首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
2.
CUP-SHAPED COTYLEDON (CUC)1 encodes members of the NAC family. These are functionally redundant genes that are involved in shoot apical meristem (SAM) formation and cotyledon separation during embryogenesis in Arabidopsis. We analyzed transgenic plants overexpressing CUC1 (35S::CUC1). The cotyledons of these transgenic seedlings regularly had two basal lobes, small and round epidermal cells between the sinuses, and adventitious SAMs on the adaxial surface of this region. This suggests that CUC1 promotes adventitious SAM formation by maintaining epidermal cells in an undifferentiated state. In 35S::CUC1 cotyledons, the class I knotted-like homeobox (KNOX) genes, including SHOOT MERISTEMLESS (STM) and BREVIPEDICELLUS (BP), which are involved in SAM formation and/or maintenance, were ectopically expressed before adventitious SAM formation. In stm mutants, ectopic expression of CUC1 could not induce adventitious SAMs, whereas they continued to be observed in bp mutants. These results suggest that STM, but not BP, is necessary for the formation of adventitious SAMs in 35S::CUC1 cotyledons. Furthermore, we examined the relationship between CUC1 and ASYMMETRIC LEAVES (AS)1 and AS2. The as1 and as2 mutations genetically enhance 35S::CUC1 phenotypes even in the absence of STM function. Interestingly, the as1 mutation can partially rescue the mutant vegetative development phenotypes in the cuc1 cuc2 double mutant. Our results suggest that CUC1 positively regulates SAM formation not only through STM but also through an STM-independent pathway that is negatively regulated by AS1 and AS2.  相似文献   

3.
4.
The shoot apical meristem and cotyledons of higher plants are established during embryogenesis in the apex. Redundant CUP-SHAPED COTYLEDON 1 (CUC1) and CUC2 as well as SHOOT MERISTEMLESS (STM) of Arabidopsis are required for shoot apical meristem formation and cotyledon separation. To elucidate how the apical region of the embryo is established, we investigated genetic interactions among CUC1, CUC2 and STM, as well as the expression patterns of CUC2 and STM mRNA. Expression of these genes marked the incipient shoot apical meristem as well as the boundaries of cotyledon primordia, consistent with their roles for shoot apical meristem formation and cotyledon separation. Genetic and expression analyses indicate that CUC1 and CUC2 are redundantly required for expression of STM to form the shoot apical meristem, and that STM is required for proper spatial expression of CUC2 to separate cotyledons. A model for pattern formation in the apical region of the Arabidopsis embryo is presented.  相似文献   

5.
Background and Aims During embryo development in most gymnosperms, the establishment of the shoot apical meristem (SAM) occurs concomitantly with the formation of a crown of cotyledons surrounding the SAM. It has previously been shown that the differentiation of cotyledons in somatic embryos of Picea abies is dependent on polar auxin transport (PAT). In the angiosperm model plant, Arabidopsis thaliana, the establishment of cotyledonary boundaries and the embryonal SAM is dependent on PAT and the expression of the CUP-SHAPED COTYLEDON (CUC) genes, which belong to the large NAC gene family. The aim of this study was to characterize CUC-like genes in a gymnosperm, and to elucidate their expression during SAM and cotyledon differentiation, and in response to PAT. Methods Sixteen Picea glauca NAC sequences were identified in GenBank and deployed to different clades within the NAC gene family using maximum parsimony analysis and Bayesian inference. Motifs conserved between angiosperms and gymnosperms were analysed using the motif discovery tool MEME. Expression profiles during embryo development were produced using quantitative real-time PCR. Protein conservation was analysed by introducing a P. abies CUC orthologue into the A. thaliana cuc1cuc2 double mutant. Key Results Two full-length CUC-like cDNAs denoted PaNAC01 and PaNAC02 were cloned from P. abies. PaNAC01, but not PaNAC02, harbours previously characterized functional motifs in CUC1 and CUC2. The expression profile of PaNAC01 showed that the gene is PAT regulated and associated with SAM differentiation and cotyledon formation. Furthermore, PaNAC01 could functionally substitute for CUC2 in the A. thaliana cuc1cuc2 double mutant. Conclusions The results show that CUC-like genes with distinct signature motifs existed before the separation of angiosperms and gymnosperms approx. 300 million years ago, and suggest a conserved function between PaNAC01 and CUC1/CUC2.  相似文献   

6.
7.
8.
9.
10.
In Arabidopsis, shoots regenerate on calli derived from hypocotyl explants. Mutations in CUC1 and CUC2 (CUP-SHAPED COTYLEDON) reduce the induction of adventitious shoots on calli. To elucidate the function of CUC1 and CUC2 during this process, these genes were overexpressed in calli. Our results indicate that CUC1 and CUC2 promote adventitious shoot formation on calli. To clarify their functions, the concentrations of auxin and cytokinin in the shoot-inducing medium were changed. Calli of the single and double mutants of cuc1 and cuc2, as well as calli overexpressing either of the CUC genes, responded similarly. This suggests that neither of the genes are involved in synthesis or sensitivity of these hormones. During embryogenesis, CUC1 and CUC2 induce shoot apical meristem formation through activation of STM (SHOOT MERISTEMLESS). Our analyses using the stm mutant and an STM::GUS construct suggest that CUC1 and CUC2 also function upstream of STM even in calli.  相似文献   

11.
The phytohormone auxin plays a critical role in plant development, including embryogenesis, organogenesis, tropism, apical dominance and in cell growth, division, and expansion. In these processes, the concentration gradient of auxin, which is established by polar auxin transport mediated by PIN-FORMED (PIN) proteins and several ATP-binding cassette/multi-drug resistance/P-glycoprotein (ABCB/MDR/PGP) transporters, is a crucial signal. Here, we characterized the function of ABCB19 in the control of Arabidopsis organ boundary development. We identified a new abcb19 allele, abcb19-5, which showed stem-cauline leaf and stem-pedicel fusion defects. By virtue of the DII-VENUS marker, the auxin level was found to be increased at the organ boundary region in the inflorescence apex. The expression of CUP-SHAPED COTYLEDON2 (CUC2) was decreased, while no obvious change in the expression of CUC3 was observed, in abcb19. In addition, the fusion defects were greatly enhanced in cuc3 abcb19-5, which was reminiscent of cuc2 cuc3. We also found that some other organ boundary genes, such as LOF1/2 were down-regulated in abcb19. Together, these results reveal a new aspect of auxin transporter ABCB19 function, which is largely dependent on the positive regulation of organ boundary genes CUC2 and LOFs at the postembryonic organ boundary.  相似文献   

12.
The homeobox gene family plays a crucial role during the development of multicellular organisms. The KNOTTED-like genes from Arabidopsis thaliana (KNAT6 and KNAT2) are close relatives of the meristematic genes SHOOT MERISTEMLESS (STM) and BREVIPEDICELLUS, but their function is not currently known. To investigate their role, we identified null alleles of KNAT6 and KNAT2. We demonstrate that KNAT6 contributes redundantly with STM to the maintenance of the shoot apical meristem (SAM) and organ separation. Consistent with this role, the expression domain of KNAT6 in the SAM marks the boundaries between the SAM and cotyledons. The lack of meristematic activity in the knat6 stm-2 double mutant and the fusion of cotyledons were linked to the modulation of CUP-SHAPED COTYLEDON (CUC) activity. During embryogenesis, KNAT6 is expressed later than STM and CUC. In agreement with this fact, CUC1 and CUC2 were redundantly required for KNAT6 expression. These data provide the basis for a model in which KNAT6 contributes to SAM maintenance and boundary establishment in the embryo via the STM/CUC pathway. KNAT2, although the closest related member of the family to KNAT6, did not have such a function.  相似文献   

13.
Overall shoot architecture in higher plants is highly dependent on the activity of embryonic and axillary shoot meristems, which are produced from the basal adaxial boundaries of cotyledons and leaves, respectively. In Arabidopsis thaliana, redundant functions of the CUP-SHAPED COTYLEDON genes CUC1, CUC2, and CUC3 regulate embryonic shoot meristem formation and cotyledon boundary specification. Their functional importance and relationship in postembryonic development, however, is poorly understood. Here, we performed extensive analyses of the embryonic and postembryonic functions of the three CUC genes using multiple combinations of newly isolated mutant alleles. We found significant roles of CUC2 and CUC3, but not CUC1, in axillary meristem formation and boundary specification of various postembryonic shoot organs, such as leaves, stems, and pedicels. In embryogenesis, all three genes make significant contributions, although CUC3 appears to possess, at least partially, a distinct function from that of CUC1 and CUC2. The function of CUC3 and CUC2 overlaps that of LATERAL SUPPRESSOR, which was previously shown to be required for axillary meristem formation. Our results reveal that redundant but partially distinct functions of CUC1, CUC2, and CUC3 are responsible for shoot organ boundary and meristem formation throughout the life cycle in Arabidopsis.  相似文献   

14.
15.
16.
The shoot stem cell niche, contained within the shoot apical meristem (SAM) is maintained in Arabidopsis by the homeodomain protein SHOOT MERISTEMLESS (STM). STM is a mobile protein that traffics cell‐to‐cell, presumably through plasmodesmata. In maize, the STM homolog KNOTTED1 shows clear differences between mRNA and protein localization domains in the SAM. However, the STM mRNA and protein localization domains are not obviously different in Arabidopsis, and the functional relevance of STM mobility is unknown. Using a non‐mobile version of STM (2xNLS‐YFP‐STM), we show that STM mobility is required to suppress axillary meristem formation during embryogenesis, to maintain meristem size, and to precisely specify organ boundaries throughout development. STM and organ boundary genes CUP SHAPED COTYLEDON1 (CUC1), CUC2 and CUC3 regulate each other during embryogenesis to establish the embryonic SAM and to specify cotyledon boundaries, and STM controls CUC expression post‐embryonically at organ boundary domains. We show that organ boundary specification by correct spatial expression of CUC genes requires STM mobility in the meristem. Our data suggest that STM mobility is critical for its normal function in shoot stem cell control.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号