首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
EAE in rabbits was induced by means of inocculation of purified myelin of homologous spinal cord with complete Freund's adjuvant. The content of all the major lipid classes was studied by biochemical and histochemical methods in the different parts of spinal cord and in the brain stem in combination with morphological control for the demyelinating process presence. The most expressed myelin damage was found in the lumbar and sacral parts of spinal cord. In the same parts the content of phospholipids, cerebrosides, and free cholesterol decreased and cholesterol esters were shown to accumulate. Histochemical analysis supported these findings and revealed that the loss of lipids occured directly in the demyelination foci. Changes in total ganglioside content and in ganglioside fractions ratio were not observed. In the brain stem neither morphological, nor biochemical changes were found. On the basis of these data it was concluded that pathological processes of periaxonal demyelination, induced by the sensitization with purified myelin, have not damaged neuronal structures and not involved the brain.Special Issue dedicated to Dr. Eugene Kreps.  相似文献   

2.
Abstract— The content of cerebrosides, sulphatides, gangliosides, cholesterol and phospholipids was evaluated in the brain and spinal cord of rats during the acute and recovery stages of experimental allergic encephalomyelitis (EAE). During the acute stage there was a significant decrease of sulphatides and gangliosides in spinal cord; in brain, only sulphatides were diminished. In the recovery stage, cerebrosides and gangliosides were decreased in the brain, whereas the lipid content of the spinal cord was similar to that in control animals. Cholesterol esters were detected in the brain and spinal cord during both periods. The results show that the changes are not the same for brain and spinal cord during the acute and recovery stages and that glycosphingolipids from either white or grey matter seem to be preferentially altered.  相似文献   

3.
4.
Changes in protein methylation, citrullination, and phosphorylation during experimental autoimmune encephalomyelitis, a rodent model of multiple sclerosis, were evaluated using isobaric tags for relative and absolute quantification analysis of peptides produced from normal and diseased rat lumbar spinal cords. We observed alterations in the post-translational modification of key proteins regulating signal transduction and axonal integrity. Dephosphorylation of discrete serine residues within the neurofilament heavy subunit C-terminus was observed. We report for the first time elevated citrullination of Arg27 in glial fibrillary acidic protein, which may contribute to the pathophysiology of astrocytes.  相似文献   

5.
Monoclonal antibodies specific for different rat T cell subsets and Ia-positive cells were used in a quantitative morphologic study of the cellular infiltrates in the spinal cords of Lewis rats during acute, actively induced experimental allergic encephalomyelitis (EAE). The predominant cell types in the inflammatory spinal cord lesions are W3/25-positive and Ia-positive cells. The relative percentages represented by each cell type remain quite constant regardless of the degree of clinical illness exhibited by the rat. These data demonstrate a quantitative profile of the infiltrating cells in acute, active EAE, and suggest that the principal inflammatory cells in these lesions are T helper cells and Ia-bearing cells (macrophages, B cells, or activated T helper cells).  相似文献   

6.
The CNS T cell repertoire was analyzed by RT-PCR, spectratyping, and nucleotide sequencing of the amplified products at different times following adoptive transfer of a CD4+, Th1, VB2+ encephalitogenic SJL/J proteolipid protein peptide 139-151-specific T cell clone. The third complementarity-determining region of TCR B chains in the spinal cord was used as an indicator of T cell heterogeneity. Spectratypic analysis revealed that a single peak corresponding to the third complementarity-determining region of the initiating T cell clone predominated during the acute phase. During recovery and relapse the complexity of the spectratype increased. DNA sequence analysis revealed that the donor clone predominated at the acute phase. By the first relapse the donor clone, although represented most frequently, was a minority of the total. Spectratypic analysis of the same samples for several other VB families revealed their presence during acute disease or relapses but, with the exception of VB17, their absence during the recovery stage.  相似文献   

7.
8.
9.
10.
Lipid peroxidation (LPO) in the brain and blood of guinea-pigs was studied during experimental allergic encephalomyelitis. The most pronounced activation of LPO in the brain occurred at the 7th day of sensitization with encephalolitogenic emulsion. It manifested by an increase in the content of diene conjugates and malonic dialdehyde, activation of catalase and reduction of superoxide dismutase activity. LPO activation in the blood occurred at the 3th-5th day of sensitization. It is assumed that LPO activation is caused by antigen-antibody reaction that occurs in the blood at the 3d day and in the brain at the 7th day of sensitization.  相似文献   

11.
12.
13.
14.
Experimental allergic encephalomyelitis (EAE) is a widely used animal model of the human demyelinating disease multiple sclerosis. EAE is initiated by immunization with myelin antigens in adjuvant or by adoptive transfer of myelin-specific T cells, resulting in inflammatory infiltrates and demyelination in the central nervous system. Induction of EAE in rodents typically results in ascending flaccid paralysis with inflammation primarily targeting the spinal cord. This protocol describes passive induction of EAE by adoptive transfer of T cells isolated from mice primed with myelin antigens into na?ve mice. The advantages of using this method versus active induction of EAE are discussed.  相似文献   

15.
This protocol details a method to actively induce experimental allergic encephalomyelitis (EAE), a widely used animal model for studies of multiple sclerosis. EAE is induced by stimulating T-cell-mediated immunity to myelin antigens. Active induction of EAE is accomplished by immunization with myelin antigens emulsified in adjuvant. This protocol focuses on induction of EAE in mice; however, the same principles apply to EAE induction in other species. EAE in rodents is manifested typically as ascending flaccid paralysis with inflammation targeting the spinal cord. However, more diverse clinical signs can occur in certain strain/antigen combinations in rodents and in other species, reflecting increased inflammation in the brain.  相似文献   

16.
The induction of autoimmune encephalomyelitis (EAE) in Lewis rats results in a period of exacerbation followed by complete recovery. Therefore, this model is widely used for studying the evolution of multiple sclerosis. In the present investigation, differentially expressed proteins in the spinal cord of Lewis rats during the evolution of EAE were assessed using the combination of 2DE and MALDI-TOF MS. The majority of the differentially expressed proteins were identified during the acute phase of EAE, in relation to na?ve control animals. On the other hand, recovered rats presented a similar protein expression pattern in comparison with the na?ve ones. This observation can be explained, at least in part, by the intense catabolism existent in acute phase due to nervous tissue damage. In recovered rats, we have described the upregulation of proteins that are apparently involved in the recovery of damaged tissue, such as light and medium neurofilaments, glial fibrillary acidic protein, tubulins subunits, and quaking protein. These proteins are involved mainly in cell growth, myelination, and remyelination as well as in astrocyte and oligodendrocyte maturation. The present study has demonstrated that the inflammatory response, characterized by an increase of the proliferative response and infiltration of autoreactive T lymphocytes in the central nervous system, occurs simultaneously with neurodegeneration.  相似文献   

17.
18.
Experimental autoimmune encephalomyelitis (EAE) has been studied for decades as an animal model for human multiple sclerosis (MS). Here we performed ultrastructural analysis of corticospinal tract (CST) and motor neuron pathology in myelin oligodendrocyte glycoprotein (MOG) peptide 35-55- and MP4-induced EAE of C57BL/6 mice. Both models were clinically characterized by ascending paralysis. Our data show that CST and motor neuron pathology differentially contributed to the disease. In both MOG peptide- and MP4-induced EAE pathological changes in the CST were evident. While the MP4 model also encompassed severe motor neuron degeneration in terms of rough endoplasmic reticulum alterations, the presence of intracytoplasmic vacuoles and nuclear dissolution, both models showed motor neuron atrophy. Features of axonal damage covered mitochondrial swelling, a decrease in nearest neighbor neurofilament distance (NNND) and an increase of the oligodendroglial cytoplasm inner tongue. The extent of CST and motor neuron pathology was reflective of the severity of clinical EAE in MOG peptide- and MP4-elicited EAE. Differential targeting of CNS gray and white matter are typical features of MS pathology. The MOG peptide and MP4 model may thus be valuable tools for downstream studies of the mechanisms underlying these morphological disease correlates.  相似文献   

19.
Abstract— Spinal cord slices from rats in different stages of allergic encephalomyelitis (EAE) were incubated with [U-14C]glucose. Normal rats and rats injected with Freund's adjuvant served as controls. The slices were fractionated by a discontinuous sucrose gradient into purified myelin and a heavy membrane residue, the lipids and proteins were extracted, and their specific activities were determined. Uptake of 14C into myelin lipids was depressed in the rats with acute EAE, while an increase was shown in myelin protein and heavy membrane lipids and proteins. The increased synthesis in non-myelin fractions was ascribed to invasion of metabolically active cells. The depression in myelin lipid synthesis occurred early in the disease before lesions appeared or the inflammatory reaction became widespread. Myelin from guinea pigs with acute EAE resulting from injection of a purified basic protein also showed a depression of uptake in both lipids and proteins. It is suggested that a metabolic insult as a result of the immunological process is dealt the oligodendroglial cells early in the course of the disease which leads to a weakening of the myelin sheath and subsequent phagocytosis of myelin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号