首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Treatment of membranes with islet activating protein (IAP), a toxin from Bordetella pertussis, results in abolition of GTP-dependent, receptor-mediated inhibition of adenylate cyclase. This appears to result from IAP-catalyzed ADP-ribosylation of a 41,000-Da membrane-bound protein. A protein with 41,000- and 35,000-Da subunits has been purified from rabbit liver membranes as the predominant substrate for IAP. This protein has now been shown to be capable of regulating membrane-bound adenylate cyclase activity of human platelets under various conditions. The characteristics of the actions of the IAP substrate are as follows. 1) Purified 41,000/35,000-Da dimer is capable of restoring the inhibitory effects of guanine nucleotides and the alpha 2-adrenergic agonist, epinephrine, on the adenylate cyclase activity of IAP-treated membranes. 2) The subunits of the dimer dissociate in the presence of guanine nucleotide analogs or A1(3+), Mg2+, and F-. The 41,000-Da subunit has a high affinity binding site for guanine nucleotides. 3) The resolved 35,000-Da subunit of the dimer mimics guanine nucleotide- and epinephrine-induced inhibition of adenylate cyclase. 4) The resolved (unliganded) 41,000-Da subunit stimulates adenylate cyclase activity and relieves guanine nucleotide- +/- epinephrine-induced inhibition of the enzyme. In contrast, the GTP gamma S-bound form of the 41,000-Da subunit inhibits adenylate cyclase activity, although with lower apparent affinity than does the 35,000-Da subunit. 5) The 35,000-Da subunit increases the rate of deactivation of Gs, the stimulatory regulatory protein of adenylate cyclase. In contrast, the 41,000-Da subunit can interact with Gs and inhibit its deactivation. These data strongly suggest that the IAP substrate is another dimeric, guanine nucleotide-binding regulatory protein and that it is responsible for inhibitory modulation of adenylate cyclase activity.  相似文献   

2.
The gene encoding cyclohexadienyl dehydratase (denoted pheC) was cloned from Pseudomonas aeruginosa by functional complementation of a pheA auxotroph of Escherichia coli. The gene was highly expressed in E. coli due to the use of the high-copy number vector pUC18. The P. aeruginosa cyclohexadienyl dehydratase expressed in E. coli was purified to electrophoretic homogeneity. The latter enzyme exhibited identical physical and biochemical properties as those obtained for cyclohexadienyl dehydratase purified from P. aeruginosa. The activity ratios of prephenate dehydratase to arogenate dehydratase remained constant (about 3.3-fold) throughout purification, thus demonstrating a single protein having broad substrate specificity. The cyclohexadienyl dehydratase exhibited Km values of 0.42 mM for prephenate and 0.22 mM for L-arogenate, respectively. The pheC gene was 807 base pairs in length, encoding a protein with a calculated molecular mass of 30,480 daltons. This compares with a molecular mass value of 29.5 kDa determined for the purified enzyme by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Since the native molecular mass determined by gel filtration was 72 kDa, the enzyme probably is a homodimer. Comparison of the deduced amino acid sequence of pheC from P. aeruginosa with those of the prephenate dehydratases of Corynebacterium glutamicum, Bacillus subtilis, E. coli, and Pseudomonas stutzeri by standard pairwise alignments did not establish obvious homology. However, a more detailed analysis revealed a conserved motif (containing a threonine residue known to be essential for catalysis) that was shared by all of the dehydratase proteins.  相似文献   

3.
C Noda  K Ito  T Nakamura  A Ichihara 《FEBS letters》1988,234(2):331-335
The nucleotide sequence of serine dehydratase mRNA of rat liver has been determined from a recombinant cDNA clone, previously cloned in this laboratory, and from a recombinant cDNA clone screened from a primer-extended cDNA library. The sequence of 1322 nucleotides includes the entire protein coding region and noncoding regions on the 3'- and 5'-sides. The deduced polypeptide consists of 327 amino acid residues with a calculated molecular mass of 34,462 Da. Comparison of the amino acid sequences of the serine dehydratase polypeptide with those of biosynthetic threonine dehydratase of yeast and biodegradative threonine dehydratase of E. coli revealed various extents of homology. A heptapeptide sequence, Gly-Ser-Phe-Lys-Ile-Arg-Gly, which is the pyridoxal-binding site in the yeast and E. coli threonine dehydratases was found as a highly conserved sequence.  相似文献   

4.
Neisseria meningitidis group B serotype 2 strain M986 contains two predominant outer membrane proteins, with apparent molecular weights of 41,000 (protein b) and 28,000 (protein e). Heating of outer membrane vesicles at 56 degrees C for 20 min caused much of b** to disaggregate and denature into b (41,000 daltons). In contrast, protein e could be rapidly solubilized by SDS at room temperature into its monomeric state (e*), but it was not converted to its final higher apparent molecular weight of 28,000 (e) unless heated at 100 degrees C for 2 min. We propose that protein b exists in the membrane as trimers or tetramers in a transmembrane configuration and that protein e exists as subunits on the exterior surface of the outer membrane and has a highly ordered tertiary structure.  相似文献   

5.
An endodeoxyribonuclease from HeLa cells acting on apurinic/apyrimidinic (AP) sites has been purified to apparent homogeneity as judged by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The presence of Triton X-100 was necessary throughout the purification for stabilization and stimulation of activity. The endonuclease has an apparent native molecular weight of 32,000 determined by molecular sieving and an apparent subunit molecular weight of 41,000 as judged by its electrophoretic mobility in SDS-polyacrylamide gels. The activity has an absolute requirement for Mg2+ or Mn2+ and a broad pH optimum between 6.7 and 9.0 with maximal activity near pH 7.5. The enzyme has no detectable exonuclease activity, nor any endonuclease activity on untreated duplex or single-stranded DNA. It is inhibited by adenine, hypoxanthine, adenosine, AMP, ADP-ribose, and NAD+, but it is unaffected by caffeine, the pyrimidine bases, ADP, ATP, or NADH. The use of a variety of damaged DNA substrates provided no indication that the enzyme acts on other than AP sites. The enzyme appears to cleave AP DNA so as to leave deoxyribose-5-phosphate at the 5' terminus and a 3'-OH at the 3' terminus; it also removes deoxyribose-5-phosphate from AP DNA which has deoxyribose at the 3' terminus. Specific antibody has been produced in rabbits which interacts only with a 41,000-dalton protein present in the purified enzyme (presumably the enzyme itself), as well as with partially purified AP endonuclease fractions from human placenta and fibroblasts.  相似文献   

6.
3-Dehydroshikimate dehydratase catalyzes the third reaction in the inducible quinic acid catabolic pathway of Neurospora crassa and is encoded in the qa-4 gene of the qa gene cluster. As part of continuing genetic and biochemical studies concerning the organization and regulation of this gene cluster, 3-dehydroshikimate dehydratase has been purified and characterized biochemically. The enzyme was purified 1650-fold using the following techniques: 1) (NH4)2SO4 fractionation; 2) ion exchange chromatography on DEAE-cellulose; 3) gel filtration on Sephadex G-100; 4) ion exchange chromatography on Cellex QAE (quaternary aminoethyl); and 5) hydroxylapatite chromatography. 3-Dehydroshikimate dehydratase is a monomer with a molecular weight of about 37,000 and a sedimentation coefficient of 3.27 S. It has a Km value of 5.9 X 10(-4) and an average isoelectric point of 4.92. The purified enzyme is extremely sensitive to thermal denaturation but can be significantly stabilized by Mg2+ ions. The purified enzyme also exhibits maximal catalytic activity only when assayed in the presence of certain divalent cations, e.g. magnesium. The NH2-terminal residue of 3-dehydroshikimate dehydratase is proline, and its alpha-amino group is unblocked.  相似文献   

7.
The bifunctional P protein (chorismate mutase: prephenate dehydratase) from Acinetobacter calcoaceticus has been purified. It was homogeneous in polyacrylamide gels and was more than 95% pure on the basis of the immunostaining of purified P protein with the antibodies raised against the P protein. The native enzyme is a homodimer (Mr = 91,000) composed of 45-kDa subunits. A twofold increase in the native molecular mass of the P protein occurred in the presence of L-phenylalanine (inhibitor of both activities) or L-tyrosine (activator of the dehydratase activity) during gel filtration. Chorismate mutase activity followed Michaelis-Menten kinetics with a Km of 0.55 mM for chorismate. L-Phenylalanine was a relatively poor non-competitive inhibitor of the mutase activity. The chorismate mutase activity was also competitively inhibited by prephenate (reaction product). Substrate-saturation curves for the dehydratase activity were sigmoidal showing positive cooperativity among the prephenate-binding sites. L-Tyrosine activated prephenate dehydratase strongly but did not abolish positive cooperativity with respect to prephenate. L-Phenylalanine inhibited the dehydratase activity, and the substrate-saturation curves became increasingly sigmoidal as phenylalanine concentrations were increased with happ values changing from 2.0 (no phenylalanine) to 4.0 (0.08 mM L-phenylalanine). A sigmoidal inhibition curve of the dehydratase activity by L-phenylalanine gave Hill plots having a slope of -2.9. Higher ionic strength increased the dehydratase activity by reducing the positive cooperative binding of prephenate, and the sigmoidal substrate-saturation curves were changed to near-hyperbolic form. The happ values decreased with increase in ionic strength. Antibodies raised against the purified P protein showed cross-reactivity with the P proteins from near phylogenetic relatives of A. calcoaceticus. At a greater phylogenetic distance, cross-reaction was superior with P protein from Neisseria gonorrhoeae than with that from the more closely related Escherichia coli.  相似文献   

8.
Dual biosynthetic pathways diverge from prephenate to L-phenylalanine in Erwinia herbicola, the unique intermediates of these pathways being phenylpyruvate and L-arogenate. After separation from the bifunctional P-protein (one component of which has prephenate dehydratase activity), the remaining prephenate dehydratase activity could not be separated from arogenate dehydratase activity throughout fractionation steps yielding a purification of more than 1200-fold. The ratio of activities was constant after removal of the P-protein, and the two dehydratase activities were stable during purification. Hence, the enzyme is a cyclohexadienyl dehydratase. The native enzyme has a molecular mass of 73 kDa and is a tetramer made up of identical 18-kDa subunits. Km values of 0.17 mM and 0.09 mM were calculated for prephenate and L-arogenate, respectively. L-Arogenate inhibited prephenate dehydratase competitively with respect to prephenate, whereas prephenate inhibited arogenate dehydratase competitively with respect to L-arogenate. Thus, the enzyme has a common catalytic site for utilization of prephenate or L-arogenate as alternative substrates. This is the first characterization of a purified monofunctional cyclohexadienyl dehydratase.  相似文献   

9.
The ruv gene of Escherichia coli, which is associated with inducible mechanisms of DNA repair and recombination, has been cloned into the low-copy plasmid vector pHSG415. The recombinant plasmid pPVA101 fully complements the DNA repair-deficient phenotype of ruv mutants. Restriction endonuclease analysis of this plasmid revealed a 10.6-kilobase (kb) HindIII DNA insert which contained a 7.7-kb PstI fragment identified as being from the chromosomal ruv region. Deletion analysis and Tn1000 insertional inactivation of ruv function located the ruv coding region to a 2.2-kb section of the cloned DNA fragment. A comparison of the proteins encoded by ruv wild-type and mutant plasmids identified the gene product as a protein of molecular weight 41,000.  相似文献   

10.
A coenzyme B12-dependent glycerol dehydratase from Lactobacillus reuteri has been purified and characterized. The dehydratase has a molecular weight of approximately 200,000, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis yielded a single major band with a molecular weight of 52,000. Km values for substrates and coenzyme B12 were in the millimolar and the submicromolar range, respectively.  相似文献   

11.
The stereochemistry of the deamination of L-threonine to 2-oxobutyrate, catalyzed by purified L-serine dehydratase of Peptostreptococcus asaccharolyticus, was elucidated. For this purpose the enzyme reaction was carried out with unlabelled L-threonine in 2H2O and in 3HOH, as well as with L-[3-3H]threonine in unlabelled water. Isotopically labelled 2-oxobutyrate thus formed was directly reduced in a coupled reaction with L- or D-lactate dehydrogenase and NADH. The (2R)- or (2S)-2-hydroxybutyrate species obtained were then subjected to configurational analyses of their labelled methylene group. The results from 1H-NMR spectroscopy and, after degradation of 2-hydroxybutyrate to propionate, the transcarboxylase assay consistently indicated that the deamination of L-threonine catalyzed by L-serine dehydratase of P. asaccharolyticus proceeds with inversion and retention in a 2:1 ratio. This partial racemization is the first ever to be observed for a reaction catalyzed by serine dehydratase, therefore confirming the distinction of the L-serine dehydratase of P. asaccharolyticus as an iron-sulfur protein from those dehydratases dependent on pyridoxal phosphate. For the latter enzymes exclusively, retention has been reported.  相似文献   

12.
The three genes pduCDE encoding the diol dehydratase of Lactobacillus collinoides, have been cloned for overexpression in the pQE30 vector. Although the three subunits of the protein were highly induced, no activity was detected in cell extracts. The enzyme was therefore purified to near homogeneity by ammonium sulfate precipitation and gel filtration chromatography. In fractions showing diol dehydratase activity, three main bands were present after SDS/PAGE with molecular masses of 63, 28 and 22 kDa, respectively. They were identified by mass spectrometry to correspond to the large, medium and small subunits of the dehydratase encoded by the pduC, pduD and pduE genes, respectively. The molecular mass of the native complex was estimated to 207 kDa in accordance with the calculated molecular masses deduced from the pduC, D, E genes (61, 24.7 and 19,1 kDa, respectively) and a alpha2beta2gamma2 composition. The Km for the three main substrates were 1.6 mm for 1,2-propanediol, 5.5 mm for 1,2-ethanediol and 8.3 mm for glycerol. The enzyme required the adenosylcobalamin coenzyme for catalytic activity and the Km for the cofactor was 8 micro m. Inactivation of the enzyme was observed by both glycerol and cyanocobalamin. The optimal reaction conditions of the enzyme were pH 8.75 and 37 degrees C. Activity was inhibited by sodium and calcium ions and to a lesser extent by magnesium. A fourth band at 59 kDa copurified with the diol dehydratase and was identified as the propionaldehyde dehydrogenase enzyme, another protein involved in the 1,2-propanediol metabolism pathway.  相似文献   

13.
Y H Lim  K Yokoigawa  N Esaki    K Soda 《Journal of bacteriology》1993,175(13):4213-4217
We have found that Pseudomonas putida ATCC 17642 cells grown in a medium containing D-threonine as the sole nitrogen source produce an enzyme that catalyzes epimerization of threonine. Proton nuclear magnetic resonance analysis of the enzyme reaction in deuterium oxide clearly showed epimerization from L- to D-allo-threonine and also from D- to L-allo-threonine. This is the first example of an enzyme that was clearly shown to epimerize threonine. The enzyme has been purified to homogeneity, which was shown by polyacrylamide gel electrophoresis. The enzyme has a molecular weight of about 82,000 and consists of two subunits identical in molecular weight (about 41,000). The enzyme contains 1 mol of pyridoxal 5'-phosphate per mol of subunit as a cofactor, and its absorption spectrum exhibits absorption maxima at 280 and 420 nm. The enzyme catalyzes not only epimerization of threonine by stereoconversion at the alpha position but also racemization of various amino acids, except acidic and aromatic amino acids. The enzyme is similar to amino acid racemase with low substrate specificity (EC 5.1.1.10) in enzymological properties but is distinct from it in the action on threonine.  相似文献   

14.
Casein kinase II of yeast has been purified to near homogeneity by a procedure which includes affinity chromatography on heparin-agarose. The purified enzyme consists of four polypeptides with molecular weights of 42,000, 41,000, 35,000, and 32,000. The 42,000- and 35,000-Da polypeptides are immunologically related and exhibit cross-reactivity with the alpha subunits of calf and Drosophila casein kinase II. Amino-terminal sequencing reveals that the two subunits are distinct but homologous polypeptides and that both sequences share 40-50% homology with the Drosophila alpha subunit. These results demonstrate that yeast contains two distinct alpha subunits which must be encoded by separate genes. The 41,000- and 32,000-Da polypeptides both incorporate phosphate during autophosphorylation, a characteristic of the beta subunit in all type II casein kinases studied to date. The 41,000-Da subunit also exhibits immunological cross-reactivity with the beta subunit of Drosophila casein kinase II. These results identify the 41,000-Da polypeptide as an unusually large beta subunit. The possibility that the 32,000-Da polypeptide may be a beta' subunit is currently under investigation. The interpretation of the subunit structure of yeast casein kinase II reported here differs significantly from previous reports (Rigobello, M. P., Jori, E., Carignani, G., and Pinna, L. A. (1982) FEBS Lett. 144, 354-358; Kudlicki, W. N., Szyszka, R., and Gasior, E. (1984) Biochim. Biophys. Acta 784, 102-107).  相似文献   

15.
Purification of human mitochondrial creatine kinase has been difficult and procedures that were highly successful in purifying canine enzyme failed for human mitochondrial creatine kinase. In the present study, we employed ultracentrifugation to remove the lipid, urea to prevent aggregation, followed by a final step of chromatofocusing which yielded a preparation of human mitochondrial creatine kinase with a specific enzyme activity of greater than 400 IU/mg. Biochemical and immunological characterization showed the preparation to be highly pure and free of even trace amounts of other creatine kinase isoenzymes. Antiserum specific for mitochondrial creatine kinase was developed which exhibited no cross-reactivity to cytosolic creatine kinase and mitochondrial creatine kinase did not cross-react with antiserum to the cytosolic forms. Marked differences were noted, both biochemically and immunologically, between mitochondrial creatine kinase and the cytosolic forms. Human mitochondrial creatine kinase was shown to have a molecular weight of around 82,000 and to be composed of two subunits of equal molecular weights around 41,000. Aggregates of mitochondrial creatine kinase were observed with molecular weights of around 200,000 in the absence of urea or if isolated from material after having undergone proteolysis. Isolation from fresh material or in the presence of urea inhibited aggregate formation for both canine and human mitochondrial creatine kinase. Despite claims of several investigators that mitochondrial creatine kinase exhibits two to three forms with varying molecular weights, our data indicate a single enzyme form made up of a subunit with a molecular weight of 41,000 and the high molecular weight aggregates appear to be induced artifacts. A radioimmunoassay was developed for human mitochondrial creatine kinase which, with appropriate modifications, should detect mitochondrial creatine kinase in human plasma.  相似文献   

16.
Aspartate aminotransferase as well as valine dehydrogenase and threonine dehydratase was required for the biosynthesis of tylosin in Streptomyces fradiae NRRL 2702. The biosynthesis of these enzymes and tylosin production were repressed by high concentrations of ammonium ions. The change in specific tylosin production rates in batch cultures with different initial concentrations of ammonium ions showed patterns similar to those of the specific production rates of aspartate aminotransferase, valine dehydrogenase, and threonine dehydratase. Aspartate aminotransferase has been purified by acetone precipitation, DEAE-cellulose, hydroxyapatite, and preparative electrophoresis chromatographies. The purified enzyme (120 kDa) consisted of two subunits identical in molecular mass (54 kDa) and showed homogeneity, giving one band with a pI of 4.2 upon preparative isoelectric focusing. The enzyme was specific for L-aspartate in the forward reaction; the Km values were determined to be 2.7 mM for L-aspartate, 0.7 mM for 2-oxyglutarate, 12.8 mM for L-glutamate, and 0.15 mM for oxaloacetate. The enzyme was somewhat thermostable, having a maximum activity at 55 degrees C, and had a broad pH optimum that ranged from 5.5 to 8.0. The mode of action was a ping-pong-bi-bi mechanism.  相似文献   

17.
The pheA gene of Corynebacterium glutamicum encoding prephenate dehydratase was isolated from a gene bank constructed in C. glutamicum. The specific activity of prephenate dehydratase was increased six-fold in strains harboring the cloned gene. Genetic and structural evidence is presented which indicates that prephenate dehydratase and chorismate mutase were catalyzed by separate enzymes in this species. The C. glutamicum pheA gene, subcloned in both orientations with respect to the Escherichia coli vector pUC8, was able to complement an E. coli pheA auxotroph. The nucleotide sequence of the C. glutamicum pheA gene predicts a 315-residue protein product with a molecular weight of 33,740. The deduced protein product demonstrated sequence homology to the C-terminal two-thirds of the bifunctional E. coli enzyme chorismate mutase-P-prephenate dehydratase.  相似文献   

18.
The coenzyme B12-dependent glycerol dehydratase of Citrobacter freundii is subject to suicide inactivation by the natural substrate glycerol during catalysis. We identified dhaF and dhaG as the genes responsible for reactivation of inactivated dehydratase. Northern blot analyses revealed that both genes were expressed during glycerol fermentation. The dhaF gene is transcribed together with the three structural genes coding for glycerol dehydratase (dhaBCE), whereas dhaG is coexpressed with the dhaT gene encoding 1,3-propanediol dehydrogenase. The dhaF and dhaG gene products were copurified to homogeneity from cell-free extracts of a recombinant E. coli strain producing both His6-tagged proteins. Both proteins formed a tight complex with an apparent molecular mass of 150 000 Da. The subunit structure of the native complex is probably alpha2beta2. The factor rapidly reactivated glycerol- or O2-inactivated hologlycerol dehydratase and activated the enzyme-cyanocobalamin complex in the presence of coenzyme B12, ATP, and Mg2+. The DhaF-DhaG complex and DhaF exhibited ATP-hydrolyzing activity, which was not directly linked to the reactivation of dehydratase. The purified DhaF-DhaG complex of C. freundii efficiently cross-activated the enzyme-cyanocobalamin complex and the glycerol-inactivated glycerol dehydratase of Klebsiella pneumoniae. It was not effective with respect to the glycerol dehydratase of Clostridium pasteurianum and to diol dehydratases of enteric bacteria.  相似文献   

19.
The relationship between the active sites of the bifunctional enzyme chorismate mutase-prephenate dehydratase has been examined. Steady-state kinetic investigations of the reactions with chorismate or prephenate as substrate and studies of the overall conversion of chorismate to phenylpyruvate indicate that there are two distinct active sites. One site is responsible for the mutase activity and the other for the dehydratase activity. Studies of the overall reaction using radioactive chorismate show that prephenate, which is formed from chorismate, dissociates from the mutase site and equilibrates with the bulk medium before combining at the dehydratase site. No evidence was obtained for direct channeling of prephenate from one site to the other, or for any strong interaction between the sites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号