首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Heparin can activate a receptor tyrosine kinase.   总被引:3,自引:0,他引:3       下载免费PDF全文
G Gao  M Goldfarb 《The EMBO journal》1995,14(10):2183-2190
Heparin, a densely sulfated glycosaminoglycan produced by mast cells, is best known for its inhibitory effects on the blood coagulation system. Heparin or heparan sulfate proteoglycans are also essential cofactors for the interaction of fibroblast growth factors (FGFs) with their receptor tyrosine kinases (FGFRs). Here we show that heparin is a growth factor-independent activating ligand for FGFR-4. Heparin stimulates FGFR-4 autophosphorylation on transfected myoblasts, fibroblasts and lymphoid cells, and is most potent on cells lacking surface heparan proteoglycan. Two functional analogs of heparin, fucoidan and dextran sulfate, are also activators of FGFR-4, while neither heparin nor its analogs can stimulate FGFR-1 in the absence of FGF. A mutation in the FGFR-4 ectodomain which impairs receptor activation by FGFs does not interfere with activation by heparin, demonstrating that receptor domains required for heparin or FGF activation are not identical. Heparin activation of FGFR-4 or of a chimeric receptor bearing FGFR-4 ectodomain and FGFR-1 cytodomain triggers downstream tyrosine phosphorylation of several signaling proteins, and induces proliferation of cells bearing the chimeric receptor. Consistent with these findings, a soluble FGFR-4 ectodomain has strong FGF-independent affinity for immobilized heparin resin, while soluble FGFR-1 requires FGF for stable heparin interaction. Heparin activation of FGFR-4 is the first example of a mammalian polysaccharide serving as a signaling ligand.  相似文献   

2.
A new form of high affinity fibroblast growth factor receptor has been purified from adult bovine brain membranes. Purification was performed by chromatography on DEAE-Trisacryl and wheat germ agglutinin-agarose followed by FGF-2 affinity chromatography. Affinity labeling of purified fractions with 125I-FGF-2 showed after cross-linking a 170-kDa complex, suggesting the existence of a 150-kDa FGF receptor. No cross-reactivity with anti-FGF receptor 1 (FGFR-1 or flg) or with anti-receptor 2 (FGFR-2 or bek) antibodies could be detected with this partially purified receptor. Heparitinase treatment of the partially purified FGF receptor abolished the formation of the ligand receptor complex. The complex was restored in the presence of heparin in a dose dependent fashion, supporting the idea that heparin-like molecules are needed for proper binding. Further purification of the receptor was achieved by heparin-Sepharose affinity chromatography and yielded a purification of over 320,000-fold. The purified receptor fraction was radiolabeled and loaded on RPLC C4 column. Eluted fractions were analysed by SDS-PAGE. A major 150-kDa band was detected. These data show for the first time a new form of FGF receptor isolated from bovine brain membranes. This purified receptor displays affinity for heparin and was therefore named heparin binding FGF receptor (HB-FGFR). It remains unclear whether the receptor is a proteo-heparin sulfate or whether heparans are strongly associated and therefore are copurified. Large scale preparations are in progress for core protein structure studies.  相似文献   

3.
Fibroblast growth factor (FGF) receptor (FGFR) gene family consists of at least four receptor tyrosine kinases that transduce signals important in a variety of developmental and physiological processes related to cell growth and differentiation. Here we have characterized the binding of different FGFs to FGFR-4. Our results establish an FGF binding profile for FGFR-4 with aFGF having the highest affinity, followed by K-FGF/hst-1 and bFGF. In addition, FGF-6 was found to bind to FGFR-4 in ligand competition experiments. Interestingly, the FGFR-4 gene was found to encode only the prototype receptor in a region where both FGFR-1 and FGFR-2 show alternative splicing leading to differences in their ligand binding specificities and to secreted forms of these receptors. Ligands binding to FGFR-4 induced receptor autophosphorylation and phosphorylation of a set of cellular polypeptides, which differed from those phosphorylated in FGFR-1-expressing cells. Specifically, the FGFR-1-expressing cells showed a considerably more extensive tyrosine phosphorylation of PLC-gamma than the FGFR-4-expressing cells. Structural and functional specificity within the FGFR family exemplified by FGFR-4 may help to explain how FGFs perform their diverse functions.  相似文献   

4.
The K-FGF/HST (FGF-4) growth factor is a member of the FGF family which is efficiently secreted and contains a single N-linked glycosylation signal. To study the role of glycosylation in the secretion of K-FGF, we mutated the human K-fgf cDNA to eliminate the glycosylation signal and the mutated cDNA was cloned into a mammalian expression vector. Studies of immunoprecipitation from the conditioned medium of cells expressing this plasmid revealed that the lack of glycosylation did not impair secretion, however the unglycosylated protein was immediately cleaved into two NH2-terminally truncated peptides of 13 and 15 kD, which appeared to be more biologically active than the wild-type protein. These two proteins also showed higher heparin binding affinity than that of wt K-FGF. We have expressed in bacteria the larger of these two proteins (K140), in which the NH2-terminal 36 amino acids present in the mature form of K-FGF have been deleted. Mitogenicity assays on several cell lines showed that purified recombinant K140 had approximately five times higher biological activity than wild-type recombinant K-FGF. Studies of receptor binding showed that K140 had higher affinity than wt K-FGF for two of the four members of FGF receptor's family, specifically for FGFR-1 (flg) and FGFR-2 (bek). K140 also had increased heparin binding ability, but this property does not appear to be responsible for the increased affinity for FGF receptors. Thus removal of the NH2-terminal 36 amino acids from the mature K-FGF produces growth factor molecules with an altered conformation, resulting in higher heparin affinity, and more efficient binding to FGF receptors. Although it is not clear whether cleavage of K-FGF to generate K140 occurs in vivo, this could represent a novel mechanism of modulation of growth factor activity.  相似文献   

5.
Fibroblast growth factors (FGFs) are known to induce formation of new blood vessels, angiogenesis. We show that FGF-induced angiogenesis can be modulated using selectively desulfated heparin. Chinese hamster ovary cells (CHO677) deficient in heparan sulfate biosynthesis were employed to assess the function of heparin/heparan sulfate in FGF receptor-1 (FGFR-1) signal transduction and biological responses. In the presence of FGF-2, FGFR-1 kinase and subsequent mitogen-activated protein kinase Erk2 activities were augmented in a dose-dependent manner, whereas high concentrations of heparin resulted in decreased activity. The length of the heparin oligomer, minimally an 8/10-mer, was critical for the ability to enhance FGFR-1 kinase activity. The N- and 2-O-sulfate groups of heparin were essential for binding to FGF-2, whereas stimulation of FGFR-1 and Erk2 kinases by FGF-2 also required the presence of 6-O-sulfate groups. Sulfation at 2-O- and 6-O-positions was moreover a prerequisite for binding of heparin to a lysine-rich peptide corresponding to amino acids 160-177 in the extracellular domain of FGFR-1. Selectively 6-O-desulfated heparin, which binds to FGF-2 but fails to bind the receptor, decreased FGF-2-induced proliferation of CHO677 cells, presumably by displacing intact heparin. Furthermore, FGF-2-induced angiogenesis in chick embryos was inhibited by 6-O-desulfated heparin. Thus, formation of a ternary complex of FGF-2, heparin, and FGFR-1 appears critical for the activation of FGFR-1 kinase and downstream signal transduction. Preventing complex formation by modified heparin preparations may allow regulation of FGF-2 functions, such as induction of angiogenesis.  相似文献   

6.
A simple panning procedure that allows for the evaluation of interactions between various heparin-like molecules and basic FGF has been developed. This assay measures the ability of compounds to inhibit the interaction of transfected human lymphoblastoid cells, UC 729-6 (UC cells), expressing hamster syndecan and basic FGF-coated plastic plates. The transfected cells bind rapidly to basic FGF-coated plates while the control cells do not bind well. Binding of the transfected cells to basic FGF was inhibited by heparin and heparin sulfate (HS), but not by chondroitin sulfate, dermatan sulfate, keratan sulfate, and hyaluronic acid. There was little inhibition of binding by chemically modified heparin such as completely desulfated, N-acetylated heparin, completely desulfated, N-sulfated heparin, and N-desulfated, N-acetylated heparin. These results suggested that both the N-sulfate and O-sulfate groups of heparin are required for binding to basic FGF. In addition, inhibition by oligosaccharides derived from depolymerized heparin increased with fragment size; partial inhibition was observed with oligosaccharides as small as hexamers. The biochemical basis for the binding of transfected cells to basic FGF was established by showing a significant increase of 35SO4 incorporation into HS. In particular, the level of 35SO4-HS in the trypsin-releasable (cell surface) pool increased fivefold. This increase was accounted for by demonstration of the presence of HS on immunoprecipitated syndecan from the transfected cells.  相似文献   

7.
Fibroblast growth factor (FGF)-2 regulates chondrocyte proliferation in the growth plate. Heparan sulfate (HS) proteoglycans bind FGF-2. Perlecan, a heparan sulfate proteoglycan (HSPG) in the developing growth plate, however, contains both HS and chondroitin sulfate (CS) chains. The binding of FGF-2 to perlecan isolated from the growth plate was evaluated using cationic filtration (CAF) and immunoprecipitation (IP) assays. FGF-2 bound to perlecan in both the CAF and IP assays primarily via the HS chains on perlecan. A maximum of 123 molecules of FGF-2 was calculated to bind per molecule of perlecan. When digested with chondroitinase ABC to remove its CS chains, perlecan augmented binding of FGF-2 to the FGFR-1 and FGFR-3 receptors and also increased FGF-2 stimulation of [(3)H]-thymidine incorporation in BaF3 cells expressing these FGF receptors. These data show that growth plate perlecan binds to FGF-2 by its HS chains but can only deliver FGF-2 to FGF receptors when its CS chains are removed.  相似文献   

8.
Biosynthesis of heparan sulfate (HS) is strictly regulated to yield products with cell/tissue-specific composition. Interactions between HS and a variety of proteins, including growth factors and morphogens, are essential for embryonic development and for homeostasis in the adult. Fibroblast growth factors (FGFs) and their various receptors (FRs) form ternary complexes with HS, as required for receptor signaling. Libraries of HS-related, radiolabeled oligosaccharides were generated by chemo-enzymatic modification of heparin and tested for affinity to immobilized FR ectodomains in the presence of FGF1 or FGF2. Experiments were designed to enable assessment of N-sulfated 8- and 10-mers with defined numbers of iduronic acid 2-O-sulfate and glucosamine 6-O-sulfate groups. FGF1 and FGF2 were found to require similar oligosaccharides in complex formation with FR1c-3c, FGF2 affording somewhat more efficient oligosaccharide recruitment than FGF1. FR4, contrary to FR1c-3c, bound oligosaccharides at physiological ionic conditions even in the absence of FGFs, and this interaction was further promoted by FGF1 but not by FGF2. In all systems studied, the stability of FGF-oligosaccharide-FR complexes correlated with the overall level of saccharide O-sulfation rather than on the precise distribution of sulfate groups.  相似文献   

9.
A Yayon  M Klagsbrun  J D Esko  P Leder  D M Ornitz 《Cell》1991,64(4):841-848
The role of low affinity, heparin-like binding sites for basic fibroblast growth factor (bFGF) was investigated in CHO cells mutant in their metabolism of glycosaminoglycans. Heparan sulfate-deficient mutants transfected to express a cloned mouse FGF receptor cDNA are not able to bind bFGF. It is demonstrated that free heparin and heparan sulfate can reconstitute a low affinity receptor that is, in turn, required for the high affinity binding of bFGF. These studies suggest that the low affinity receptor is an accessory molecule required for binding of bFGF to the high affinity site. Such an obligatory interaction of low and high affinity FGF receptors suggests a physiological role for heparin-like, low affinity receptors and constitutes a novel mechanism for the regulation of growth factor-receptor interactions.  相似文献   

10.
Antibodies against heparan sulfate (HS) are useful tools to study the structural diversity of HS. They demonstrate the large sequential variation within HS and show the distribution of HS oligosaccharide sequences within their natural environment. We analyzed the distribution and the structural characteristics of the oligosaccharide epitope recognized by anti-HS antibody HS4C3. Biosynthetic and synthetic heparin-related oligosaccharide libraries were used in affinity chromatography, immunoprecipitation, and enzyme-linked immunosorbent assay to identify this epitope as a 3-O-sulfated motif with antithrombin binding capacity. The antibody binds weakly to any N-sulfated, 2-O- and 6-O-sulfated hexa- to octasaccharide fragment but strongly to the corresponding oligosaccharide when there is a 3-O-sulfated glucosamine residue present in the sequence. This difference was highlighted by affinity interaction and immunohistochemistry at salt concentrations from 500 mm. At physiological salt conditions the antibody strongly recognized basal lamina of epithelia and endothelia. At 500 mm salt conditions, when 3-O sulfation is required for binding, antibody recognition was more restricted and selective. Antibody HS4C3 bound similar tissue structures as antithrombin in rat kidney. Furthermore, antithrombin and antibody HS4C3 could compete with one another for binding to heparin. Antibody HS4C3 was also able to inhibit the anti-coagulant activities of heparin and Arixtra as demonstrated using the activated partial thromboplastin time clotting and the anti-factor Xa assays. In summary, antibody HS4C3 selectively detects 3-O-sulfated HS structures and interferes with the coagulation activities of heparin by association with the anti-thrombin binding pentasaccharide sequence.  相似文献   

11.
12.
Fibroblast growth factor 1 (FGF1) and 2 (FGF2) bind to two classes of receptors: the high affinity receptors, a family of four known transmembrane tyrosine kinases (FGF R1-R4), and the low affinity receptors, cell surface and basement membrane heparan sulfate proteoglycan (HSPG). During early (first and second) passages of retinal pigmented epithelial (RPE) cells, both FGF1 and FGF2 exhibited low mitogenic activity, while in later (fifth to ninth) passages the activity of FGF1 remained constant but FGF2 activity increased two- to threefold. We have investigated aspects of FGF receptor interactions and the role of heparin/heparan sulfate which modulates FGF activity on RPE cells during in vitro senescence. Northern blot analysis demonstrated that FGF receptor type 1 (FGF R1) is the major high affinity receptor expressed in RPE cells and that its level of expression did not change during serially passage. Both the FGF R1 and the FGF low affinity receptors' binding characteristics (i.e., Kd and number of sites per cell) for FGF1 were unaffected by passage number, whereas the capacity of FGF2 binding to FGF R1 and to the low affinity receptors increased by two- and fivefold, respectively, in late passages, although the affinities were unchanged. This change in the capacity of FGF2 to bind to FGF R1 and to HSPG was not due to a switch of all the IIIc splice form of FGF R1 to the IIIb splice form since the exon IIIc was the most predominant splice form of FGF R1 during RPE cell cultures. Furthermore the ratio of the IIIb to the IIIc splice form was not modified during cell subcultures. In parallel in the older RPE cell passages, expression of perlecan, the major FGF low affinity binding site localized on the extracellular matrix of RPE cells, was much elevated compared to early RPE cell passages. Moreover, the cell surface of late passage RPE cells had 79% more HSPG than early passage cells. Therefore, it is suggested that the increase in the number of FGF low affinity receptors present on the cell surface or basement membrane could account for a part of the greater proliferative response of aged RPE cells to FGF2. © 1996 Wiley-Liss, Inc.  相似文献   

13.
Ligand-induced dimerization and transphosphorylation are thought to be important events by which receptor tyrosine kinases generate cellular signals. We have investigated the ability of signalling-defective, truncated fibroblast growth factor (FGF) receptors (FGFR-1 and FGFR-2) to block the FGF response in cells that express both types of endogenous FGF receptors. When these dominant negative receptors are expressed in NIH 3T3 cells transformed by the secreted FGF-4, the transformed properties of the cells can be reverted to various degrees, with better reversion phenotype correlating with higher levels of truncated receptor expression. Furthermore, truncated FGFR-2 is significantly more efficient at producing reversion than FGFR-1, indicating that FGF-4 preferentially utilizes the FGFR-2 signalling pathway. NIH 3T3 clones expressing these truncated receptors are more resistant to FGF-induced mitogenesis and also exhibit reduced tyrosine phosphorylation upon treatment with FGF. The block in FGF-signalling, however, can be overcome by the addition of excess growth factor. The truncated receptors have binding affinities that are four- to eightfold lower than those of wild-type receptors, as measured by Scatchard analysis. We also observed a partial specificity in the responses of truncated-receptor-expressing clones to FGF-2 or FGF-4. Our results suggest that the block to signal transduction produced by kinase-negative FGF receptors is achieved through a combination of dominant negative effects and competition for growth factor binding with functional receptors.  相似文献   

14.
FGF receptor (FGFR) function is essential during peri-implantation mouse development. To understand which receptors are functioning, we tested for the expression of all four FGF receptors in peri-implantation blastocysts. By RT-PCR, FGFR-3 and FGFR-4 were detected at high levels, FGFR-2 at lower levels, and FGFR-1 was detected at background levels compared to control tissues. Because FGFR-3 and FGFR-4 were detected at the highest levels, we studied these in detail. Between 3.5 days after fertilization (E3.5) and E6.0, FGFR-4 mRNA was detected ubiquitously in the peri-implantation embryo, restricted to the inner cell mass (ICM) and its derivatives and primitive endoderm by E6.0, and was not detected at E6.5. FGFR-3 mRNA was detected ubiquitously in the peri-implantation embryo with a tendency towards extraembryonic cells. We tested blastocyst outgrowths, a model for implantation, for FGFR-3 and FGFR-4 protein. FGFR-3 protein was detected in all cells early during the outgrowth. Later, FGFR-3 was detected in the extraembryonic endoderm and trophoblast giant cells (TGC), but not in the ICM. FGFR-4 protein was detected in all cells of the implanting embryo, but was restricted to the ICM/primitive endoderm in later stage outgrowths. The distribution of the receptor proteins in the blastocyst outgrowths is similar to the distribution of the mRNA detected by in situ hybridization of sections of embryos. The data suggest roles for FGFR-3 and FGFR-4 in peri-implantation development. Mol. Reprod. Dev. 51:254–264, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
Keratinocyte growth factor (KGF) is an unusual fibroblast growth factor (FGF) family member in that its activity is largely restricted to epithelial cells, and added heparin/heparan sulfate inhibits its activity in most cell types. The effects of heparan sulfate proteoglycan (HSPG) on binding and signaling by acidic FGF (aFGF) and KGF via the KGFR were studied using surface-bound and soluble receptor isoforms expressed in wild type and mutant Chinese hamster ovary (CHO) cells lacking HSPG. Low concentrations of added heparin (1 microgram/mL) enhanced the affinity of ligand binding to surface-bound KGFR in CHO mutants, as well as ligand-stimulated MAP kinase activation and c-fos induction, but had little effect on binding or signaling in wild type CHO cells. Higher heparin concentrations inhibited KGF, but not aFGF, binding and signaling. In addition to the known interaction between HSPG and KGF, we found that the KGFR also bound heparin. The biphasic effect of heparin on KGF, but not aFGF, binding and signaling suggests that occupancy of the HSPG binding site on the KGFR may specifically inhibit KGF signaling. In contrast to events on the cell surface, added heparin was not required for high-affinity soluble KGF-KGFR interaction. These results suggest that high-affinity ligand binding is an intrinsic property of the receptor, and that the difference between the HSPG-dependent ligand binding to receptor on cell surfaces and the HSPG-independent binding to soluble receptor may be due to other molecule(s) present on cell surfaces.  相似文献   

16.
The functions of a large number (>435) of extracellular regulatory proteins are controlled by their interactions with heparan sulfate (HS). In the case of fibroblast growth factors (FGFs), HS binding determines their transport between cells and is required for the assembly of high affinity signaling complexes with their cognate FGF receptor. However, the specificity of the interaction of FGFs with HS is still debated. Here, we use a panel of FGFs (FGF-1, FGF-2, FGF-7, FGF-9, FGF-18, and FGF-21) spanning five FGF subfamilies to probe their specificities for HS at different levels as follows: binding parameters, identification of heparin-binding sites (HBSs) in the FGFs, changes in their secondary structure caused by heparin binding and structures in the sugar required for binding. For interaction with heparin, the FGFs exhibit KD values varying between 38 nm (FGF-18) and 620 nm (FGF-9) and association rate constants spanning over 20-fold (FGF-1, 2,900,000 m−1 s−1 and FGF-9, 130,000 m−1 s−1). The canonical HBS in FGF-1, FGF-2, FGF-7, FGF-9, and FGF-18 differs in its size, and these FGFs have a different complement of secondary HBS, ranging from none (FGF-9) to two (FGF-1). Differential scanning fluorimetry identified clear preferences in these FGFs for distinct structural features in the polysaccharide. These data suggest that the differences in heparin-binding sites in both the protein and the sugar are greatest between subfamilies and may be more restricted within a FGF subfamily in accord with the known conservation of function within FGF subfamilies.  相似文献   

17.
FGF signaling uses receptor tyrosine kinases that form high-affinity complexes with FGFs and heparan sulfate (HS) proteoglycans at the cell surface. It is hypothesized that assembly of these complexes requires simultaneous recognition of distinct sulfation patterns within the HS chain by FGF and the FGF receptor (FR), suggesting that tissue-specific HS synthesis may regulate FGF signaling. To address this, FGF-2 and FGF-4, and extracellular domain constructs of FR1-IIIc (FR1c) and FR2-IIIc (FR2c), were used to probe for tissue-specific HS in embryonic day 18 mouse embryos. Whereas FGF-2 binds HS ubiquitously, FGF-4 exhibits a restricted pattern, failing to bind HS in the heart and blood vessels and failing to activate signaling in mouse aortic endothelial cells. This suggests that FGF-4 seeks a specific HS sulfation pattern, distinct from that of FGF-2, which is not expressed in most vascular tissues. Additionally, whereas FR2c binds all FGF-4-HS complexes, FR1c fails to bind FGF-4-HS in most tissues, as well as in Raji-S1 cells expressing syndecan-1. Proliferation assays using BaF3 cells expressing either FR1c or FR2c support these results. This suggests that FGF and FR recognition of specific HS sulfation patterns is critical for the activation of FGF signaling, and that synthesis of these patterns is regulated during embryonic development.  相似文献   

18.
Heparan sulfates (HS) play an important role in the control of cell growth and differentiation by virtue of their ability to modulate the activities of heparin-binding growth factors, an issue that is particularly well studied for fibroblast growth factors (FGFs). HS/heparin co-ordinate the interaction of FGFs with their receptors (FGFRs) and are thought to play a critical role in receptor dimerization. Biochemical and crystallographic studies, conducted mainly with FGF-2 or FGF-1 and FGF receptors 1 and 2, suggests that an octasaccharide is the minimal length required for FGF- and FGFR-induced dimerization and subsequent activation. In addition, 6-O-sulfate groups are thought to be essential for binding of HS to FGFR and for receptor dimerization. We show here that oligosaccharides shorter than 8 sugar units support activation of FGFR2 IIIb by FGF-1 and interaction of FGFR4 with FGF-1. In contrast, only relatively long oligosaccharides supported receptor binding and activation in the FGF-1.FGFR1 or FGF-7.FGFR2 IIIb setting. In addition, both 6-O- and 2-O-desulfated heparin activated FGF-1 signaling via FGFR2 IIIb, whereas neither one stimulated FGF-1 signaling via FGFR1 or FGF-7 via FGFR2 IIIb. These findings indicate that the structure of HS required for activating FGFs is dictated by the specific FGF and FGFR combination. These different requirements may reflect the differences in the mode by which a given FGFR interacts with the various FGFs.  相似文献   

19.
The role of heparin and heparan sulfate in the binding and signaling of fibroblast growth factors (FGFs) has been subject to intense investigation, but the studies have largely been confined to two species (FGF1 and FGF2) of the family with approximately 20 members. We have investigated the structural requirements for heparin/heparan sulfate in binding and activation of FGF8 (splice variant b). We present evidence that the minimal FGF8b-binding saccharide domain encompasses 5-7 monosaccharide units. The N-, 2-O-, and 6-O-sulfate substituents of heparin/heparan sulfate (HS) are all involved in the interaction, preferentially in the form of trisulfated IdoUA(2-OSO(3))-GlcNSO(3)(6-OSO(3)) disaccharide constituents. These structural characteristics resemble those described earlier for FGF1. By contrast, the saccharide structures required for the biological activity of FGF8b differed significantly from those characteristic for FGF1 and FGF2. Experiments with cells lacking active HS indicated that extended >/=14-mer heparin domains were needed to enhance cell proliferation and Erk phosphorylation by FGF8b, whereas in cells stimulated with FGF1 or FGF2 the corresponding responses were achieved by much shorter, 6-8-mer, oligosaccharides. Furthermore, still longer domains were needed to activate FGF8b in cells with "non-optimal" FGF receptor expression. Collectively, our data suggest that the heparin/HS structures enhancing the biological activity of FGFs were influenced by the FGF species involved as well as by the cellular composition of FGF receptors.  相似文献   

20.
Variations in sulfation of heparan sulfate (HS) affect interaction with FGF, FGFR, and FGF-HS-FGFR signaling complexes. Whether structurally distinct HS motifs are at play is unclear. Here we used stabilized recombinant FGF7 as a bioaffinity matrix to purify size-defined heparin oligosaccharides. We show that only 0.2%-4% of 6 to 14 unit oligosaccharides, respectively, have high affinity for FGF7 based on resistance to salt above 0.6M NaCl. The high affinity fractions exhibit highest specific activity for interaction with FGFR2IIIb and formation of complexes of FGF7-HS-FGFR2IIIb. The majority fractions with moderate (0.30-0.6M NaCl), low (0.14-0.30M NaCl) or no affinity at 0.14M NaCl for FGF7 supported no complex formation. The high affinity octasaccharide mixture exhibited predominantly 7- and 8-sulfated components (7,8-S-OctaF7) and formed FGF7-HS-FGFR2IIIb complexes with highest specific activity. Deduced disaccharide analysis indicated that 7,8-S-OctaF7 comprised of DeltaHexA2SGlcN6S in a 2:1 ratio to a trisulfated and a variable unsulfated or monosulfated disaccharide. The inactive octasaccharides with moderate affinity for FGF7 were much more heterogenous and highly sulfated with major components containing 11 or 12 sulfates comprised of predominantly trisulfated disaccharides. This suggests that a rare undersulfated motif in which sulfate groups are specifically distributed has highest affinity for FGF7. The same motif also exhibits structural requirements for high affinity binding to dimers of FGFR2IIIb prior to binding FGF7 to form FGF7-HS-FGFR2IIIb complexes. In contrast, the majority of more highly sulfated HS motifs likely play FGFR-independent roles in stability and control of access of FGF7 to FGFR2IIIb in the tissue matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号