首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The rate of ferric ion transfer from Fe(III)-bleomycin to apotransferrin was increased in the presence of orthophosphate, ATP and ADP, while AMP was without effect. 2. Ortho phosphate activation probably involves formation of a Fe(III)-bleomycin-phosphate complex. The optical absorption of Fe(III)-bleomycin at 450 nm is enhanced in the presence of phosphate. 3. ATP and ADP remove the ferric ion from the iron-drug complex; thus making the ferric ion readily available for uptake by apotransferrin. 4. Low concentrations of ATP, ADP and AMP, also enhance the 450 nm absorption of the iron-drug complex. Higher ATP and ADP concentrations reduce both the 450 and 384 nm absorption of Fe(III)-bleomycin.  相似文献   

2.
Iron-cadmium interactions are important in cadmium toxicity. Dietary iron supplements may decrease cadmium retention after oral cadmium exposure but the underlying mechanism is not known. Using a CdS/AgS ion selective electrode to measure [Cd2+] in physiological saline solution at pH 7.4, we show that Fe2+ promotes Cd2+ binding to citrate thereby decreasing the availability of free Cd2+. This suggests the formation of high molecular weight Cd2+-Fe2+-citrate complexes. We confirm this suggestion by showing that 109Cd2+ is retained by 1 kDa cut off filters when present with total 50 microM Fe2+ plus 1 mM citrate but not when present with citrate alone. The formation of high molecular weight complexes may prevent Cd2+ absorption. As citrate is part of the diet, we suggest that these iron-cadmium interactions may contribute to the protective effect of iron against cadmium toxicity.  相似文献   

3.
ATP citrate lyase (EC 4.1.3.8) from Chlorobium limicola was partially purified. It was established that the consumption of substrates and the formation of products proceeded stoichiometrically and that citrate cleavage was of the si-type. ADP and oxaloacetate inhibited enzyme activity. Oxaloacetate also inhibited the growth of C. limicola.  相似文献   

4.
Aqueous gallium(III) citrate complexes have been studied in the 10(-2) M concentration range with extended X-ray absorption fine structure (EXAFS) and FTIR techniques. From EXAFS data, one mononuclear and one oligomeric species were identified at different Ga(III) to citrate ratios. The first shell of the mononuclear complex was found to be distorted, with average Ga-O bond lengths of 1.95 and 2.06 A, in agreement with the solid-state structure of Ga(Cit)2(3-) (Cit=citrate). Also the oligomeric species was found to have a distorted first shell, with average Ga-O bond lengths of 1.95 and 2.04 A. This complex was found to contain two Ga-Ga distances at 3.03 and 3.56 A, typical for edge and corner sharing GaO6 octahedra, respectively. The gallium(III) and aluminum(III) citrate systems were compared by means of FTIR, and were found to be analogous. The IR results suggest that the bond lengths derived from EXAFS for the 1:2 gallium(III) citrate complex also provide a good estimate of the corresponding distances in the mononuclear 1:1 complex. Direct coordination of citrate to the metal ions in the oligomeric gallium(III) citrate complex was indicated from both EXAFS and IR results, and this complex is stoichiometrically analogous to the Al3(H-1Cit)3(OH)(H2O)4- complex, which has been structurally determined. However, while the formation of the aluminum trimer has been shown to be slow, the gallium trimer was significantly more labile with a rate of formation indicated to be in the order of seconds or faster.  相似文献   

5.
Current interest in the biochemistry of Ti(IV) arises from its widespread use in white pigments and its potential in therapeutic agents. Citrate is known to form strong complexes with Ti(IV). We show here that Ti(III) citrate is generated in a facile manner and in good yield by the action of UV radiation on Ti(IV) citrate in aqueous solution. The Ti(III)-citrate species formed was isolated and characterised by UV-Visible spectroscopy, showing an absorption at 547 nm (epsilon=100 M(-1)cm(-1)), and by electron paramagnetic resonance (EPR) spectroscopy giving a resonance at g=1.949 (linewidth=60G) . An X-ray structure of the parent Ti(IV) complex in the form [TiNa(3)(C(6)H(6)O(7))(2)(C(6)H(5)O(7))(H(2)O)(6.8)].2H(2)O is reported along with a study of the reaction of Ti(IV)-citrate with N,N-ethylenebis(o-hydroxytoluene)glycine (EHTG), which was more rapid than those of other related Ti(IV) complexes.  相似文献   

6.
V W Burns 《Biopolymers》1985,24(7):1293-1300
Energy transfer in nucleic acids or polynucleotides at room temperature can be studied by using the fluorescence of complexed terbium (III) as a tool. Complexing the heavy atom thallium (I) enhances energy transfer from poly(G) to terbium (III). Thallium has no effect on transfer from GMP to terbium and a small negative effect on the transfer from single-stranded DNA to terbium. Use of the Medinger-Wilkinson model to analyze the poly(G) results provides an estimate of the room-temperature intersystem crossing constant.  相似文献   

7.
Recent advances in transient transfection protocols using polyethylenimine (PEI) as a transfection reagent have led to the development of economical methods that provide yields sufficient for industrial production of proteins for many preclinical needs. There are many variables that can be optimized to improve protein expression in transient transfection, and one of the most critical is the medium in which the cells are grown. While transfection with PEI works well in media containing serum, the biopharmaceutical industry is moving away from animal-derived components in media. A number of serum-free media have been found to allow transient transfection, but many others do not for reasons that are not clear. Thus, knowledge of the components of serum-free media that can cause inhibition of PEI-mediated transient transfection would be useful for media development. In this study, an analysis was performed of various components of a serum-free medium used for Chinese hamster ovary cells in which PEI-mediated transient transfection was inhibited. We found that an iron supplement added to the medium was responsible for the inhibition. Further investigation showed that iron (III) citrate, a common iron chelator found in serum-free medium, was the specific component that caused the effect. Further, we showed that inhibition of transient transfection was caused by iron (III) citrate specifically, rather than citrate or iron alone. Finally, we showed that various iron chelators in serum-free media other than iron (III) citrate do not inhibit antibody expression.  相似文献   

8.
Titanium citrate (TC) or L-cysteine-sodium sulfide was added as a reducing agent to buffers and agar media used for enumeration of bacteria from rumen contents of high-forage-fed steers. Approximately equal colony counts were found on TC and L-cysteine-sodium sulfide-reduced media with rumen contents taken 8 h postfeeding, when active bacterial growth was occurring. The colony counts on TC medium were only 56% of those with L-cysteine-sodium sulfide medium with rumen contents taken 1 h prefeeding when bacterial growth was minimal. When colonies from L-cysteine-sodium sulfide medium were transferred to TC medium and vice versa, almost all colonies grew. The data indicate that TC can be inhibitory to bacteria upon their initial isolation from natural habitats, particularly when growth rates are low in these habitats.  相似文献   

9.
1. Citrate binds to Fe(III)-bleomycin, removing the ferric ion from the iron-drug complex; a reaction that may be of physiological significance. 2. Low concentrations of citrate markedly enhance the rate of iron transfer from Fe(III)-bleomycin to apotransferrin; an iron binding plasma protein.  相似文献   

10.
Incubation of hepatocytes with [32P]orthophosphate resulted in the incorporation of 32P into material that is precipitated by reaction with antibodies to ATP citrate lyase. The amount of radioactivity precipitated was decreased when unlabeled, purified ATP citrate lyase was added to extracts of hepatocytes that had been incubated with [32P]orthophosphate. Addition of glucagon to hepatocytes that had been preincubated with [32P]orthophosphate resulted in a 56% increase in acid-stable 32P in the trichloroacetic acid-insoluble portion of immunoprecipitates. Catalytic phosphate bound to ATP citrate lyase reaction with ATP and Mg2+ is acid-labile; thus, glucagon-dependent phosphorylation is distinguished from the catalytic phosphate. When hepatocytes were incubated in the absence of [32P]orthophosphate and extracted in a medium containing [gamma-32P]ATP, no acid-stable 32P was present in immunoprecipitates. This indicates that the incorporation into ATP citrate lyase of acid-stable phosphate occurs prior to extraction of the enzyme. Preliminary studies, using a procedure that allows for measurement of enzyme activity starting 1 min after beginning the extraction of lyase from hepatocytes, have shown no difference in lyase activity when hepatocytes are treated with or without glucagon.  相似文献   

11.
ATP citrate lyase is shown to exist as multiple forms in extracts of rat liver. DEAE-Sephadex ion-exchange chromatography of liver supernatants reveals two peaks of activity. A minor, basic, component, comprising 14% of the recovered activity, is eluted without retention, whereas the major, acidic, form is eluted by a KCl gradient. Gel filtration of similar extracts shows the presence of a high-Mr form of ATP citrate lyase (Mr around 10(7) in addition to the tetrameric enzyme (Mr 4.1 X 10(5). This associated state, which represents 10% of the total activity, is unstable, breaking down to the tetramer, and appears to be disrupted by Mg2+. The basic form changes in the partially purified state to give the acidic form. Most of the high-Mr enzyme is acidic in nature. No evidence could be found for an association of the enzyme with mitochondrial or microsomal membranes. ATP citrate lyase from rat brain also shows two peaks of activity on DEAE-Sephadex ion-exchange chromatography, but the activity is distributed between the peaks in almost equal proportions. However, only the tetrameric enzyme was observed on gel filtration.  相似文献   

12.
Ironcadmium interactions are important in cadmium toxicity. Dietary iron supplements may decrease cadmium retention after oral cadmium exposure but the underlying mechanism is not known. Using a CdS/AgS ion selective electrode to measure [Cd2+] in physiological saline solution at pH 7.4, we show that Fe2+ promotes Cd2+ binding to citrate thereby decreasing the availability of free Cd2+. This suggests the formation of high molecular weight Cd2+Fe2+citrate complexes. We confirm this suggestion by showing that 109Cd2+ is retained by 1 kDa cut off filters when present with total 50 M Fe2+ plus 1 mM citrate but not when present with citrate alone. The formation of high molecular weight complexes may prevent Cd2+ absorption. As citrate is part of the diet, we suggest that these ironcadmium interactions may contribute to the protective effect of iron against cadmium toxicity.  相似文献   

13.

Background

Dietary and recycled iron are in the Fe2 + oxidation state. However, the metal is transported in serum by transferrin as Fe3 +. The multi-copper ferroxidase ceruloplasmin is suspected to be the missing link between acquired Fe2 + and transported Fe3 +.

Methods

This study uses the techniques of chemical relaxation and spectrophotometric detection.

Results

Under anaerobic conditions, ceruloplasmin captures and oxidizes two Fe2 +. The first uptake occurs in domain 6 (< 1 ms) at the divalent iron-binding site. It is accompanied by Fe2 + oxidation by Cu2 +D6. Fe3 + is then transferred from the binding site to the holding site. Cu+D6 is then re-oxidized by a Cu2 + of the trinuclear cluster in about 200 ms. The second Fe2 + uptake and oxidation involve domain 4 and are under the kinetic control of a 200 s change in the protein conformation. With transferrin and in the formed ceruloplasmin–transferrin adduct, two Fe3 + are transferred from their holding sites to two C-lobes of two transferrins. The first transfer (~ 100 s) is followed by conformation changes (500 s) leading to the release of monoferric transferrin. The second transfer occurs in two steps in the 1000–10,000 second range.

Conclusion

Fe3 + is transferred after Fe2 + uptake and oxidation by ceruloplasmin to the C-lobe of transferrin in a protein–protein adduct. This adduct is in a permanent state of equilibrium with all the metal-free or bounded ceruloplasmin and transferrin species present in the medium.

General significance

Ceruloplasmin is a go-between dietary or recycled Fe2 + and transferrin transported Fe3 +.  相似文献   

14.
Double radioactive label transport assays with iron, chromium, and gallium chelates were used to investigate the mechanism of iron uptake by Ustilago sphaerogena. In iron-deficient cells, ferrichrome A iron was taken up without appreciable uptake of the ligand. Iron-sufficient cells partially accumulated the ligand with the metal. The chromium- and gallium-containing analogs of ferrichrome A were transported as intact chelates. Ferrichrome A iron uptake was inhibited by dipyridyl. The data suggest that the intact ferrichrome A chelate binds to a specific receptor, the iron is then separated from the ligand at the membrane by reduction, and the metal is released to the inside of the cell while the ligand is released to the exterior. The reduction step is not transport rate limiting. Iron chelated to citrate was taken up by an energy-dependent process. The citrate ligand was not taken up with the metal. Uptake was sensitive to dipyridyl and ferrozine. Chromic ion chelated to citrate was not transported, suggesting that the iron, rather than the chelate, is recognized by the receptor or that reduction of the metal is required for transport.  相似文献   

15.
The iron-storage molecule ferritin can sequester up to 4500 Fe atoms as the mineral ferrihydrite. The iron-core is gradually built up when FeII is added to apoferritin and allowed to oxidize. Here we present evidence, from M?ssbauer spectroscopic measurements, for the surprising result that iron atoms that are not incorporated into mature ferrihydrite particles, can be transferred between molecules. Experiments were done with both horse spleen ferritin and recombinant human ferritin. M?ssbauer spectroscopy responds only to 57Fe and not to 56Fe and can distinguish chemically different species of iron. In our experiments a small number of 57FeII atoms were added to two equivalent apoferritin solutions and allowed to oxidize (1-5 min or 6 h). Either ferritin containing a small iron-core composed of 56Fe, or an equal volume of NaCl solution, was added and the mixture frozen in liquid nitrogen to stop the reaction at a chosen time. Spectra of the ferritin solution to which only NaCl was added showed a mixture of species including 57FeIII in solitary and dinuclear sites. In the samples to which 150 56FeIII-ferritin had been added the spectra showed that all, or almost all, of the 57FeIII was in large clusters. In these solutions 57FeIII initially present as intermediate species must have migrated to molecules containing large clusters. Such migration must now be taken into account in any model of ferritin iron-core formation.  相似文献   

16.
The banded iron formations (BIF) of Brazil are composed of silica and Fe(III) oxide lamina, and are largely covered by a rock cap of BIF fragments in a goethite matrix (canga). Despite both BIF and canga being highly resistant to erosion and poorly soluble, >3,000 iron ore caves (IOCs) have formed at their interface. Fe(III) reducing microorganisms (FeRM) can reduce the Fe(III) oxides present in the BIF and canga, which could account for the observed speleogenesis. Here, we show that IOCs contain a variety of microbial taxa with member species capable of dissimilatory Fe(III) reduction, including the Chloroflexi, Acidobacteria and the Alpha- Beta- and Gammaproteobacteria; however, Fe(III) reducing enrichment cultures from IOCs indicate the predominance of Firmicutes and Enterobacteriaceae, despite varying the carbon/electron donor, Fe(III) type, and pH. We used model-based inference to evaluate multiple candidate hypotheses that accounted for the variation in medium chemistry and culture composition. Model selection indicated that none of the tested variables account for the dominance of the Firmicutes in these cultures. The addition of H2 to the headspace of the enrichment cultures enhanced Fe(III) reduction, while addition of N2 resulted in diminished Fe(III) reduction, indicating that these Enterobacteriaceae and Firmicutes were reducing Fe(III) during fermentative growth. These results suggest that fermentative reduction of Fe(III) may play a larger role in iron-rich environments than expected. Our findings also demonstrate that FeRM are present within the IOCs, and that their reductive dissolution of Fe(III) oxides, combined with mass transport of solubilized Fe(II) by groundwater, could contribute to IOC formation.  相似文献   

17.
Iron transfer from ferritin to transferrin. Effect of serum factors   总被引:2,自引:0,他引:2  
Y Jin  R R Crichton 《FEBS letters》1987,215(1):41-46
The transfer of iron from 59Fe-labelled human spleen ferritin to human apotransferrin occurs in the absence of either reducing or chelating agents. The reaction is first order with respect to ferritin and zero order to apotransferrin. The transfer is enhanced by low-Mr substances from human serum such as ascorbate, citrate, bicarbonate and lactate. A mixture of the four molecules at their normal physiological concentrations can increase the iron exchange to the same extent as that observed with an ultrafiltrate of serum. A pathway of intracellular iron mobilization is considered.  相似文献   

18.
Biocompatible photoresponsive materials are of interest for targeted drug delivery, tissue engineering, 2D and 3D protein patterning, and other biomedical applications. We prepared light degradable hydrogels using a natural alginate polysaccharide cross-linked with iron(III) cations. The "hard" iron(III) cations used to cross-link the alginate hydrogel were found to undergo facile photoreduction to "soft" iron(II) cations in the presence of millimolar concentrations of sodium lactate. The "soft" iron(II) cations have a decreased ability to cross-link the alginate which results in dissolution of the hydrogel and the formation of a homogeneous solution. The photodegradation is done using long wave UV or visible light at neutral pH. The very mild conditions required for the photodegradation and the high rate at which it occurs suggest applications for iron(III) cross-linked alginate hydrogels as light-controlled biocompatible scaffolds.  相似文献   

19.
Fe(III) complexes of two anthracyclines, adriamycin and daunorubicin, have been studied. Using potentiometric and spectroscopic measurements, we have shown that adriamycin and daunorubicin form two well-defined species with Fe(III), which can be formulated as respectively Fe(HAd)3 and Fe(HDr)3. In these formulas, HAd and HDr stand for adriamycin and daunorubicin in which the 1,4-dihydroxy-anthraquinone moiety is half-deprotonated. Both complexes are six-membered chelates. The stability constant is beta = (2.5 +/- 0.5) X 10(28) for both complexes. Interaction with DNA has been studied showing that, despite strong coordination to Fe(III), anthracyclines are able to intercalate between DNA bases pairs, releasing the metal. These complexes display antitumor activity against P 388 leukemia that compares with that of the free drug. Fe(HAd)3, unlike adriamycin, does not catalyze the flow of electrons from NADH to molecular oxygen through NADH dehydrogenase. Moreover, it is shown that the triferric adriamycin compound so called "quelamycin" is in fact a mixture of Fe(HAd)3 and polymeric ferric hydroxide.  相似文献   

20.
M Ishii  Y Igarashi    T Kodama 《Journal of bacteriology》1989,171(4):1788-1792
ATP:citrate lyase [ATP citrate (pro-3S)-lyase; EC 4.1.3.8] was purified and characterized from the cells of Hydrogenobacter thermophilus, an aerobic, thermophilic, hydrogen-oxidizing bacterium which fixes carbon dioxide by a reductive carboxylic acid cycle. The enzyme was quite stable, even in the absence of sulfhydryl reagents. Optimum pH for reaction was 6.7 to 6.9, and optimum temperature was around 80 degrees C. The molecular weight of native enzyme was estimated to be 260,000 by gel filtration analysis, and that of a subunit was estimated to be 43,000 by sodium dodecyl sulfate-polyacrylamide gel analysis. Km values for reaction components were as follows: citrate, 6.25 mM; ATP, 650 microM; coenzyme A, 40.8 microM; and Mg2+, 8 mM. The enzyme showed citrate synthase activity in the presence of Mg2+, but the reaction rate was very low (less than 1/200 of the lyase activity).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号