首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The plasmid pKM101 is known to protect Escherichia coli and Salmonella typhimurium against killing by far UV irradiation and to enhance UV-induced mutagenesis. The muc + gene of the plasmid is responsible for both of these effects. This paper shows that respiration of S. typhimurium shuts off about an hour after UV irradiation and that pKM101 prevents the shutoff. Plasmids which contained Tn5 translocatable elements, either in (and having produced a muc mutation) or flanking the muc + gene, have been introduced into S. typhimurium. The muc mutant plasmid, which does not protect its host against UV killing and does not enhance UV induced mutagenesis, also does not protect against UV induced respiration shutoff. Like-wise, plasmids in which the Tn5 translocatable elements flank the nuc + gene protect against shutoff of respiration. Thus the muc + gene of pKM101 is responsible for protection against UV induced shutoff of respiration in S. typhimurium.Research sponsored by the Office of Health and Environmental Research, U.S. Department of Energy, under contract W-7405-eng-26 with the Union Carbide Corporation and by the National Science Foundation under grant No. PCM 7908647 with the University of Tennessee, Knoxville  相似文献   

2.
Summary Salmonella typhimurium and S. typhi were transformd with high efficiency by electroporation. Transformation efficiencies of up to 1010 transformants per g of pBR322 were obtained. In contrast to chemical transformation methods, neither the smooth lipopolysaccharide of S. typhimurium nor the Vi capsular polysaccharide of S. typhi greatly affected transformation efficiency. The introduction of a galE mutation slightly improved transformation efficiency in S. typhimurium (< tenfold) while the Vi antigen of S. typhi had no detectable effect. The transformation efficiency of S. typhimurium with DNA derived from Escherichia coli was increased greatly by the removal of the hsd restriction system (100-fold). Under these conditions electroporation can be used for the routine and direct transformation of Salmonella strains with partially purified (alkaline lysis) plasmid DNA from E. coli.  相似文献   

3.
Summary We have cloned genes encoding RNase H from Escherichia coli rnh mutants, Salmonella typhimurium and Saccharomyces cerevisiae. Selection was accomplished by suppression of the temperature-sensitive growth phenotype of Escherichia coli strains containing the rnh-339::cat and either recB270 (Ts) or recC271 (Ts) mutations. RNases H from E. coli and S. typhimurium contained 155 amino acid residues and differed at only 11 positions. The S. cerevisiae and E. coli RNases H were about 30% homologous. A comparison of the amino acid sequences of several RNases H from cellular and retroviral sources revealed some strongly conserved regions as well as variable regions; the carboxyl-terminus was particularly variable. The overlapping, divergent promoter gene organization found in E. coli was observed to be present in S. typhimurium.  相似文献   

4.
Summary We have cloned the complete functional ompB locus of Salmonella typhimurium LT-2 into Escherichia coli K-12 using a cosmid vector and in vitro packaging into . The ompB locus of Salmonella was found to complement both envZ and ompR mutations in E. coli as well as an ompR mutation of Salmonella. The ompR part of the ompB locus was further subcloned into the multicopy plasmid pKN410 as a 1.3 kb fragment. This fragment coded for a single 28.5 kd protein corresponding to about 820 bp in length. Furthermore, the OmpR proteins of S. typhimurium and E. coli were shown to be structurally and functionally highly similar.Abbreviations SDS sedium dodecyl sulfate - kb kilobase pairs - bp base pairs - kd kilodaltons  相似文献   

5.
Summary Coliphage BF23 develops in Salmonella typhimurium rough strains. The phage is neither restricted nor modified by S. typhimurium. The growth patterns of the phage were slightly different in S. typhimurium than in Escherichia coli, although phage propagated on S. typhimurium is identical to the phage propagated in E. coli by several criteria used. Mutants of S. typhimurium resistant to BF23 were isolated and found to map (by P22-and Plmediated transduction) in the same position as bfe mutants of E. coli. The order of genes was: metB-argC-bfe-rif-purD-metA.Phage BF23 does not form plaques on smooth S. typhimurium strains, since the phage fails to adsorb irreversibly to smooth cells. Nevertheless, on solid agar, the phage prevents growth of many (but not all) smooth strains. Moreover, UV-and alkali-inactivated phage BF23, although unable to form plaques on sensitive hosts, retains the ability to prevent growth of the host on solid medium. This ability is sensitive to protease and resistant to DNAse and RNase. Heat treatment of the phage causes rapid loss of the cell-growth-preventing-ability whereas the ability to form plaques is lost much more slowly. These results lead to a proposal that phage BF23 virions carry a colicin-like factor that kills sensitive cells.  相似文献   

6.
UnlikeEscherichia coli, the closely related bacteriumSalmonella typhimurium is relatively unresponsive to the mutagenic effects of DNA-damaging agents. Previous experiments have suggested that these phenotypic differences might result from reduced activity of theS. typhimurium UmuC protein. To investigate this possibility, we have taken advantage of the high degree of homology between the UmuC proteins ofE. coli andS. typhimurium and have constructed a series of plasmid-encoded chimeric proteins. The possibility that the phenotypic differences might be due to differential expression of the respective UmuC proteins was eliminated by constructing chimeric proteins that retained the first 25 N-terminal amino acids of either of the UmuC proteins (and presumably the same translational signals), but substituting the remaining 397 C-terminal amino acids with the corresponding segments from the reciprocal operon. Constructs expressing mostlyE. coli UmuC were moderately proficient for mutagenesis whereas those expressing mostlyS. typhimurium UmuC exhibited much lower frequencies of mutation, indicating that the activity of the UmuC protein ofS. typhimurium is indeed curtailed. The regions responsible for this phenotype were more precisely localized by introducing smaller segments of theS. typhimurium UmuC protein into the UmuC protein ofE. coli. While some regions could be interchanged with few or no phenotypic effects, substitution of residues 212–395 and 396–422 ofE. coli UmuC with those fromS. typhimurium resulted in reduced mutability, while substitution of residues 26–59 caused a dramatic loss of activity. We suggest, therefore, that the primary cause for the poor mutability ofS. typhimurium can be attributed to mutations located within residues 26–59 of theS. typhimurium UmuC protein.  相似文献   

7.
Summary A system is described which enabled the selection of a heterologous ep gene, encoding signal peptidase I, in Escherichia coli. It is based on complementation of an E. coli mutant, in which the synthesis of signal peptidase I can be regulated. With this system the lep gene of Salmonella typhimurium was cloned and the nucleotide sequence was determined. The S. typhimurium lep gene encodes a protein of 324 amino acids. Expression of the gene in the E. coli mutant resulted in suppression of growth inhibition and in the restoration of processing activity under conditions where synthesis of E. coli signal peptidase I was repressed. The cloned S. typhimurium signal peptidase I had an apparent molecular weight of 36000 daltons, which is in agreement with the calculated molecular weight of 35782 daltons. The system described for selection of the S. typhimurium lep gene may permit the cloning and expression of other heterologous signal peptidase I gen/es.  相似文献   

8.
9.
Summary The umuDC operons of Escherichia coli and Salmonella typhimurium and the analogous plasmid operons mucAB and impCAB have been previously characterized in terms of their roles in DNA repair and induced mutagenesis by radiation and many chemicals. The interrelationships of these mutagenic DNA repair operons were examined in vivo in functional tests of interchangeability of operon subunits in conferring UV resistance and UV mutability phenotypes to wild-type S. typhimurium and umu mutants of E. coli. This approach was combined with DNA and protein sequence comparisons between the four operons and a fifth operon, samAB, from the S. typhimurium LT2 cryptic plasmid. Components of the E. coli and S. typhimurium umu operons were reciprocally interchangeable whereas impCA and mucA could not function with umuC in either of these species. mucA and impB could also combine to give a mutagenic response to UV. These active combinations were associated with higher degrees of conservation of protein sequence than in other heterologous gene combinations and related to specific regions of sequence that may specify subunit interactions. The dominance of the E. coli umuD44 mutation over umuD was revealed in both wild-type E. coli and S. typhimurium and also demonstrated against impCAB. Finally interspecies transfer showed that the apparently poor activity of the S. typhimurium umuD gene in situ is not the result of an inherent defect in umuD but is due to the simultaneous presence of the S. typhimurium umuC sequence. It is suggested that the limitation of umuD activity by umuC in S. typhimurium is the basis of the poor induced mutability of this organism.  相似文献   

10.
An Escherichia coli mutant lacking deoxycytidine triphosphate deaminase (Dcd) activity and an unknown function encoded by a gene designated ior exhibits sensitivity to ionizing radiation whereas dcd mutants themselves are not sensitive. A DNA fragment from an E. coli genomic library that restores the wild type level of UV and gamma ray resistance to this mutant has been cloned in the multicopy vector pBR322. Comparison of its restriction map with the physical map of the E. coli chromosome revealed complete identity to the recBD genes. ior affects ATP-dependent exonuclease activity, suggesting that it is an allele of recB. This mutation alone does not confer sensitivity to UV and gamma radiation, indicating that lack of Dcd activity is also required for expression of radiation sensitivity.  相似文献   

11.
Summary The position of the genetic locus allelic with the cad-2 mutation has been located between units 14 and 15 of the linkage map of S. typhimurium. Fine structure mapping established the gene order as cad flrB nag. The genetic evidence coupled with biochemical evidence indicates that this cad locus is homologous to the ubiF gene of Escherichia coli.  相似文献   

12.
Summary Genetic studies have shown the presence of more than 20 fla genes indispensable for the formation of flagella in Salmonella typhimurium and Escherichia coli. Functional homology of the fla genes in these two bacterial species was examined through intergeneric complementation tests by bacteriophage Pl-mediated transduction from E. coli donors to S. typhimurium recipients. It was found that most of the fla gene products in these two bacterial species were interchangeable and the following correspondence was established (S. typhimurium genes vs. E. coli genes): flaFIV to flaV; flaFV to flaK; flaFVII to flaL; flaFIX to flaM; flaC to flaH; flaM to flaG; flaE to flaI; flaAI to flaN; flaAII·1 to flaB; flaAIII to flaC; flaS to flaO; flaR to flaE; flaQ to flaA; and flaB to flaR. These results suggest that the chromosomal alignment of the functionally homologous genes is very similar in these two bacterial species. Furthermore, five additional fla genes were inferred to exist in E. coli in addition to the fla genes already identified. They were termed flaU, flaX, flaY, flaZ, and flbB (flb is equivalent to fla), which corresponded to flaFI, flaFVI, flaFVIII, flaFX, and flaK of Salmonella in this order. The flaK mutants of E. coli showed no complementation with any of the flaFV, flaFVI, flaFVII, flaFVIII, or flaFIX mutants of Salmonella.  相似文献   

13.
A chromosomal fragment from Salmonella typhimurium, when cloned in Escherichia coli, generates a haemolytic phenotype. This fragment carries two genes, termed slyA and slyB. The expression of slyA is sufficient for the haemolytic phenotype. The haemolytic activity of E. coli carrying multiple copies of slyA is found mainly in the cytoplasm, with some in the periplasm of cells grown to stationary phase, but overexpression of SlyB, a 15 kDa lipoprotein probably located in the outer membrane, may lead to enhanced, albeit unspecific, release of the haemolytic activity into the medium. Polyclonal antibodies raised against a purified SlyA-HlyA fusion protein identified the over-expressed monomeric 17 kDa SlyA protein mainly in the cytoplasm of E. coli grown to stationary phase, although smaller amounts were also found in the periplasm and even in the culture supernatant. However, the anti-SlyA antibodies reacted with the SlyA protein in a periplasmic fraction that did not contain the haemolytic activity. Conversely, the periplasmic fraction exhibiting haemolytic activity did not contain the 17 kDa SlyA protein. Furthermore, S. typhimurium transformed with multiple copies of the slyA gene did not show a haemolytic phenotype when grown in rich culture media, although the SlyA protein was expressed in amounts similar to those in the recombinant E. coli strain. These results indicate that SlyA is not itself a cytolysin but rather induces in E. coli (but not in S. typhimurium) the synthesis of an uncharacterised, haemolytically active protein which forms pores with a diameter of about 2.6 nm in an artificial lipid bilayer. The SlyA protein thus seems to represent a regulation factor in Salmonella, as is also suggested by the similarity of the SlyA protein to some other bacterial regulatory proteins. slyA- and slyB-related genes were also obtained by PCR from E. coli, Shigella sp. and Citrobacter diversus but not from several other gram-negative bacteria tested.  相似文献   

14.
Plasmid R1 drd-19 and two of its copy mutants (pKN102 and pKN103) were transferred from Escherichia coli to Salmonella typhimurium, where the expression of the copy mutations was studied further. The copy number (ratio of plasmid DNA to chromosomal DNA) was the same in S. typhimurium and in E. coli. The activities of the plasmid-coded antibiotic-metabolizing enzymes β-lactamase, chloramphenicol acetyltransferase, and streptomycin adenylyltransferase as well as the resistances to ampicillin and streptomycin were proportional to the gene dosage up to at least a threefold increase in the steady state plasmid copy number, whereas resistance to chloramphenicol showed no increase with increased number of plasmid copies per chromosome equivalent. Also the resistance to rifampicin was affected since S. typhimurium cells became more sensitive the higher the copy number of the resident plasmid. Furthermore, plasmid R1 showed molecular instability in S. typhimurium cells since there was a tendency to dissociate into resistance transfer factors and resistance determinants and also to form miniplasmids. This tendency to instability was more pronounced the higher the plasmid copy number.  相似文献   

15.
The Escherichia coli rnc-era-recO operon encodes ribonuclease III (RNase III; a dsRNA endonuclease involved in rRNA and mRNA processing and decay), Era (an essential G-protein of unknown function) and RecO (involved in the RecF homologous recombination pathway). Expression of the rnc and era genes is negatively autoregulated: RNase III cleaves the rncO ‘operator’ in the untranslated leader, destabilizing the operon mRNA. As part of a larger effort to understand RNase III and Era structure and function, we characterized rnc operon structure, function and regulation in the closely related bacterium Salmonella typhimurium. Construction of a S typhimurium strain conditionally defective for RNase III and Era expression showed that Era is essential for cell growth. This mutant strain also enabled selection of recombinant clones containing the intact S typhimurium rnc-era-recO operon, whose nucleotide sequence, predicted protein sequence, and predicted rncO RNA secondary structure were all highly conserved with those of E coli. Furthermore, genetic and biochemical analysis revealed that S typhimurium rnc gene expression is negatively autoregulated by a mechanism very similar or identical to that in E coli, and that the cleavage specificities of RNase IIIS.t. and RNase IIIE.c. are indistinguishable with regard to rncO cleavage and S typhimurium 23S rRNA fragmentation in vivo.  相似文献   

16.
Summary The effect of acridine orange (AO)-sensitized photodynamic treatment (PD) was studied in various repair-deficient mutants of Salmonella typhimurium and Escherichia coli. Bacteria of either species carrying mutations in the polA gene and hence deficient in the enzyme DNA polymerase I were significantly more sensitive to PD-killing than polA + parent bacteria or phenotypically POL+ revertants of the polA strains (selected on the basis of resistance to methyl methanesulphonate). It therefore appears that DNA polymerase I plays an important role in cellular recovery from PD treatment. E. coli carrying a mutation in the recA gene was also more sensitive to PD-treatment than its parent strain, as was S. typhimurium carrying a mutation of the recA type. In S. typhimurium the rec mutant was somewhat less sensitive to PD-killing than the pol mutant even although it is much more sensitive to ultraviolet killing. E. coli strains with mutations in the recB and recC genes were intermediate in PD sensitivity between the recA and the parent strain. S. typhimurium and E. coli bacteria with mutations in the polA and recA genes showed reduced ability to host-cell reactivate PD-damaged bacteriophages ES 18 and c1, indicating that the polA + and recA + gene products also contribute to repair of bacteriophages damaged by PD treatment. It is suggested that the recombinational repair process is less important for recovery from PD than for recovery from UV, and that the primary contribution of the rec genes to recovery from PD may be in repair of single-strand gaps by repair resynthesis.  相似文献   

17.
Summary A mutant of Escherichia coli K12 has been isolated which shows an alteration in the ribosomal protein S18. Genetic analyses have revealed that the mutation causing this alteration maps at 99.3 min of the E. coli genetic map, between dnaC and deo. This indicated that the mutation has occurred in a gene different from the structural gene for this protein which has been located at 94 min. From the N-terminal amino acid sequence analysis it is concluded that the mutation has resulted in loss of the N-terminal acetyl group of this protein. The gene which is affected in this mutant is termed rimI that most likely specifies an enzyme acetylating the N-terminal alanine of protein S18. The mutation does not affect the acetylation of two other ribosomal proteins, S5 and L12, both of which are known to be acetylated in wild-type E. coli K12.  相似文献   

18.
Summary Partial homology of Salmonella typhimurium DNA to Escherichia coli DNA was demonstrated by Southern hybridization blots to exist on either side of the lac operon of E. coli but no homology was detected between S. typhimurium DNA and about 12 kb of E. coli DNA including the lac genes as well as about 5 kb of E. coli DNA between lac and proC. Thus portions of DNA seem to have been either added to the E. coli genome or deleted from the S. typhimurium genome since their divergence from a common ancestor. Although an IS1 element was located near the lac operon of E. coli, the insertional element was shown not to be near any of the junctures of discontinuity of E. coli - S. typhimurium homology near lac.  相似文献   

19.
L-Cystine and L-cysteine specifically reverse the mutagenic action of azide in Salmonella typhimurium and Escherichia coli. To establish whether the L-cysteine biosynthetic pathway is involved in azide-induced mutagenesis, several derivatives of a mutagen tester-strain of S. typhimurium bearing mutations in different cys genes were isolated. No mutagenic effect of azide was observed in a strain carrying mutation in the cysE gene, unless the incubation medium was supplemented with exogenous O-acetylserine. Out of 16 cysK mutants 14 were mutagenized by azide very poorly or not at all. These results indicate that the activity of O-acetylserine sulfhydrylase A, and the availability of O-acetylserine, one of the two co-substrates of the enzyme, are essential for the mutagenic action of azide in S. typhimurium  相似文献   

20.
A new mutation inEscherichia coli K12,isfA, is described, which causes inhibition of SOS functions. The mutation, discovered in a ΔpolA + mutant, is responsible for inhibition of several phenomena related to the SOS response inpolA + strains: UV- and methyl methanesulfonate-induced mutagenesis, resumption of DNA replication in UV-irradiated cells, cell filamentation, prophage induction and increase in UV sensitivity. TheisfA mutation also significantly reduces UV-induced expression of β-galactosidase fromrecA::lacZ andumuC′::lacZ fusions. The results suggest that theisfA gene product may affect RecA* coprotease activity and may be involved in the regulation of the termination of the SOS response after completion of DNA repair. TheisfA mutation was localized at 85 min on theE. coli chromosome, and preliminary experiments suggest that it may be dominant to the wild-type allele.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号