and major E1b-specific mRNAs of 22 S and 13 S. All the transformed cells synthesize the E1a 13 S and E1a 12 S mRNAs, and all cells except 5RK synthesize the E1b 22 S and E1b 13 S mRNAs. Early infected KB cells synthesize E3-specific mRNAs of 26 S, 24 S, 22 S, 19 S, 12 S and 9 S: T2C4 cells synthesize the major 22 S and 19 S RNA species, and possibly the less pronounced E3 mRNAs. Early infected cells and 8617 cells synthesize E4-specific mRNAs of 19 S, 17 S, 14 S, 12 S, 11 S, 9 S and 8 S. 8617 cells also synthesize E4 mRNAs of about 23 to 24 S and 21 S. F4 cells synthesize 24 S and 19 S hybrid mRNAs that contain both E4 and E1a sequences: these RNAs arise because F4 cells contain a portion of the E4 region fused to the left end (m.p. 0) of the genome.Our results, as well as those from other laboratories, are consistent with the idea that the transformed phenotype of Ad transformed cells is maintained by expression of Ad genes in E1a and E1b.  相似文献   

16.
Approximately 20 to 22 copies of adenovirus type 12 (Ad12) DNA per cell were integrated into the genome of the cell line T637. Only a few of these copies seemed to remain intact and colinear with virion DNA. All other persisting viral genomes exhibited deletions or inversions or both in the right-hand part of Ad12 DNA. Spontaneously arising morphological revertants of T637 cells has lost viral DNA. In most of the revertant cell lines only the intact or a part of the intact viral genome was preserved; other revertant cell lines has lost all viral DNA. In three other Ad12-transformed hamster cell lines, HA12/7, A2497-3, and CLAC3 (Stabel et al., J. Virol. 36:22-40, 1980), major rearrangements at the right end of the integrated Ad12 DNA were not found. These studies were performed to investigate the phenomena of amplification, rearrangements, and deletions of Ad12 DNA in hamster cells.  相似文献   

17.
Spontaneously arising morphological revertants of the adenovirus type 12 (Ad12)-transformed hamster cell line T637 had been previously isolated, and it had been demonstrated that in these revertants varying amounts of the integrated Ad12 genome were eliminated from the host genome. In this report, the patterns of persistence of the viral genome in the revertants were analyzed in detail. In some of the revertant cell lines, F10, TR3, and TR7, all copies of Ad12 DNA integrated in line T637 were lost. In lines TR1, -2, -4 to -6, -8 to -10, and -13 to -16, only the right-hand portion of one Ad12 genome was preserved; it consisted of the intact right segment of Ad12 DNA and was integrated at the same site as in line T637. In revertant lines G12, TR11, and TR12, one Ad12 DNA and varying parts of a second viral DNA molecule persisted in the host genome. These patterns of persistence of Ad12 DNA molecules in different revertants supported a model for a mode of integration of Ad12 DNA in T637 hamster cells in which multiple (20 to 22) copies of the entire Ad12 DNA were serially arranged, separated from each other by stretches of cellular DNA. The occurrence of such revertants demonstrated that foreign DNA sequences could not only be acquired but could also be lost from eucaryotic genomes. There was very little, if any, expression of Ad12-specific DNA sequences in the revertant lines TR7 and TR12. Moreover, Ad12 DNA sequences which were found to be undermethylated in line T637 were completely methylated in the revertant cell lines G12, TR11, TR12, and TR2. These findings were consistent with the absence of T antigen from the revertant lines reported earlier. Hence it was conceivable that the expression of integrated viral DNA sequences was somehow dependent on their positions in the cellular genome. In cell line TR637, the early segments of Ad12 DNA were expressed and undermethylated; conversely, in the revertant lines G12, TR11, TR12, and TR2, the same segments appeared to be expressed to a limited extent and were strongly methylated.  相似文献   

18.
A rabbit antiserum (A2) directed against the detergent-solubilized fraction of the simian virus 40-transformed mouse embryo fibroblast cell line VLM detects common antigens in primary cell cultures from BALB/c mouse embryos and in transformed cell lines from various species. Positively reacting cell cultures show a set of polypeptides with molecular weight species p86, p74, p68, p46, p42, p40, and p35. As tested by Western blotting procedures, all immunoprecipitated proteins carry immunologically reactive determinants. By analysis with two-dimensional gel electrophoresis, all precipitated polypeptides show charge heterogeneities. Concerning the two major members of the protein set, p40 consists of at least four subspecies with isoelectric points in the range of pH 6.2-6.8, whereas p35 is composed of two subspecies focusing between pH 6.4 and pH 7.2. By comparison of the two-dimensional patterns of p35 of various transformed cell lines, a basic (pH 6.6-7.2) and an acidic (6.4-6.6) charge type of p35 could be observed. Comparative analyses of primary cell cultures from 12-16-day mouse embryos show the immunoprecipitated set of polypeptides only in the 16-day embryo cell cultures. After six further propagations, these cells express the immunoreactive proteins as strongly as the primary cell cultures. In embryonic cell cultures of day 14 of gestation the expression of this set of antigens is induced only when cells are propagated at least six times. Under identical conditions these proteins could not be induced in cell cultures of 18-day-old mouse embryos. None of the polypeptides could be immunoprecipitated from primary mouse kidney cell cultures of 12-day-old mice even when the cultures were propagated at least 15 times. This set of polypeptides is also present in simian virus 40-transformed cells of hamster, rat, monkey, and human origin. These findings suggest that in simian virus 40-transformed mouse cells, in addition to p53, the synthesis of other embryonic antigens is reactivated. The presence of the described set of polypeptides in polyoma virus-transformed cells of rat and mouse origin and in cell lines derived from malignant human tumors might indicate common functions in metabolic patterns of transformed cells.  相似文献   

19.
20.
Complementary strand-specific adenovirus DNA of full length or from endonuclease BamHI fragments was used as a probe to estimate the fractional representation and abundance of viral sequences in five hamster cell lines (Ad2HE1-5) transformed with UV-inactivated adenovirus type 2. The fraction of the viral genome present in the five transformed cell lines varied from 44% in the Ad2HE5 cell line to 84% in the Ad2HE3 cell line. The number of viral DNA copies per diploid cell equivalent ranged from 1.8 in the Ad2HE1 line to 7.1 in the Ad2HE4 line. In vivo labeling with [35S]methionine followed by immunoprecipitation with an antiserum against adenovirus type 2 early proteins revealed virus-specific polypeptides with molecular weights of 42,000 to 58,000 in extracts from all five hamster cell lines. Several other early viral polypeptides were detected in some of the adenovirus type 2-transformed hamster cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号