首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Calcium ions (Ca(2+)) are involved in a number of physiological cellular functions including apoptosis. An elevation in intracellular levels of Ca(2+) in A23187-treated HL-60 cells was associated with the generation of both intracellular and extracellular reactive oxygen species (ROS) and induction of apoptotic cell death. A23187-induced apoptosis was prevented by cyclosporin A, a potent inhibitor of mitochondrial permeability transition (MPT). The generation of extracellular ROS was suppressed by the NADPH oxidase inhibitor diphenylene iodonium, and by superoxide dismutase, but these agents had no effect on A23187-induced apoptosis. In contrast, the blocking of intracellular ROS by a cell-permeant antioxidant diminished completely the induction of MPT and apoptosis. In isolated mitochondria, the addition of Ca(2+) induced a typical MPT concomitant with the generation of ROS, which leads to augmentation of intracellular ROS levels. These results indicate that intracellular not extracellular ROS generated by A23187 is associated with the opening of MPT pores that leads to apoptotic cell death.  相似文献   

2.
It has been established that alpha-tocopheryl succinate in concenrations 10-100 microM inhibits in a dose-dependent manner the viability of primary culture rats thymocytes and causes the DNA internucleosomal degradation that testifies to apoptotic way of thymocytes destruction. These effects were accompanied by an enhanced production of intracellular superoxide. This is the first report demonstrating that apoptosis induced by alpha-tocopheryl succinate was accompanied by a dose-dependent inhibition of mitochondrial succinate dehydrogenase. Known apoptosis inducers--actinomicin D, staurosporin and hydrogen peroxide decreased a cell survival but neither induced any significant changes in succinate dehydrogenase activity which means that this effect is characteristic only of alpha-tocopheryl succinate and seems to be an important event triggering the apoptotic response by it. It was supposed that alpha-tocopheryl succinate might appear as a pseudosubstrate for mitochondrial succinate dehydrogenase leading to its inhibition, dysfunction of the mitochondrial electron transport chain, generation of reactive oxygen species and iduction of apoptosis.  相似文献   

3.
We contrasted possible protection against apoptosis afforded by either BCL-2 expression or anti-oxidant inhibitors in the same tumor target challenged by two distinct triggers of apoptosis. Exposure of L929 fibroblasts to tumor necrosis factor (TNF) or etoposide (VP-16) induced apoptotic death with similar kinetics. Enforced expression of BCL-2 significantly protected against apoptosis induced by VP-16 but had no effect against TNF-induced apoptosis. In contrast, the anti-oxidants desferrioxamine, butylated hydroxyanisol and N-acetyl cysteine all inhibited TNF-induced apoptosis in a concentration-dependent fashion. Although exposure to VP-16 resulted in a significant generation of intracellular oxyradicals, the above three anti-oxidant inhibitors had no effect on VP-16-induced apoptotic death. Interestingly, enforced expression of BCL-2 also inhibited the ability of VP-16 to generate oxy-radicals and to depress intracellular glutathione levels. These results indicate that BCL-2 can exert anti-oxidant effects but argue against the hypothesis that these effects are critical to its protection against apoptosis.  相似文献   

4.
The potential role of caveolin-1 in inhibition of aquaporins during the AVD   总被引:3,自引:0,他引:3  
BACKGROUND INFORMATION: During apoptosis, the first morphological change is a distinct cell shrinkage known as the AVD (apoptotic volume decrease). This event is driven by a loss of intracellular K(+), which creates an osmotic gradient, drawing water out of the cell through AQPs (aquaporins). Loss of water in balance with K(+) would create a shrunken cell with an equivalent intracellular concentration of K(+) ([K(+)](i) = 140 mM). However, we have previously shown that the [K(+)](i) of the shrunken apoptotic cell is 35 mM, and this level is absolutely essential for the activation of apoptotic enzymes. We have recently found that AQPs are inactivated following the AVD, so that continued loss of K(+) will reduce the intracellular concentration to this critical level. Using thymocytes, we have investigated the expression profile and regulation of the AQP family members. RESULTS: In the present study, we have found that AQP1, AQP8 and AQP9 are present in non-apoptotic thymocytes and localized primarily to the plasma membrane. Expression and localization did not change when these cells were induced to undergo apoptosis by growth factor withdrawal for 24 h. To explore other possible mechanisms by which these water channels are inactivated, we investigated their association with CAV-1 (caveolin-1), binding to which is known to inactivate a variety of proteins. We found that CAV-1 is present in thymocytes and that this protein co-localizes with a portion of AQP1 in normal (non-apoptotic) thymocytes. However, thymocytes induced to undergo apoptosis greatly increase their AQP1/CAV-1 association. CONCLUSIONS: Taken together, these results indicate that AQPs are localized to the plasma membrane of shrunken apoptotic thymocytes where increased binding to CAV-1 potentially inactivates them. AQP inactivation, coupled with continued K(+) efflux, then allows the [K(+)](i) to decrease to levels conducive for the activation of downstream apoptotic enzymes and the completion of the apoptotic cascade.  相似文献   

5.
6.
Glucocorticoid can induce apoptosis of thymocytes, but its mechanism is not clear yet. In this study, we reported that dexamethasone-induced apoptosis was associated with intracellular alkalinization. Dexamethasone induced a higher percentage of apoptosis in 138 mM than in 50 mM NaCl, total abrogation of apoptosis was noted in NaCl-depleted culture medium. Highest apoptotic rate was observed in medium with pH 7.2, whereas it was partially and completely inhibited at pH 6.5 and pH 6.0, respectively. Intracellular pH was higher in pre-apoptotic thymocytes than non-apoptotic ones. The Na+ /H+ antiporter inhibitor of 5-(N,N'-dimethyl)-amiloride inhibited the dexamethasone-induced increase in pHi and apoptosis of thymocytes. Glucocorticoid antagonist RU486 also blocked the dexamethasone-induced effect. Furthermore, the apoptosis and increase in intracellular pH induced by dexamethasone were inhibited by cycloheximide, actinomycin D. It seems that intracellular pH is increased during the development of thymocyte apoptosis and inhibiting its increment would retard the rate of progression to cell death.  相似文献   

7.
The present study was designed to evaluate the apoptotic efficacy of selenium (Se) under glutathione-deprived conditions. Testicular cells were used as a model to assess the above. For the study, cells were maintained for 4 h under various treatments; control (media only), selenium (0.5 microM and 1.5 microM), BSO (20 nM), selenium + BSO (0.5 microM Se + 20 nM BSO and 1.5 microM Se + 20 nM BSO). The treated cells were harvested for various estimations viz. viability, GSH, GSSG, redox ratio, ROS generation and integrity of DNA. mRNA was extracted for RT-PCR analysis of JNK, p38, caspase 3 and Bcl-2. It was observed that the cell viability decreased concomitant with the decrease in GSH levels, increase in GSSG levels and increase in the generation of ROS in the combined treatment group in comparison to control and individual treatments. Also, there was an increase in the mRNA expression of JNK and p38 MAPK along with an increase in caspase 3 expression and decrease in Bcl-2 expression. The integrity of DNA was also found to be altered in the combined treatment. Thus, the results presented in this work agree with those earlier reports in a notion that sodium selenite causes apoptosis and the toxicity of selenite is mediated by increase of intracellular ROS. Also, reduction in endogenous GSH along with selenite treatment is associated with increased apoptosis, increased expression of p38 and JNK MAPK, decreased Bcl-2 expression, and increase in caspase-3 expression. Our data indicates that GSH participates in apoptosis in testicular cells and that depletion of this molecule may be critical in predisposing these cells to apoptotic cell death.  相似文献   

8.
Effector mechanisms of fenretinide-induced apoptosis in neuroblastoma   总被引:9,自引:0,他引:9  
Fenretinide is an effective inducer of apoptosis in many malignancies but its precise mechanism(s) of action in the induction of apoptosis in neuroblastoma is unclear. To characterize fenretinide-induced apoptosis, neuroblastoma cell lines were treated with fenretinide and flow cytometry was used to measure apoptosis, free radical generation, and mitochondrial permeability changes. Fenretinide induced high levels of caspase-dependent apoptosis accompanied by an increase in free radicals and the release of cytochrome c in the absence of mitochondrial permeability transition. Apoptosis was blocked by two retinoic acid receptor (RAR)-beta/gamma-specific antagonists, but not by an RARalpha-specific antagonist. Free radical induction in response to fenretinide was not blocked by the caspase inhibitor ZVAD or by RAR antagonists and was only marginally reduced in cells selected for resistance to fenretinide. Therefore, free radical generation may be only one of a number of intracellular mechanisms of apoptotic signaling in response to fenretinide. These results suggest that the effector pathway of fenretinide-induced apoptosis of neuroblastoma is caspase dependent, involving mitochondrial release of cytochrome c independently of permeability changes, and mediated by specific RARs. As the mechanism of action of fenretinide may be different from other retinoids, this compound may be a valuable adjunct to neuroblastoma therapy with retinoic acid and conventional chemotherapeutic drugs.  相似文献   

9.
10.
The present study was designed to clarify the role of radical oxygen species in testicular germ cell apoptosis induced by heat stress. Testicular cells isolated from immature rats were cultured with or without elevated temperature, and occurrence of apoptosis in these cells was defined by the appearance of DNA fragmentation following agarose gel electrophoresis and by flow cytometric quantification of apoptotic cells. At 32.5 degrees C, < 1% of cells showed signs of apoptosis throughout the culture period, whereas under heat stress, the proportion of apoptotic cells increased to 5% at 37 degrees C after 24 h of culture, or to 14% after 1-h exposure at 43 degrees C followed by 23-h culture at 32.5 degrees C. Similar to the effect of heat stress, exogenously supplied oxygen free radicals also induced apoptosis. In contrast, treatment with catalase significantly attenuated heat stress-induced apoptosis. Furthermore, heat stress of testicular cells was associated with an increased intracellular peroxide level as measured by a fluorescent probe, 2', 7'-dichlorofluorescin diacetate. In conclusion, our data indicate the involvement of radical oxygen species during testicular germ cell apoptosis induced by heat stress. This study provides a useful in vitro model for the study of testicular germ cell apoptosis.  相似文献   

11.
In our previous studies, we have discovered that the extract of glycyrrhiza uralensis Fisch (EGUF) can induce obvious apoptosis in gastric cancer cell Line MGC-803. Here, further investigation was carried on about the time-lapse changes of mitochondria transmembrane potential, intracellular free calcium ions, DNA electrophoresis, plasma membrane permeability and chromatin condensation during the apoptotic process of MGC-803 induced by EGUF and the influences of MPT-specific inhibitor Cyclosporin A(CsA) on these changes. Enhancement of plasma membrane permeability with PI staining, increase of intracellular free calcium ion and decrease of mitochondria transmembrane potential are early events in apoptotic cascades, prior to the appearances of apoptotic peak, chromatin condensation and DNA ladder. CsA significantly inhibited enhancement of plasma membrane permeability, change of intracellular free calcium ions and decrease of mitochondria transmembrane potential, also greatly delayed the progress of apoptosis. Thus, our results suggest that calcium and CsA-sensitive MPT is involved in the apoptosis of MGC-803 induced by EGUF.  相似文献   

12.
CD3单抗诱导幼龄小鼠胸腺细胞凋亡研究   总被引:1,自引:0,他引:1  
用抗小鼠CD3单抗刺激幼龄小鼠胸腺细胞,培养不同时间后,检测小鼠胸腺细胞的凋亡情况。结果表明,胸腺细胞呈现了凋亡的典型形态学改变。流式细胞仪检测可见凋亡细胞特有的AP峰,CD3单抗刺激未成熟胸腺细胞可以通过内源性的凋亡途径引起细胞死亡。  相似文献   

13.
线粒体PT孔参与甘草诱导MGC-803细胞凋亡的调控   总被引:2,自引:0,他引:2  
不久前我们从中药中首次筛选发现了甘草能显著诱导胃癌MGC-803细胞凋亡,本文进一步研究甘草诱导MGC-803细胞凋亡过程中凋亡百分率、线粒体膜电位、胞内游离钙、DNA电泳和细胞膜通透性以及染色质DNA凝聚的时相变化,并研究了线粒体PT孔专一抑制剂环孢菌素A(CsA)对凋亡过程的影响.我们观察到,细胞膜通透性增强、胞内游离钙升高和线粒体膜电位下降为细胞凋亡的早期事件,先于凋亡峰出现、染色质凝聚和DNA电泳梯状条带出现,CsA明显抑制线粒体膜电位下降,细胞膜通透性增强和胞内游离钙变化,并极大程度地延迟细胞凋亡过程.结果提示,钙和CsA敏感性的线粒体PT孔开放参与甘草提取物诱导MGC-803细胞凋亡的调控.  相似文献   

14.
In men, obesity has generally been associated with reduced plasma testosterone levels and with elevation of the plasma free fatty acids (FFAs). In this study, we investigated the effects of saturated FFAs including palmitic acid (PA) and stearic acid (SA), and polyunsaturated FFA arachidonic acid (AA) on the survival of rat testicular Leydig cell cultured in vitro. PA and SA markedly suppressed Leydig cell survival in a time- and dose-dependent manner. In contrast, AA stimulated the cell proliferation at 5-10 times of physiological concentration. The suppressive effect of PA and SA on cell survival was caused by apoptosis evidenced by DNA ladder formation and Annexin V-EGFP/propidium iodide staining of the cells. The apoptotic effect of PA was possibly mediated by ceramide generation because it could be completely blocked by ceramide synthase inhibitor fumonisin B1 and exogenous ceramide itself could directly induce apoptosis in vitro. Surprisingly, the apoptosis induced by PA could be partly prevented by AA. These results indicate that PA and SA induce apoptosis in testicular Leydig cells by ceramide production and these apoptotic effects may be a possible mechanism for reproductive abnormalities in obese men, and AA can partly prevent the apoptotic effect induced by saturated FFA.  相似文献   

15.
The intracellular redox state is of importance for cell growth, differentiation, and apoptosis through reactive oxygen species (ROS) functioning as metabolic fine-tuner. Optimal levels of polyamines are necessary for growth, differentiation, and apoptotic cell death while they also protect cell from ROS accumulation. We have carried out studies to find out the interrelation between these two distant metabolic pathways. For that purpose, the glucocorticoid-triggered programmed cell death of rat thymocytes has been used. Our data confirm that SOD activity (which testifies both to the level of ROS generation and antioxidative defense state) changes in response to programmed cell death conditions and to alteration of intracellular polyamines level. Thymocytes death induced by dexamethasone is partially mediated by polyamines content. Our data prove that one of the molecular mechanisms of thymocytes population resistance after dexamethasone treatment is an enhanced level of antioxidant defense. It is evident that in dexamethasone-treated rat thymocytes polyamines modulate signal transduction processes to apoptosis development via changes in cellular redox status.  相似文献   

16.
The effect of hydralazine on the oxygen free radical production was studied in whole cultured murine liver fibroblasts and mitochondrial and microsomal fractions of the cells by ESR spin trapping with DMPO and measurement of Tiron semiquinone formation. Hydralazine itself was found to generate free radicals in phosphate buffer and especially in Eagle's Minimal Essential Medium. Most of the adduct of the spin trap DMPO was due to its reaction with hydralazine-induced hydroxyl radical. Moreover, this compound stimulated free radical formation in fibroblasts. These data suggest that hydralazine alters the cellular free radical metabolism which may have implications for the biological activity of this drug.  相似文献   

17.
Recently we have found that the formation of megamitochondria in culture cells of various sources, induced by chemicals capable of generating free radicals, is followed by apoptotic changes of the cell. Detailed analysis on functional and morphological aspects of megamitochondria has enabled us to speculate that the formation of megamitochondria may be a prerequisite for free radical-mediated apoptosis: free radicals modify the mitochondrial membranes resulting in the fusion of adjacent mitochondria (megamitochondria formation). If the intracellular level of free radicals is continuously kept high, the permeability transition pores of the megamitochondria membranes are opened and megamitochondria become swollen. Oxygen consumption and the ability to synthesise ATP by swollen megamitochondria decrease distinctly. At the same time, cytochrome c is released from swollen megamitochondria into the cytoplasm. If lowered rates of the generation of reactive oxygen species from swollen megamitochondria, possibly due to decrease in their oxygen consumption, are effective enough to lower the intracellular level of free radicals, megamitochondria may return to normal. If not, decrease in the membrane potential of megamitochondria membranes causes the release of apoptosis-inducing factor into the cytoplasm. Cytochrome c and apoptosis-inducing factor thus released into the cytoplasm may cause cytoplasmic and nuclear apoptotic changes. Experimental data to support this hypothesis are presented.  相似文献   

18.
In thymocytes, peroxynitrite induces poly(ADP-ribose) synthetase (PARS) activation, which results in necrotic cell death. In the absence of PARS, however, peroxynitrite-treated thymocytes die by apoptosis. Because Bcl-2 has been reported to inhibit not only apoptotic but also some forms of necrotic cell death, here we have investigated how Bcl-2 regulates the peroxynitrite-induced apoptotic and necrotic cell death. We have found that Bcl-2 did not provide protection against peroxynitrite-induced necrotic death, as characterized by propidium iodide uptake, mitochondrial membrane potential decrease, secondary superoxide production, and cardiolipin loss. In the presence of a PARS inhibitor, peroxynitrite-treated thymocytes from Bcl-2 transgenic mice showed no caspase activation or DNA fragmentation and displayed smaller mitochondrial membrane potential decrease. These data show that Bcl-2 protects thymocytes from peroxynitrite-induced apoptosis at a step proximal to mitochondrial alterations but fails to prevent PARS-mediated necrotic cell death. Activation of tissue transglutaminase (tTG) occurs in various forms of apoptosis. Peroxynitrite did not induce transglutaminase activity in thymocytes and did not have a direct inhibitory effect on the purified tTG. Basal tTG was not different in Bcl-2 transgenic and wild type cells.  相似文献   

19.
Programmed cell death (apoptosis) functions as a mechanism to eliminate unwanted or irreparably damaged cells ultimately leading to their orderly phagocytosis in the absence of calamitous inflammatory responses. Recent studies have demonstrated that the generation of free radical intermediates and subsequent oxidative stress are implicated as part of the apoptotic execution process. Oxidative stress may simply be an unavoidable yet trivial byproduct of the apoptotic machinery; alternatively, intermediates or products of oxidative stress may act as essential signals for the execution of the apoptotic program. This review is focused on the specific role of oxidative stress in apoptotic signaling, which is realized via phosphatidylserine-dependent pathways leading to recognition of apoptotic cells and their effective clearance. In particular, the mechanisms involved in selective phosphatidylserine oxidation in the plasma membrane during apoptosis and its association with disturbances of phospholipid asymmetry leading to phosphatidylserine externalization and recognition by macrophage receptors are at the center of our discussion. The putative importance of this oxidative phosphatidylserine signaling in lung physiology and disease are also discussed.  相似文献   

20.
Pei DS  Song YJ  Yu HM  Hu WW  Du Y  Zhang GY 《Journal of neurochemistry》2008,106(4):1952-1963
Nitric oxide (NO), synthesized from l -arginine by NO synthases, is a small endogenous free radical with multiple functions. The c-Jun N-terminal kinase (JNK) signaling pathway plays a critical role in mediating apoptosis in cerebral ischemia and reperfusion. In this study, we found that the NO donor sodium nitroprusside (SNP) can decrease the damage of hippocampal neurons induced by cerebral ischemia and reperfusion. Our current study demonstrates that SNP can suppress the phosphorylation of JNK3 by suppressing the increased S-nitrosylation of JNK3 induced by cerebral ischemia and reperfusion. In contrast, dithiothreitol reversed the effect of SNP on S-nitrosylation of JNK3. Furthermore, the inhibitor of nNOS (7-NI) and the inhibitor of iNOS (AMT) can decrease JNK3 phosphorylation through decreasing S-nitrosylation of JNK3. Our data suggest that endogenous NO synthesized by NO synthases can increase JNK3 phosphorylation by means of S-nitrosylation during global ischemia/reperfusion in rat hippocampus. However, the exogenous NO (SNP) can reverse the effect of endogenous NO by inhibiting S-nitrosylation of JNK3. Together, these results suggest that the exogenous NO may provide a new clue for stroke therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号