首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— The alkylating agent N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) is a peptide-coupling agent that is being used to inactivate irreversibly α2-adrenoceptors and other receptors. The aim of the present study was to assess the in vitro and in vivo effects of EEDQ on the newly discovered brain l2-imidazoline sites, located mainly in mitochondria. Preincubation of rat cortical membranes with EEDQ (10?8-10?5M) markedly decreased (20–90%) the specific binding of the selective antagonist [3H]R821002 to α2-adrenoceptors without affecting that of [3H]idazoxan (in the presence of adrenaline) to l2-imidazoline sites. In EEDQ-pretreated membranes (10?5M, 30 min at 25°c), the density of l2-imidazoline sites (Bmax= 80 ± 4 fmol/mg of protein) was not different from that determined in untreated membranes in the presence of 10?6M (-)-adrenaline (Bmax= 83 ± 4 fmol/mg of protein), and both densities were lower (24%, p < 0.05) than the total native density of [3H]idazoxan binding sites (Bmax= 107 ± 6 fmol/mg of protein) (l2-imidazoline sites plus a2-adrenoceptors). Treatment of rats with an optimal dose of EEDQ (1.6 mg/kg, i.p., for 2 h to 30 days) reduced maximally at 6 h (by 95 ± 1%) the specific binding of [3H]-R821002 to α2-adrenoceptors, but also the binding of [3H]idazoxan to l2-imidazoline sites (by 44 ± 5%). Pretreatment with yohimbine (10 mg/kg, i.p.) fully protected against EEDQ-induced α2-adrenoceptor inactivation. In contrast, pretreatment with cirazoline (1 mg/kg, i.p.), did not protect against EEDQ-induced inactivation of l2-imidazoline sites. Treatment with EEDQ (1.6 mg/kg, i.p., for 6 h) did not alter the density of brain monoamine oxidase-A sites labeled by [3H]Ro 41–1049 or that of monoamine oxidase-B sites labeled by [3H]Ro 19–6327 (lazabemide), two relevant mitochondrial markers. Competition experiments with cirazoline against the specific binding of [3H]idazoxan to l2-imidazoline sites demonstrated the presence of the expected two affinity states for the drug in EEDQ-pretreated membranes as well as in rats treated with EEDQ. The results indicate that EEDQ in vitro is a useful tool for quantitating l2-imidazoline sites when using [3H]-imidazoline ligands that also recognize α2-adrenoceptors. In vivo, however, EEDQ is also able to inactivate partially brain l2-imidazoline sites probably by an indirect mechanism. Key Words: Brain l2-imidazoline sites—[3H]-Idazoxan—α2-Adrenoceptors—[3H] R821002—N -Ethoxycarbonyl-2-ethoxy-li2-dihydroquinoline—Monoamine oxidase-A—[3H]Ro 41–1049—Monoamine oxidase-B—[3H]Ro 19–6327.  相似文献   

2.
Abstract: The binding of [3H]dopamine to brain regions of calf, rat, and human was investigated. The calf caudate contained the highest density of [3H]dopamine binding sites, with a Bmax value of 185 fmol/mg protein, whereas rat and human striatum contained one-third this number of sites. The KD values for [3H]dopamine in all tissues were 2–3 nM. Dopaminergic catecholamines (dopamine, apomorphine, 6,7-dihydroxy-2-aminotetralin, and N-propylnorapomorphine) inhibited the binding of [3H]dopamine in all three species, at low concentrations, with IC50 values of 1.5 to 6 nM. Neuroleptics, in contrast, inhibited the binding at high concentrations (with IC50 values of 200 to 40,000 nM). The [3H]dopamine binding sites were saturable, heat-labile, and detectable only in dopamine-rich brain regions; these sites differed from D2 dopamine sites (labeled by [3H]butyrophenone neuroleptics), and from Dl dopamine sites (labeled by [3H]thioxanthene neuroleptics) associated with the dopamine-stimulated adenylate cyclase. We have, therefore, called these high-affinity [3H]dopamine binding sites D3 sites. [3H]Apomorphine and [3H]ADTN also appeared to label D3 sites. These ligands however, were less selective than [3H]dopamine, and labeled sites other than D3 as well. Assay conditions were important in determining the parameters of [3H]dopamine binding. The optimum conditions for selective labeling of the D3 dopaminergic sites, using [3H]dopamine, required the presence of EDTA and ascorbate.  相似文献   

3.
Abstract: [3H]Ro 16–6491 [N-(2-aminoethyl)-p-chloroben-zamide HCl], a reversible “mechanism-based” inhibitor of monoamine oxidase (MAO) type B, binds selectively and with high affinity to the active site of MAO-B in brain and platelet membranes. Under normal conditions, the binding of [3H]Ro 16–6491 is fully reversible. However, [3H]Ro 16–6491 could be irreversibly bound (covalently) to membranes by the addition of the reducing agent NaBH3CN to the sample and adjusting to pH 4.5 with acetic acid. No irreversible labelling occurred in the absence of NaBH3CN and at neutral pH. The presence of the irreversible MAO-B inhibitor /-deprenyl completely abolished the irreversible labelling of the membranes by [3H]Ro 16–6491. The selective inactivation of MAO-B, e.g., by /-deprenyl prevented the covalent incorporation of [3H]Ro 16–6491 whereas selective inhibition of the MAO-A by clorgyline was without effect. The covalent linkage to membranes of unlabelled Ro 16–6491 and Ro 19–6327 (a selective and reversible MAO-B inhibitor closely related to Ro 16–6491) after the addition of NaBH3CN at pH 4.5 irreversibly inactivated MAO-B activity whereas MAO-A activity was unaffected. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of labelled membranes showed that [3H]Ro 16–6491 was incorporated into a single polypeptide with a molecular mass identical to the one labelled by [3H]pargyline (58 kilodaltons). Our results indicate that the polypeptide that is covalently labelled by [3H]Ro 16–6491 corresponds to one of the two MAO-B subunits. Therefore, [3H]Ro 16–6491 represents a selective probe for affinity labelling of MAO-B and for the investigation of the structural composition of the active site of the enzyme. Whether the reduction with NaBH3CN at pH 4.5 of the [3H]Ro 16–6491-MAO-B complex results in the formation of a stable adduct with the amino acid chain of the MAO-B or with its prosthetic group, FAD, remains to be elucidated.  相似文献   

4.
Abstract: RS-42358–197{(S)-N-(1-azabicyclo[2.2.2]oct-3-yl)-2,4,5,6-tetrahydro-1H-benzo[de]isoquinolin-1-one hydrochloride} displaced the prototypic 5-hydroxytryptamine3 (5-HT3) receptor ligand [3H]quipazine in rat cerebral cortical membranes with an affinity (pKi) of 9.8 ± 0.1, while having weak affinity (pKi < 6.0) in 23 other receptor binding assays. [3H]RS-42358–197 was then utilized to label 5-HT3 receptors in a variety of tissues. [3H]RS-42358–197 labelled high-affinity and saturable binding sites in membranes from rat cortex, NG108–15 cells, and rabbit ileal myenteric plexus with affinities (KD) of 0.12 ± 0.01, 0.20 ± 0.01, and 0.10 ± 0.01 nM and densities (Bmax) of 16.0 ± 2.0, 660 ± 74, and 88 ± 12 fmol/mg of protein, respectively. The density of sites labelled in each of these tissues with [3H]RS-42358–197 was similar to that labelled with [3H]GR 65630, but was significantly less than that found with [3H]-quipazine. The binding of [3H]RS-42358–197 had a pharmacological profile similar to that of [3H]quipazine, as indicated by the rank order of displacement potencies: RS-42358–197 > (S)-zacopride > tropisetron > (R)-zacopride > ondansetron > MDL72222 > 5-HT. However, differences in 5-HT3 receptors of different tissues and species were detected on the basis of statistically significant differences in the affinities of phenylbiguanide, and 1-(m-chlorophenyl)biguanide when displacing [3H]RS-42358-197 binding. [3H]RS-42358–197 also labelled a population (Bmax= 91 ± 17 fmol/mg of protein) of binding sites in guinea pig myenteric plexus membranes, with lower affinity (KD= 1.6 ± 0.3 nM) than those in the other preparations. Moreover, the rank order of displacement potencies of 15 5-HT3 receptor ligands in guinea pig ileum was found not to be identical to that in other tissues. Binding studies carried out with [3H]RS-42358–197 have detected differences in 5-HT3 receptor binding sites in tissues of different species and further underscore the unique nature of the guinea pig 5-HT3 receptor.  相似文献   

5.
Abstract: [3H]Aniracetam bound to specific and saturable recognition sites in membranes prepared from discrete regions of rat brain. In crude membrane preparation from rat cerebral cortex, specific binding was Na+ independent, was still largely detectable at low temperature (4°C), and underwent rapid dissociation. Scatchard analysis of [3H]aniracetam binding revealed a single population of sites with an apparent KD value of ~70 nM and a maximal density of 3.5 pmol/mg of protein. Specifically bound [3H]aniracetam was not displaced by various metabolites of aniracetam, nor by other pyrrolidinone-containing nootropic drugs such as piracetam or oxiracetam. Subcellular distribution studies showed that a high percentage of specific [3H]aniracetam binding was present in purified synaptosomes or mitochondria, whereas specific binding was low in the myelin fraction. The possibility that at least some [3H]aniracetam binding sites are associated with glutamate receptors is supported by the evidence that specific binding was abolished when membranes were preincubated at 37°C under fast shaking (a procedure that substantially reduced the amount of glutamate trapped in the membranes) and could be restored after addition of either glutamate or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) but not kainate. The action of AMPA was antagonized by DNQX, which also reduced specific [3H]aniracetam binding in unwashed membranes. High levels of [3H]aniracetam binding were detected in hippocampal, cortical, or cerebellar membranes, which contain a high density of excitatory amino acid receptors. Although synaptosomal aniracetam binding sites may well be associated with AMPA-sensitive glutamate receptors, specifically bound [3H]aniracetam could not be displaced by cyclothiazide or GYKI 52466, which act as a positive and negative modulator of AMPA receptors, respectively.  相似文献   

6.
Abstract: High-affinity [3H]5-hydroxytryptamine ([3H]5-HT) binding in the rat spinal cord is similar to that demonstrated in the frontal cortex. [3H]5-HT binds with nearly the same affinity to sites in both tissues. Furthermore, similar patterns of displacement of [3H]5–HT were seen in both tissues, with either spiperone or LSD as the unlabeled ligand. This high-affinity binding appears to be to multiple sites, since displacement studies using 2 nM [3H]5–HT result in Hill coefficients less than unity for spiperone, LSD, and quipazine [Hill coefficients (nH): 0.44, 0.39, 0.40, respectively]. These sites apparently have an equal affinity for [3H]5-HT, since unlabeled 5-HT did not discriminate between them. Thus, the high-affinity [3H]5-HT binding in the spinal cord may be analogous to that observed in the frontal cortex, where two populations of sites have previously been described (5-HTIA, 5-HTIB). In addition to the multiple high-affinity spinal cord binding sites, a low-affinity [3H]5-HT binding component was also identified. A curvilinear Scatchard plot results from saturation studies using [3H]5-HT (0.5–100 nM) in the spinal cord. The plot can be resolved into sites having apparent dissociation constants of 1.4 nM and 57.8 nM for the high-and low-affinity components, respectively. Additional support for a change in affinity characteristics at higher radioligand concentrations comes from the displacement of 30 nM [3H]5-HT by the unlabeled ligand. A nonparallel shift in the dissociation curve was seen, resulting in a Hill coefficient less than unity (0.32). None of the specifically bound [3H]5-HT in the spinal cord is associated with the 5-HT uptake carrier, since fluoxetine, an inhibitor of 5-HT uptake, does not alter binding characteristics. In addition, a 5-HT binding site analogous to the site designated 5-HT, was not apparent in the spinal cord. Ketanse-rin and cyproheptadine, drugs that are highly selective for 5-HT, sites, did not displace [3H]5-HT from spinal tissue, and [3H]spiperone, a radioligand that binds with high affinity to 5-HT2 sites, did not exhibit saturable binding in the tissue. Thus, the 5-HT2 binding site reported in other regions of the central nervous system, and the serotonin uptake carrier do not appear to contribute to the multiple binding sites demonstrated in the spinal cord.  相似文献   

7.
The full agonist [3H]UK 14304 [5-bromo-6-(2-imidazolin-2-yl-amino)-quinoxaline] was used to characterize alpha 2-adrenoceptors in postmortem human brain. The binding at 25 degrees C was rapid (t1/2, 4.6 min) and reversible (t1/2, 14.1 min), and the KD determined from the kinetic studies was 0.48 nM. In frontal cortex, the rank order of potency of adrenergic drugs competing with [3H]UK 14304 or [3H]clonidine showed the specificity for an alpha 2A-adrenoceptor: UK 14304 approximately equal to yohimbine approximately equal to oxymetazoline approximately equal to clonidine greater than phentolamine approximately equal to (-)-adrenaline greater than idazoxan approximately equal to (-)-noradrenaline greater than phenylephrine greater than (+/-)-adrenaline much greater than corynanthine greater than prazosin much greater than (+/-)-propranolol. GTP induced a threefold decrease in the affinity of [3H]UK 14304, with no alteration in the maximum number of binding sites, suggesting that the radioligand labelled the high-affinity state of the alpha 2-adrenoceptor. In the frontal cortex, analyses of saturation curves indicated the existence of a single population of noninteracting sites for [3H]UK 14304 (KD = 0.35 +/- 0.13 nM; Bmax = 74 +/- 9 fmol/mg of protein). In other brain regions (hypothalamus, hippocampus, cerebellum, brainstem, caudate nucleus, and amygdala) the Bmax ranged from 68 +/- 7 to 28 +/- 4 fmol/mg of protein. No significant changes in the KD values were found in the different regions examined. The binding of [3H]UK 14304 was not affected by age, sex or postmortem delay.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Abstract: The effect of oxidative stress induced by the oxidant pair ascorbate/Fe2+ on the activity of ionotropic glutamate receptors was studied in cultured chick retina cells. The release of [3H]GABA and the increase of the intracellular free Na+ concentration ([Na+]i), evoked by glutamate receptor agonists, were used as functional assays for the activity of the receptors. The results show that the maximal release of [3H]GABA evoked by kainate (KA; ~20% of the total) or AMPA (~11% of the total) was not different in control and peroxidized cells, whereas the EC50 values determined for peroxidized cells (33.6 ± 1.7 and 8.0 ± 2.0 µM for KA and AMPA, respectively) were significantly lower than those determined under control conditions (54.1 ± 6.6 and 13.0 ± 2.2 µM for KA and AMPA, respectively). The maximal release of [3H]GABA evoked by NMDA under K+ depolarization was significantly higher in peroxidized cells (7.5 ± 0.5% of the total) as compared with control cells (4.0 ± 0.2% of the total), and the effect of oxidative stress was significantly reduced by a phospholipase A2 inhibitor or by fatty acid-free bovine serum albumin. The change in the intracellular [Na+]i evoked by saturating concentrations of NMDA under depolarizing conditions was significantly higher in peroxidized cells (8.9 ± 0.6 mM) than in control cells (5.9 ± 1.0 mM). KA, used at a subsaturating concentration (35 µM), evoked significantly greater increases of the [Na+]i in peroxidized cells (11.8 ± 1.7 mM) than in control cells (7.1 ± 0.8 mM). A saturating concentration (150 µM) of this agonist triggered similar increases of the [Na+]i in control and peroxidized cells. Accordingly, the maximal number of binding sites for (+)-5-[3H]methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate ([3H]MK-801) was increased after peroxidation, whereas the maximal number of binding sites for [3H]KA was not affected by oxidative stress. These data suggest that under oxidative stress the activity of the ionotropic glutamate receptors is increased, with the NMDA receptor being the most affected by peroxidation.  相似文献   

9.
Abstract: With [3H]guanosine triphosphate ([3H]GTP) and [3H]β, γ -imidoguanosine 5′-triphosphate ([3H]GppNHp) as the labelled substrates, both the binding and the catabolism of guanine nucleotides have been studied in various brain membrane preparations. Both labelled nucleotides bound to a single class of noninteracting sites (KD= 0.1-0.5 μm ) in membranes from various brain regions (hippocampus, striatum, cerebral cortex). Unlabelled GTP, GppNHp, and guanosine diphosphate (GDP) but not guanosine monophosphate (GMP) and guanosine competitively inhibited the specific binding of [3H]guanine nucleotides. Calcium (0.1–5 mm ) partially prevented the binding of [3H]GTP and [3H]GppNHp to hippocampal and striatal membranes. This resulted from both an increased catabolism of [3H]GTP (into [3H]guanosine) and the likely formation of Ca-guanine nucleotide2- complexes. The blockade of guanine nucleotide catabolism was responsible for the enhanced binding of [3H]GTP to hippocampal membranes in the presence of 0.1 mm -ATP or 0.1 mm -GMP. Striatal lesions with kainic acid produced both a 50% reduction of the number of specific guanine nucleotide binding sites and an acceleration of [3H]GTP and [3H]GppNHp catabolism (into [3H]guanosine) in membranes from the lesioned striatum. This suggests that guanine nucleotide binding sites were associated (at least in part) with intrinsic neurones whereas the catabolising enzyme(s) would be (mainly) located to glial cells (which proliferate after kainic acid lesion). The characteristics of the [3H]guanine nucleotide binding sites strongly suggest that they may correspond to the GTP subunits regulating neurotransmitter receptors including those labelled with [3H]5-hydroxytryptamine ([3H]5-HT) in the rat brain.  相似文献   

10.
Certain neuroleptic drugs, such as spiperone and (+) butaclamol, can discriminate between two populations of [3H]5-hydroxytryptamine ([3H]5-HT) binding sites in rat brain. The butyrophenone neuroleptic spiperone shows the greatest selectivity for these two binding sites, having at least a 3000-fold difference between its dissociation constants (2-12 nM versus 35,000 nM) for the high- and low-affinity sites, respectively. Inhibition of [3H]5-HT binding by spiperone in rat frontal cortex and corpus striatum yields distinctly biphasic inhibition curves with Hill slopes significantly less than unity. Results from nonlinear regression analysis of these inhibition studies were consistent with a two-site model in each brain region. In the frontal cortex the high-affinity neuroleptic sites comprised about 60% of the total [3/H]5-HT binding sites whereas in the corpus striatum they accounted for only 20% of the sites. Furthermore, saturation studies of [3H]5-HT binding assayed in the absence or presence of 1 μM-spiperone (a concentration that completely blocks the high-affinity site while having minimal activity at the low-affinity site) reveal a parallel shift in the Scatchard plot with no change in the dissociation constant of [3H]5-HT, but a significant decrease (64% in frontal cortex or 28% in corpus striatum) in the number of specific binding sites. These observations are consistent with the existence of at least two populations of [3H]5-HT binding sites having a differential regional distribution in rat brain.  相似文献   

11.
Abstract: The specific binding of [3H]WAY-100635 {N-[2-[4-(2-[O-methyl-3H]methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexane carboxamide trihydrochloride} to rat hippocampal membrane preparations was time, temperature, and tissue concentration dependent. The rates of [3H]WAY-100635 association (k+1 = 0.069 ± 0.015 nM?1 min?1) and dissociation (k?1 = 0.023 ± 0.001 min?1) followed monoexponential kinetics. Saturation binding isotherms of [3H]WAY-100635 exhibited a single class of recognition site with an affinity of 0.37 ± 0.051 nM and a maximal binding capacity (Bmax) of 312 ± 12 fmol/mg of protein. The maximal number of binding sites labelled by [3H]WAY-100635 was ~36% higher compared with that of 8-hydroxy-2-(di-n-[3H]-propylamino)tetralin ([3H]8-OH-DPAT). The binding affinity of [3H]WAY-100635 was significantly lowered by the divalent cations CaCl2 (2.5-fold; p < 0.02) and MnCl2 (3.6-fold; p < 0.05), with no effect on Bmax. Guanyl nucleotides failed to influence the KD and Bmax parameters of [3H]WAY-100635 binding to 5-HT1A receptors. The pharmacological binding profile of [3H]WAY-100635 was closely correlated with that of [3H]8-OH-DPAT, which is consistent with the labelling of 5-hydroxytryptamine1A (5-HT1A) sites in rat hippocampus. [3H]WAY-100635 competition curves with 5-HT1A agonists and partial agonists were best resolved into high- and low-affinity binding components, whereas antagonists were best described by a one-site binding model. In the presence of 50 µM guanosine 5′-O-(3-thiotriphosphate) (GTPγS), competition curves for the antagonists remained unaltered, whereas the agonist and partial agonist curves were shifted to the right, reflecting an influence of G protein coupling on agonist versus antagonist binding to the 5-HT1A receptor. However, a residual (16 ± 2%) high-affinity agonist binding component was still apparent in the presence of GTPγS, indicating the existence of GTP-insensitive sites.  相似文献   

12.
Abstract The pharmacological and biochemical characteristics of [3H]desipramine binding to rat brain tissue were investigated. Competition studies with noradrenaline, nisoxetine, nortriptyline, and desipramine suggested the presence of more than one [3H]desipramine binding site. Most of the noradrenaline-sensitive binding represented a high-affinity site, and this site appeared to be the same as the high-affinity site of nisoxetine-sensitive binding. The [3H]desipramine binding sites were abolished by protease treatment, a result suggesting that the binding sites are protein in nature. When specific binding was defined by 0.1 μM nisoxetine, the binding was saturable and fitted a single-site binding model with a binding affinity of ~1 nM. This binding fraction was abolished by lesioning of the noradrenaline neurons with the noradrenaline neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromo-benzylamine (DSP4). In contrast, when 10 μM nisoxetine was used to define the specific binding, the binding was not saturable over the nanomolar range, but the binding fitted a two-site binding model with KD values of 0.5 and >100 nM for the high- and low-affinity components, respectively. The high-affinity site was abolished after DSP4 lesioning, whereas the low-affinity site remained. The binding capacity (Bmax) for binding defined by 0.1 μM nisoxetine varied between brain regions, with very low density in the striatum (Bmax not possible to determine), 60-90 fmol/mg of protein in cortical areas and cerebellum, and 120 fmol/mg of protein in the hypothalamus. The binding capacities of these high-affinity sites correlated significantly with the regional distribution of [3H]noradrenaline uptake but not with 5-[3H]hydroxytryptamine uptake. The low-affinity sites did not correlate with the regional distribution of [3H]noradrenaline uptake. Drug inhibition studies showed that noradrenaline inhibits the binding defined by 0.1 μM nisoxetine in a competitive manner. Together, these findings suggest that only a small fraction of the [3H]desipramine binding can be regarded as “specific” binding, and this binding fraction may represent the substrate recognition site for noradrenaline uptake. Assuming that one molecule of desipramine binds to each carrier molecule, the turnover number for the noradrenaline carrier was calculated to be 20/min, i.e., the duration of one transport cycle was 3 s.  相似文献   

13.
Abstract: We have studied the regional distribution and characteristics of polyamine-sensitive [3H]ifenprodil binding sites by quantitative autoradiography in the rat brain. In forebrain areas ifenprodil displaced [3H]ifenprodil (40 nM) in a biphasic manner with IC50 values ranging from 42 to 352 nM and 401 to 974 µM. In hindbrain regions, including the cerebellum, ifenprodil displacement curves were monophasic with IC50 values in the high micromolar range. Wiping studies using forebrain slices (containing both high- and low-affinity sites) or cerebellar slices (containing only the low-affinity site) showed that high- and low-affinity ifenprodil sites are sensitive to spermine and spermidine, to the aminoglycoside antibiotics neomycin, gentamicin, and kanamycin, and to zinc. Two calmodulin antagonists, W7 and calmidazolium, also displaced [3H]ifenprodil from both sites. Other calmodulin antagonists, including trifluoperazine, prenylamine, and chlorpromazine, selectively displaced [3H]ifenprodil from its low-affinity site in hindbrain and forebrain regions. High-affinity [3H]ifenprodil sites, defined either by ifenprodil displacement curves or by [3H]ifenprodil binding in the presence of 1 mM trifluoperazine, were concentrated in the cortex, hippocampus, striatum, and thalamus with little or no labeling of hindbrain or cerebellar regions. This distribution matches that of NMDAR2B mRNA, supporting data showing that ifenprodil has a preferential action at NMDA receptors containing this subunit. Low-affinity [3H]ifenprodil sites have a more ubiquitous distribution but are especially concentrated in the molecular layer of the cerebellum. [3H]Ifenprodil was found to bind to calmodulin-agarose with very low affinity (IC50 of ifenprodil = 516 µM). This binding was displaced by calmodulin antagonists and by polyamines, with a potency that matched their displacement of [3H]ifenprodil from its low-affinity site in brain sections. However, the localization of the low-affinity [3H]ifenprodil site does not strictly correspond to that of calmodulin, and its identity remains to be further characterized. The restricted localization of high-affinity [3H]ifenprodil binding sites to regions rich in NMDAR2B subunit mRNA may explain the atypical nature of this NMDA antagonist.  相似文献   

14.
Abstract: This study investigated the binding of [3H] CGP 39653, a novel high-affinity antagonist of the N-methyl-D- aspartate (NMDA) recognition site of the NMDA receptor complex. [3H] CGP 39653 bound to the NMDA receptor in well washed rat brain membranes with an affinity of about 15 nM. Other NMDA site drugs inhibited [3H] CGP 39653 binding with the following order of potency: DL-(tetrazol-5- yl)glycine > glutamate > CGS 19755 > DL-2-amino-5- phosphonovalerate (DL-AP5) > NMDA. Glycine and 5, 7- dichlorokynurenate partially inhibited binding. The poly-amines spermine and spermidine increased [3H] CGP 39653 binding (EC50 values of 10 and 22 μM, respectively). This effect was mimicked by arcaine, 1, 5-diethylaminopiperidine, diaminodecane, diethylenetriamine, and Mg2+. The increase in [3H] CGP 39653 was a result of an increased affinity of the binding site for the ligand with very little effect on binding site density. Spermine and Mg2+also increased the affinity of the antagonists DL-AP5 and CGS 19755, but had only minor effects on the affinity of glutamate and NMDA. Arcaine did not reverse the enhancement of [3H] CGP 39653 binding by spermine, spermidine, or Mg2+. Channel-blocking dissociative anesthetics, including dizocilpine and ketamine, did not alter basal or Mg2+-stimulated [3H] CGP 39653 binding. Spermine did not alter either the enhancement of [3H]- dizocilpine by glutamate or the inhibition of [3H]dizocilpine by DL-AP5 or CGS 19755. These studies show that poly-amines and divalent cations selectively enhance the affinity of antagonists for the agonist binding site on the NMDA receptor complex. However, this effect is mediated by a site independent of the primary polyamine site defined using [3H] dizocilpine binding.  相似文献   

15.
Abstract: The binding of [3H] γ-aminobutyric acid ([3H]GABA) and [3H]muscimol has been studied in purified synaptic plasma membrane (SPM) preparations from rat brain. Scatchard analysis of specific binding (defined as that displaced by 100 μMγ-aminobutyrate) indicated that the binding of both radiolabelled ligands was best described by a two component Langmuir adsorption isotherm. The apparent KD and Bmax values for [3H]GABA at 4°C were KD1, 20 nM; KD2,165 nM; Bmax1, 0.48 pmol;Bmax2, 6.0 pmol. mg?1; for [3H]muscimol at 4°C they were: KD1, 1.75 nM; KD2, 17.5 nM; Bmaxl, 0.84 pmol. mg?1; Bmax2, 4.8 pmol.mg?1; and for [3H]muscimol at 37°C they were: KD1, 7.0 nM; Km, 60 nM; Bmax], 0.5 pmol-mg?1; Bmax2, 7.2 pmol-mg1. Under the experimental conditions used, the similar Bmilx values for [3H]GABA and [3H]muscimol binding to the SPM preparations suggests that the high- and low-affinity components for the two radiolabeled ligands are identical. The effects of the GAB A antagonist bicuculline on the binding of [3H]muscimol at 4CC and 37°C were studied. At 4°C, antagonism of muscimol binding appeared to be competitive at the high-affinity site but noncompetitive at the low-affinity site. At 37°C, antagonism was again competitive at the high-affinity site but was of a mixed competitive/noncompetitive nature at the low-affinity site. Assuming that binding to the high-affinity site is associated with the pharmacological actions of bicuculline, the apparent KD values obtained suggest a pA2 value of 5.3 against [3H]muscimol at 4°C and 37°C. This figure is in good agreement with several estimates of the potency of bicuculline based on pharmacological measurements. Results from displacement studies using [3H]GABA and [3H]muscimol suggest that [3H]GABA might be a more satisfactory ligand than [3H]muscimol in GABA radioreceptor assays.  相似文献   

16.
Abstract: In the presence of substance P (SP; 10 μM), serotonin (5-HT; 1 μM) triggered a cation permeability in cells of the hybridoma (mouse neuroblastoma X rat glioma) clone NG 108-15 that could be assessed by measuring the cell capacity to accumulate [14C]guanidinium for 10-15 min at 37°C. In addition to 5-HT (EC50, 0.33 μM), the potent 5-HT3 receptor agonists 2-methyl-serotonin, phenylbiguanide, and m-chlorophenylbiguanide, and quipazine, markedly increased [14C]guanidinium uptake in NG 108-15 cells exposed to 10 μM SP. In contrast, 5-HT3 receptor antagonists prevented the effect of 5-HT. The correlation (r= 0.97) between the potencies of 16 different ligands to mimic or prevent the effects of 5-HT on [14C]guanidinium uptake, on the one hand, and to displace [3H]zacopride specifically bound to 5-HT3 receptors on NG 108-15 cells, on the other hand, clearly demonstrated that [14C]guanidinium uptake was directly controlled by 5-HT3 receptors. Various compounds such as inorganic cations (La3+, Mn2+, Ba2+, Ni2+, and Zn2+), D-tubocurarine, and memantine inhibited [14C]guanidinium uptake in NG 108-15 cells exposed to 5-HT and SP, as expected from their noncompetitive antagonistic properties at 5-HT3 receptors. However, ethanol (100 mM), which has been reported to potentiate the electrophysiological response to 5-HT3 receptor stimulation, prevented the effects of 5-HT plus SP on [14C]guanidinium uptake. The cooperative effect of SP on this 5-HT3-evoked response resulted neither from an interaction of the peptide with the 5-HT3 receptor binding site nor from a possible direct activation of G proteins in NG 108-15 cells. Among SP derivatives, [D-Pro9]SP, a compound inactive at the various neurokinin receptor classes, was the most potent to mimic the stimulatory effect of SP on [14C]guanidinium uptake in NG 108-15 cells exposed to 5-HT. Although the cellular mechanisms involved deserve further investigations, the 5-HT-evoked [14C]guanidinium uptake appears to be a rapid and reliable response for assessing the functional state of 5-HT3 receptors in NG 108-15 cells.  相似文献   

17.
Abstract: The aim of this study was to quantify and compare the turnover of brain α2-adrenoceptors during chronic morphine treatment and after spontaneous morphine withdrawal in rats. The oral administration of increasing doses of morphine (10–90 mg/kg) for 20 days did not alter the specific binding of the agonist [3H]clonidine in the cerebral cortex. However, spontaneous opiate withdrawal (24 h) significantly increased the density of cortical α2-adrenoceptors (Bmax for [3H]clonidine was 21% greater). The recovery of [3H]clonidine binding after irreversible inactivation by N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (1.6 mg/kg) was assessed in naive, morphine-dependent, and morphine-withdrawn rats to study the process of α2-adrenoceptor repopulation and to calculate receptor turnover parameters. The simultaneous analysis of receptor recovery curves revealed that the turnover of brain α2-adrenoceptors in morphine-withdrawn rats was accelerated [appearance rate constant (r) = 21 fmol/mg of protein/day; disappearance rate constant (k) = 0.25 day?1] compared with those in morphine-dependent (r = 13 fmol/mg of protein/day; k = 0.14 day?1) and naive (r = 15 fmol/mg of protein/day; k = 0.16 day?1) rats. Moreover, this analysis also indicated that the increased density of cortical α2-adrenoceptors observed during morphine withdrawal was due to a significantly higher receptor appearance (Δr = 37–57%) and not to a decreased receptor disappearance, which in fact showed also an increase (Δk = 56–79%). It is proposed that the increased rate of α2-adrenoceptor production in the brain of morphine-dependent rats during spontaneous withdrawal is most probably mediated by the overactivity of the adenylyl cyclase/cyclic AMP system induced by opiate addiction.  相似文献   

18.
[125I]RTI-55 is a newly synthesized cocaine congener that may offer advantages over other ligands previously used to examine cocaine binding sites. However, the in vitro pharmacological and anatomical characterization of [125I]RTI-55 binding sites has not been previously performed in human brain. To determine the specificity, stability, and feasibility of [125I]RTI-55 for use in radioligand binding assays in postmortem human tissue, a series of experiments were performed characterizing [125I]RTI-55 binding sites in human brain using homogenized membrane preparations and quantitative autoradtography. Analysis of the association, dissociation, and saturation data favored two-phase processes. A curve-fitting analysis of the data derived in saturation experiments found a high-affinity site with KD= 66 ± 35 pM and Smax= 13.2 ± 10.1 pmol/g of tissue and a low-affinity site with KD= 1.52 ± 0.55 nM and Bmax of 47.5 ± 11-2 pmol/g of tissue. Competition by ligands known to bind to the dopamine transporter showed a rank order of RTI-55 > GBR-12909 > mazindol > WIN 35428 > = methylphenidate > (?)-cocaine > buproprion > (±)-amphetamine. Binding to serotonergic sites was evaluated in the midbrain. Results of the saturation experiment performed autoradiographically in the midbrain showed a single site with KD= 370 ± 84 pM. It appears that [125I]RTI-55 should be useful in further studies of the regulation of cocaine binding sites using postmortem human specimens.  相似文献   

19.
Abstract: Pretreatment with Triton X-100 more than doubled the binding of radiolabeled 5,7-dichlorokynurenic acid (DCKA), a proposed antagonist at a glycine (Gly) recognition domain on the N-methyl-d -aspartate (NMDA) receptor ionophore complex, in rat brain synaptic membranes. The binding exhibited an inverse temperature dependency, reversibility, and saturability, the binding sites consisting of a single component with a high affinity (27.5 nM) and a relatively low density (2.87 pmol/mg of protein). The binding of both [3H]DCKA and [3H]Gly was similarly displaced by numerous putative agonists and antagonists at the Gly domain in a concentration-dependent manner at a concentration range of 100 nM to 0.1 mM. Among the 24 putative ligands tested, DCKA was the second most potent displacer of the binding of both radioligands with no intrinsic affinity for the binding of [3H]kainic acid and α-amino-3-hydroxy-5-[3H]methylisoxazole-4-propionic acid (AMPA) to the non-NMDA receptors. In contrast, the other proposed potent Gly antagonist, 5,7-dinitroquinoxaline-2,3-dione, was active in displacing the binding of [3H]glutamic ([3H]Glu) and D,L-(E)-2-amino-4-[3H]propyl-5-phosphono-3-pentenoic acids to the NMDA recognition domain with a relatively high affinity for the non-NMDA receptors. In addition, the proposed antagonist at the AMPA-sensitive receptor, 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline, not only displaced weakly the binding of both [3H]- Gly and [3H]DCKA, but also inhibited the binding of (+)-5-[3H]methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine ([3H]MK-801) to an ion channel associated with the NMDA-sensitive receptor in the presence of added Glu alone in a manner sensitive to antagonism by further added Gly. Clear correlations were seen between potencies of the displacers to displace [3H]DCKA binding and [3H]Gly binding, in addition to between the potencies to displace [3H]-DCKA or [3H]Gly binding and to potentiate or inhibit [3H]MK-801 binding. All quinoxalines tested were invariably more potent displacers of [3H]DCKA binding than [3H]Gly binding, whereas kynurenines were similarly effective in displacing the binding of both [3H]Gly and [3H]-DCKA. These results undoubtedly give support to the proposal that [3H]DCKA is one useful radioligand available in terms of its high selectivity and affinity for the Gly domain in the brain. Possible multiplicity of the Gly domain is suggested by the differential pharmacological profiles between the binding of [3H]Gly and [3H]DCKA.  相似文献   

20.
Abstract: The human neuroblastoma cell line SH-SY5Y, maintained at confluence for 14 days, released [3H]-noradrenaline ([3H]NA) when stimulated with either the muscarinic receptor agonist methacholine or bradykinin. The major fraction of release was rapid, occurring in <10 s, whereas nicotine-evoked release was slower. When the extracellular [Ca2+] ([Ca2+]e) was buffered to ~50–100 nM, release evoked by nicotine was abolished, whereas that in response to methacholine or bradykinin was reduced by ~50% with EC50 values of ?5.46 ± 0.05 M and ?7.46 ± 0.06 M (log10), respectively. Methacholine and bradykinin also produced rapid elevations of both inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and intracellular free [Ca2+] ([Ca2+]i). These elevations were reduced at low [Ca2+]e and under these conditions the EC50 values for peak elevation of [Ca2+]i were ?6.00 ± 0.14 M for methacholine and ?7.95 ± 0.34 M for bradykinin (n = 3 for all EC50 determinations). At low [Ca2+]e, depletion of nonmitochondrial intracellular Ca2+ stores with the Ca2+-ATPase inhibitor thapsigargin produced a transient small elevation of [Ca2+]i and a minor release of [3H]NA. At low [Ca2+]e, thapsigargin abolished elevation of [Ca2+]i in response to methacholine and bradykinin and completely inhibited their stimulation of [3H]NA release. It is proposed, therefore, that Ca2+ release from Ins(1,4,5)P3-sensitive stores is a major trigger of methacholine- and bradykinin-evoked [3H]NA release in SH-SY5Y cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号