首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The halophyte Leymus chinensis (Trin.) is a perennial rhizome grass (tribe Gramineae) that is widely distributed in China, Mongolia and Siberia, where it is produced as a forage product. In this report, we establish a highly reproducible plant regeneration system through somatic embryogenesis. Two explants, mature seeds and leaf base segments were used; these parts displayed different responses to combinations of growth factors that affect embryogenic callus induction, callus type optimization and plant regeneration. The highest callus induction frequency was obtained on Murashige and Skoog (MS) medium supplemented with 2.0 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) in the presence of 5.0 mg l−1 l-glutamic acid. The inclusion of 5.0 mg l−1 l-glutamic acid was found to significantly promote primary callus induction, embryogenic callus formation and callus status improvement. Subculturing on maintenance medium for 1–2 months before plant regeneration was found to be essential for the optimization of callus type and the maturation of embryogenic callus. Callus relative water content and growth rate were simultaneously investigated during callus maintenance, and found to possibly be related to callus type. Shoots were differentiated from the embryogenic callus on the optimal medium with MS salts containing 0.2–0.5 mg l−1 α-naphthalene acetic acid (NAA), 2.0 mg l−1 kinetin (Kn) and 2.0 g l−1 casamino acids in 71.0 and 69.2% of wild-type (WT) and Jisheng No.1 (JS) plants, respectively. Plant regeneration was variable depending on NAA levels, and the addition of casamino acids stimulated the maturation of embryogenic callus and plant regeneration. Transferring callus with shoots onto half-strength MS medium resulted in rooting within 1 week. The growth of regenerated plants was also surveyed in the field. This is the first report of plant regeneration through somatic embryogenesis from mature seeds and leaf base segments of L. chinensis.  相似文献   

2.
The effect of increasing concentration of polycyclic aromatic hydrocarbon (PAH) fluoranthene (FLT; 0.1, 1 and 5 mg l−1) on the growth, ethylene production and anatomy of stems of 21-day-old pea plants cultivated in vitro in MS medium, with or without FLT, enriched with 0.1 mg l−1 indole-3-acetic acid (IAA) or with combination of 0.1 mg l−1 IAA + 0.1 mg l−1 N6-benzyladenine (BA) were investigated. The low concentration of 0.1 mg l−1 FLT, in both IAA- and IAA + BA-treated plants, significantly stimulated the growth of pea callus, while higher concentrations 1 mg l−1 and especially 5 mg l−1 FLT significantly inhibited it. Pea shoots were significantly influenced only after application of 5 mg l−1 FLT in IAA treatment. Significantly increased production of ethylene was found in IAA + BA treatments in all concentrations of FLT, whereas in IAA treatments in 1 and 5 mg l−1 FLT. The lysigenous aerenchyma formation in the cortex of pea stems significantly increased in all FLT treatments and its highest proportion was found in plants exposed to 1 mg l−1 FLT.  相似文献   

3.
A protocol was developed for the micropropagation of Pinus massoniana and mycorrhiza formation on rooted microshoots. Seedling explants were first cultured on Gresshoff and Doy (GD) medium supplemented with 6-benzyladenine (BA) alone or in combination with α-napthaleneacetic acid (NAA) to stimulate the formation of intercotyledonary axillary buds. The frequency of axillary bud induction was up to 97% on medium supplemented with 4.0 mg l−1 BA and 0. 2 mg l−1 NAA, and the average number of buds per explant reached up to 5.5 on medium with 4.0 mg l−1 BA and 0.1 mg l−1 NAA. Axillary buds elongated rapidly after being transferred to half-strength GD medium containing activated charcoal (0.1% w/v). Shoot proliferation was achieved by cutting elongated shoots into stem segments and subculturing on GD medium containing 2 mg l−1 BA and 0.2 mg l−1 NAA. Root primordia were induced in 82% of shoots when transferred to half-strength GD medium containing 0.2 mg l−1 NAA. Root elongation was achieved in a hormone-free GD agar medium or a perlite substrate. Rooted plantlets were inoculated with the mycelium of ectomycorrhizal fungus Pisolithus tinctorius and the formation of ectomycorrhiza-like structures was achieved in vitro.  相似文献   

4.
Jatropha curcas L. (Physic nut) is a commercially important non-edible oil seed crop known for its use as an alternate source of biodiesel. In order to investigate the morphogenic potential of immature embryo, explants from four developmental stages were cultured on medium supplemented with combinations of auxins and cytokinins. It was found that the size of embryo is critical for the establishment of callus. Immature embryos (1.1–1.5 cm) obtained from the fruits 6 weeks after pollination showed a good response of morphogenic callus induction (85.7%) and subsequent plant regeneration (70%) with the maximum number of plantlets (4.7/explant) on Murashige and Skoog’s (MS) medium supplemented with IBA (0.5 mg l−1) and BA (1.0 mg l−1). The above medium when supplemented with growth adjuvants such as 100 mg l−1 casein hydrolysate + 200 mg l−1 l-glutamine + 8.0 mg l−1 CuSO4 resulted in an even higher frequency of callus induction (100%). Plant regeneration (90%) with the maximum number of plantlets (10/explant) was achieved on MS medium supplemented with 500 mg l−1 polyvinyl pyrrolidone + 30 mg l−1 citric acid + 1 mg l−1 BA + 0.5 mg l−1 Kn + 0.25 mg l−1 IBA. It was observed that plantlet regeneration could occur either through organogenesis of morphogenic callus or via multiplication of pre-existing meristem in immature embryos. The age of immature embryos and addition of a combination of growth adjuvants to the culture medium appear to be critical for obtaining high regeneration rates. Well-developed shoots rooted on half-strength MS medium supplemented with 0.5 mg l−1 IBA and 342 mg l−1 trehalose. The rooted plants after acclimatization were successfully transferred to the field in different agro-climatic zones in India. This protocol has been successfully evaluated on five elite lines of J. curcas.  相似文献   

5.
We have developed a system for the in vitro regeneration of pasqueflowers (Pulsatilla koreana Nakai). The system was based on somatic embryogenesis and shoot organogenesis. Over a growth period of 6 weeks, multiple shoots were initiated from leaf, petiole, and pedicel explants on Murashige and Skoog (MS) medium containing 0.5 mg l−1 indole-3-acetic acid (IAA) and zeatin (Zn), kinetin (Kin), or 6-benzyladenine (BA). We achieved 100% of adventitious shoot induced when petiole and pedicel explants were cultured on MS, 0.5–2.0 mg l−1 Zn, and 0.5 mg l−1 IAA. Somatic embryos developed from the explants and generated shoots on MS medium containing 0.25 mg l−1 Zn and 0.5 mg l−1 IAA. Globular and heart-shaped stages of somatic embryos were observed. Histological studies have revealed the stages of development of somatic embryos. For propagation and growth, the regenerated shoots from organogenic or embryogenic calluses were transferred to MS medium containing either (1) 1.5 mg l−1 Zn and 0.05 mg l−1 IAA or (2) 1.0 mg l−1 BA and 0.05 mg l−1 IAA. After the length of the shoots reached 3 cm, the shoots initiated by organogenesis as well as those initiated by somatic embryogenesis were transferred to the root induction medium. After 2 months of culture in half-strength MS with 1.5 mg l−1 α-naphthalene acetic acid (NAA), the rooting ratio was 93%. Finally, the rooted plantlets were acclimatized in a mixture of mountain soil and perlite.  相似文献   

6.
Polygonatum cyrtonema Hua. lectins (PCLs) were extracted from plantlets regenerated from rhizome explants of P. cyrtonema. Rhizome explants demonstrated a high frequency of callus induction (72.5%) and adventitious shoots differentiation (83.7%) on Murashige Skoog (MS) medium supplemented with 2.0 mg l−1 2,4-dichlorophenoxyacetic acid and 1.0 mg l−1 6-benzyladenine. The adventitious shoots could root readily on 1/2 MS medium + 0.5 mg l−1 α-naphthaleneacetic acid and regenerate plantlets with a survival rate of 75.0%. Regenerated rhizomes were freeze-dried, macerated and prepared for total RNAs and proteins extraction. The PCL gene was cloned and its expression level was measured by RT-PCR. Western blot using a lectin-specific antibody revealed a similar amount in regenerated rhizomes compared to wild rhizomes, Furthermore, lectin derived from regenerated rhizomes retained its ability to haemagglutinate rabbit blood cells.  相似文献   

7.
The organogenic potential and antioxidant potential (1, 1-diphenyl-2-picrylhydrazyl-scavenging activity) of the medicinal plant Piper nigrum L. (black pepper) were investigated. Callus induction and shoot regeneration were induced from leaf explants of potted plants cultured on MS medium supplemented with different plant growth regulators. The best callogenic response was observed on explants cultured for 30 days on MS medium supplemented with either 0.5 or 1.5 mg l−1 6-benzyladenine (BA) + 1.0 mg l−1 α-naphthaleneacetic acid. Subsequent transfer of the callogenic explants onto MS medium supplemented with 1.5 mg l−1 BA + 1.0 mg l−1 gibberellic acid (GA3) achieved 85% shoot organogenesis after 30 days of culture. The maximum number (7.2) of shoots/explant was recorded for explants cultured in MS medium supplemented with 1.0 mg l−1 BA. Following the transfer of shoots to an elongation medium, the longest shoots (5.4 cm) were observed on MS medium supplemented with 1.0 mg l−1 BA + 1.0 mg l−1 GA3. The elongated shoots were rooted on MS medium supplemented with different concentrations of indole butyric acid. An assay of the antioxidant potential of the in vitro-grown tissues revealed that the antioxidant activity of the regenerated shoots was significantly higher than that of callus and the regenerated plantlets.  相似文献   

8.
Callus induction and regeneration ability of five elite maize inbred lines, CM 111, CM 117, CM 124, CM 125 and CM 300 were investigated using 14-day-old immature embryos as explants. Genotype, medium, source of auxin and their concentrations influenced induction of callus. Explants grown on Murashige and Skoog (MS) medium supplemented with 2,4-dichlorophenoxyacetic acid at 1 mg l−1 showed the highest frequency of callusing. Among all the media tested, explants grown on N6 medium gave the highest frequency of organogenic callus. Moreover, N6 supplemented with Dicamba promoted higher callus response in terms of both frequency of induction as well as quality, compared to N6 medium with 2,4-D. N6 supplemented with 2 mg l−1 Dicamba induced the highest frequency of organogenic callus. Among the five genotypes tested, CM 124, CM 125, and CM 300 gave the best callus. Explants of both CM 124 and CM 300 incubated on MS medium supplemented with 1 mg l−1 benzyladenine and 0.5 mg l−1 indole acetic acid promoted the highest frequency of shoot induction. Though CM 124 induced higher percentage of shoot formation than CM 300, the mean number of developed shoots per explant was higher for CM 300. The highest frequency of root formation was observed when shoots were grown on MS medium supplemented with 2 mg l−1 naphathalene acetic acid. Percentage of regenerated plants ranged from 54 to 66.  相似文献   

9.
Dorema ammoniacum D. Don. (Apiaceae), a native medicinal plant in Iran, is classified as a vulnerable species. Root, hypocotyl, and cotyledon segments were cultured on Murashige and Skoog (MS) (1962) medium supplemented with either 2,4-dichlorophenyoxyacetic acid (2,4-D) or naphathalene acetic acid (NAA), at 0–2 mg l−1, alone or in combination with either benzyladenine (BA) or kinetin (KN), at 0–2 mg l−1 for callus induction. The best response (100%) was observed from root segments on MS medium containing 1 mg l−1 NAA and 2 mg l−1 BA. The calli derived from various explants were subcultured on MS medium supplemented with BA (1–4 mg l−1) alone or in combination with NAA or indole-3-butyric acid (IBA), at 0.2 or 0.5 mg l−1 for shoot induction. Calli derived from hypocotyl segments showed significantly higher frequency of plantlet regeneration and number of plantlets than the calli derived from root and cotyledon segments. Therefore, MS medium supplemented with 2 mg l−1 BA and 0.2 mg l−1 IBA produced the highest frequency of shoot regeneration (87.3%) in hypocotyl-derived callus. The optimal medium for rooting contained 2.5 mg l−1 IBA on which 87.03% of the regenerated shoots developed roots with an average number of 5.2 roots per shoots within 30 days. These plantlets were hardened and transferred to the soil. The described method can be successfully employed for the large-scale multiplication and conservation of germplasm this plant.  相似文献   

10.
The green twigs of 1-year-old Eucalyptus microtheca F. Muell seedlings were cultured on modified MS medium, supplemented with α-naphthalene acetic acid (NAA) and kinetin (Kin) hormones at 12 different concentrations. After 4 weeks, the combination of 1 mg l−1 NAA + 1 mg l−1 Kin induced the highest number of axillary shoots. Meanwhile, embryogenic calli were observed in media containing 4 mg l−1 NAA + 0.5 mg l−1 Kin, without any regeneration. The hormone treatments were followed by subculturing the twigs in different levels of thidiazuron (TDZ). The combination of 1 mg l−1 NAA + 1 mg l−1 Kin together with 0.01 mg l−1 TDZ resulted in an increase of direct shoot, while higher amounts of TDZ led to adventitious shoot induction. Somatic embryogenesis was observed in the treatment containing 0.01 mg l−1 TDZ + 4 mg l−1 NAA + 0.5 mg l−1Kin. The peroxidase (POD) band patterns in regenerated plantlets were investigated in order to determine the effect of different levels of TDZ on loci synthesis. A dimer locus, a tetramer locus and two epigenetic bands (a new band for NAA + Kin and the other for TDZ) were observed in the POD profiles. In case of low (0.01 mg l−1 and 0.1 mg l−1) levels of TDZ, one heterozygote allele was disappeared from dimer locus, while at higher TDZ levels, the dimer locus lost its stability and tetramer locus showed a high activity. Thus, POD allele patterns seems to be a feasible marker for different types of regeneration.  相似文献   

11.
An efficient micropropagation system for mining ecotype Sedum alfredii Hance, a newly identified Zn/Cd hyperaccumulator, was developed. Frequency of callus induction reached up to 70% from leaves incubated on Murashige and Skoog (MS) medium supplemented with 1.0 mg l−1 2,4-dichlorophenoxy acetic acid (2,4-D) and 0.5 mg l−1 6-benzyladenine (BA), and 83% from internodal stem segments grown on MS medium with 0.1 mg l−1 2,4-D and 0.1 mg l−1 BA. Callus proliferated rapidly on MS medium containing 0.2 mg l−1 2,4-D and 0.05 mg l−1 thidiazuron. The highest number of adventitious buds per callus (17.3) and frequency of shoot regeneration (93%) were obtained when calli were grown on MS medium supplemented with 2.0 mg l−1 BA and 0.3 mg l−1 α-naphthalene acetic acid (NAA). Elongation of shoots was achieved when these were incubated on MS medium containing 3.0 mg l−1 gibberellic acid. Induction of roots was highest (21.4 roots per shoot) when shoots were transferred to MS medium containing 2.0 mg l−1 indole 3-butyric acid rather than either indole 3-acetic acid or NAA. When these in vitro plants were acclimatized and transferred to the greenhouse, and grown in hydroponic solutions containing 200 μM cadmium (Cd), they exhibited high efficiency of Cd transport, from roots to shoots, and hyperaccumulation of Cd.  相似文献   

12.
This study demonstrates the morphogenic potential of pulvinus, an important organ situated at the base of the petiole or rachis of leguminous plants. Plant regeneration via pulvinus-derived calli of Caesalpinia bonduc has been achieved. Organogenic calli have been derived from the explant 45 days after culture on Murashige and Skoog (MS) medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) alone or in combination with 6-benzylaminopurine (BA). Optimum callus induction (100%) occurred when the pulvini were cultured on MS medium fortified with 6 mg l−1 2,4-D and 1 mg l−1 BA. The highest shoot induction was obtained when the calli were transferred to MS medium supplemented with 5 mg l−1 BA and 1 mg l−1 indole-3-acetic acid (IAA). On this medium, 87% cultures responded with an average number of 4.2 shoots per culture. The maximum root induction from the regenerated shoots was observed on half strength MS medium containing 6 mg l−1 indole-3-butyric acid (IBA). Here 100% shoots rooted with a mean number of 6.3 roots per shoot. The regenerated plantlets were acclimatized and subsequently showed normal growth. This efficient protocol will be helpful for propagating elite clones on a mass scale and could be utilized for genetic transformation study.  相似文献   

13.
We describe culture conditions for a high-efficiency in vitro regeneration system of Papaver nudicaule through somatic embryogenesis and secondary somatic embryogenesis. The embryogenic callus induction rate was highest when petiole explants were cultured on Murashige and Skoog (MS) medium containing 1.0 mg l−1 α-naphthaleneacetic acid (NAA) and 0.1 mg l−1 6-benzyladenine (BA) (36.7%). When transferred to plant growth regulator (PGR)-free medium, 430 somatic embryos formed asynchronously from 90 mg of embryogenic callus in each 100-ml flask. Early-stage somatic embryos were transferred to MS medium containing 1.0 mg l−1 BA and 1.0 mg l−1 NAA to germinate at high frequency (97.6%). One-third-strength MS medium with 1.0% sucrose and 1.0 mg l−1 GA3 had the highest frequency of plantlet conversion from somatic embryos (91.2%). Over 90% of regenerated plantlets were successfully acclimated in the greenhouse. Secondary somatic embryos were frequently induced directly when the excised hypocotyls of the primary somatic embryos were cultured on MS medium without PGRs. Sucrose concentration significantly affected the induction of secondary embryos. The highest induction rate (89.5) and number of secondary somatic embryos per explant (9.3) were obtained by 1% sucrose. Most secondary embryos (87.2–94.3%) developed into the cotyledonary stage on induction medium. All cotyledonary secondary embryos were converted into plantlets both in liquid and on semisolid 1/3-strength MS medium with 1.0% sucrose.  相似文献   

14.
The influence of increasing concentrations (0.1, 1.0 and 5.0 mg l−1) of fluoranthene (FLT) on growth, endogenous abscisic acid (ABA) level and primary photosynthetic processes in 21-day-old pea plants (Pisum sativum L.) in vitro was investigated. Murashige and Skoog’s (MS) medium, with or without FLT, was enriched with indole-3-acetic acid (IAA; 0.1 mg l−1) or a combination of IAA (0.1 mg l−1) plus N6-benzyladenine (BA; 0.1 mg l−1). The level of endogenous ABA significantly increased with increasing FLT concentrations in the presence of both IAA and IAA plus BA. An increased level of endogenous ABA was observed in plants treated with IAA alone. The growth of shoot, callus and the content of photosynthetic pigments (chlorophyll a and b, carotenoids), in both IAA- and IAA plus BA-treated plants, were significantly stimulated by FLT at its lowest concentration (0.1 mg l−1) assayed in this study. However, FLT at higher concentrations (1.0 and 5.0 mg l−1) significantly inhibited all these parameters. Chlorophyll fluorescence imaging showed that FLT only at the highest concentration (5.0 mg l−1) in the presence of IAA (0.1 mg l−1) significantly increased F0, but decreased FV/FM and ΦII.  相似文献   

15.
Dysosma versipellis (Hance) M. Cheng is an endangered plant due to overharvesting for the extraction of podophyllotoxin. Thus, the in vitro technique is valuable for the propagation of this species. When the explants of rhizome buds were cultured on Murashige and Skoog’s (MS) medium with 6-benzyladenine (BA) (1.0 mg l−1), gibberellic acid (GA3) (0.5 mg l−1) and zeatin (Zea) (0.5 mg l−1), multiple buds were regenerated directly on the explants without callusing within 6 weeks. Callus was induced from the leaf segment cultures on MS basal medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) (0.5 mg l−1) and BA (0.2 mg l−1) within 4 weeks. The adventitious buds were differentiated when the calli were subcultured on MS medium supplemented with BA (1.0 mg l−1) and thidiazuron (TDZ) (0.2 mg l−1) within 6 weeks. The adventitious buds obtained from callus and the rhizome-buds rooted with a frequency of 100% on half strength MS medium fortified with indole-3-butyric acid (IBA) 0.5 mg l−1 and activated charcoal (AC) 0.5 g l−1 for 4 weeks. The rooted shoots were successfully transplanted from a mixture of vermiculite:soil (1:1 v/v) to the field with a survival rate of 85%. Podophyllotoxin production in calli, cultured rhizomes, rhizomes of transplanting plants from the garden and rhizomes in the wild field was confirmed by high-performance liquid chromatography (HPLC) analysis. Our results suggest that calli, cultured rhizomes and rhizomes of transplanting plants would be the potential sources of podophyllotoxin.  相似文献   

16.
The morphogenic potential and free-radical scavenging activity of the medicinal plant, Silybum marianum L. (milk thistle) were investigated. Callus development and shoot organogenesis were induced from leaf explants of wild-grown plants incubated on media supplemented with different plant growth regulators (PGRs). The highest frequency of callus induction was observed on explants incubated on Murashige and Skoog (MS) medium supplemented with 5.0 mg l−1 6-benzyladenine (BA) after 20 days of culture. Subsequent transfer of callogenic explants onto MS medium supplemented with 2.0 mg l−1 gibberellic acid (GA3) and 1.0 mg l−1 α-naphthaleneacetic acid (NAA) resulted in 25.5 ± 2.0 shoots per culture flask after 30 days following culture. Moreover, when shoots were transferred to an elongation medium, the longest shoots were observed on MS medium supplemented with 0.5 mg l−1 BA and 1.0 mg l−1 NAA, and these shoots were rooted on a PGR-free MS basal medium. Assay of antioxidant activity of in vitro and in vivo grown tissues revealed that significantly higher antioxidant activity was observed in callus than all other regenerated tissues and wild-grown plants.  相似文献   

17.
Saussurea involucrata is a valuable traditional Chinese medicinal herb. This is the first report of a successful genetic transformation protocol for S. involucrata using Agrobacterium tumefaciens. Leaf explants were incubated with A. tumefaciens strain EHA105 harboring the binary vector pCAMBIA 1301, which contains the hpt gene as a selectable marker for hygromycin resistance and an intron-containing β-glucuronidase gene as a reporter gene. Following co-cultivation, about 23.7% of the explants produced hygromycin-resistant calli on MS basal medium (Murashige and Skoog in Physiol Plant 15: 473–497, 1962) supplemented with 1 mg l−1 benzyladenine (BA), 0.1 mg l−1 α-naphthaleneacetic acid (NAA), 0.1 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D), 20 mg l−1 hygromycin, and 500 mg l−1 cefotaxime. Shoots were regenerated following transfer of the resistant calli to shoot induction medium containing 1.5 mg l−1 BA, 0.1 mg l−1 NAA, 0.25 mg l−1 gibberellic acid (GA3), 20 mg l−1 hygromycin, and 250 mg l−1 cefotaxime, and about 67.5% of the resistant calli differentiated into shoots. Finally, 80% of the hygromycin-resistant shoots rooted on MS media supplemented with 0.2 mg l−1 NAA, 20 mg l−1 hygromycin, and 250 mg l−1 cefotaxime. The transgenic nature of the transformants was demonstrated by detection of β-glucuronidase activity in the primary transformants and by Southern blot hybridization analysis. About 16% of the total inoculated leaf explants produced transgenic plants after approximately 5 months. Using this optimized transformation system, a rice ortholog of the Arabidopsis FLOWERING LOCUS T gene, Hd3a, was transferred into S. involucrata. Introduction of this gene caused an early-flowering phenotype in S. involucrata.  相似文献   

18.
A simple protocol for direct shoot organogenesis and plant regeneration in Lessertia frutescens using hypocotyl and cotyledon segments is reported. l-canavanine content in the derived shoots is also quantified. Media containing different concentrations and combinations of the cytokinins kinetin (K) and benzyladenine (BA) were tested for shoot induction potential. The best shoot regeneration rate (83%) was obtained from hypocotyl segments cultured in Murashige and Skoog (MS) medium supplemented with 1 mg l−1 K; these hypocotyls also produced the largest number of shoots per explant (3.5) and the longest shoots per explant (13.3 mm). The best shoot regeneration rate (46%) using cotyledons as explant material was obtained in MS medium supplemented with 1 mg l−1 K and 1 mg l−1 BA or with 5 mg l−1 K and 0.5 mg l−1 BA. The highest number of cotyledon-derived shoots (1.5) was obtained in MS medium containing 2 mg l−1 K and 0.5 mg l−1 BA, and the longest cotyledon-derived shoots (6.1 mm) were obtained in MS medium containing 1 mg l−1 K and 0.5 mg l−1 BA. Shoots derived from hypocotyls cultured on media containing 1 mg l−1 K contained the highest quantity of l-canavanine (1.42 mg g−1) relative to the control (0.52 mg g−1). Shoots derived from cotyledons cultured on media containing 2 mg l−1 K contained the highest quantity of l-canavanine (2.07 mg g−1) compared to the control. Scanning electron microscopy revealed that shoots regenerated directly from the wounded epidermal tissue, although callus formation was observed in most cultures. Young shoot clusters proliferated into healthy adventitious shoots that were subsequently transferred directly onto rooting medium (MS medium containing 4 mg l−1 indole-3-butyric acid), eliminating the need for an additional multiplication or elongation phase. The in vitro plants were successfully acclimatized in a growth chamber, achieving an 85% survival rate.  相似文献   

19.
The effects of seed maturity, media type, carbon source, and organic nutrient additives on seed germination, protocorm development, and plant growth of Paphiopedilum villosum var. densissimum Z. J. Liu et S. C. Chen were investigated. Micropropagation frequency was enhanced through the use of 200-day-old seed, Knudson C (KC) medium, and the presence of both glucose and coconut milk in the medium. The effects of various plant growth regulators on the frequency of shoot organogenesis in four Paphiopedilum species were also investigated. Explants of P. villosum var. densissimum and P. insigne (Lindl.) Stein incubated in the presence of 5 mg l−1 6-benzyladenine (BA) with 0.5 mg l−1 α-naphthalene acetic acid (NAA) and 0.2 mg l−1 BA with 0.1 mg l−1 NAA, respectively, showed a twofold increase in the frequency of shoot organogenesis. For explants of P. bellatulum (Rchb. f.) Stein and P. armeniacum S. C. Chen et F. Y. Liu, the combination of 5.5 mg l−1 BA with 0.5 mg l−1 NAA and 4 mg l−1 BA with 0.1 mg l−1 NAA, respectively, resulted in the highest frequencies of shoot organogenesis.  相似文献   

20.
The regeneration potential and antioxidative enzyme activities of economically important Brassica rapa var. turnip were evaluated. Calli were induced from leaf explants of seed-derived plantlets on Murashige and Skoog (MS) medium incorporated with different concentrations of various plant growth regulators (PGRs). The highest leaf explant response (83%) was recorded for 2.0 mg l−1 benzyladenine (BA) and 1.0 mg l−1 α-naphthaleneacetic acid (NAA). Subsequent subculturing of callus after 3 weeks of culture, on medium with similar compositions of PGRs, induced shoot organogenesis. The highest shoot induction response (83%) was recorded for 5.0 mg l−1 BA after 5 weeks of transfer. However, 7.8 shoots/explant were recorded for 2.0 mg l−1 BA. The transferring of shoots to elongation medium resulted in 5.1-cm-long shoots on 10 mg l−1 of gibberellic acid (GA3). Rooted plantlets were obtained on MS medium containing different concentrations of indole butyric acid (IBA). The determination of activities of antioxidative enzymes (superoxide dismutase [SOD], ascorbate peroxidase [APX], catalase [CAT], glutathione peroxidase [GPX], and peroxidase [POD]) revealed involvement of these enzymes in callus formation and differentiation. All of the activities were interlinked with each other and played significant roles in the scavenging of toxic free radicals. This study will help in the advancement of a regeneration protocol for B. rapa var. turnip and the understanding of the functions of antioxidative enzymes in plant differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号