首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
AIM: The aim of this study was to evaluate the main environmental microbial contaminants of the clean rooms in our stem cell bank. METHODS AND RESULTS: We have measured the microbial air contamination by both passive and active air sampling and the microbial monitoring of surfaces by means of Rodac plates. The environmental monitoring tests were carried out in accordance with the guidelines of European Pharmacopeia and US Pharmacopeia. The micro-organisms were identified by means of an automated system (VITEK 2). During the monitoring, the clean rooms are continually under good manufacturing practices specifications. The most frequent contaminants were Gram-positive cocci. CONCLUSIONS: The main contaminants in our stem cell bank were coagulase-negative staphylococci and other opportunistic human pathogens. In order to assure the levels of potential contamination in both embryonic and adult stem cell lines, a continuous sampling of air particles and testing for viable microbiological contamination is necessary. SIGNIFICANCE AND IMPACT OF THE STUDY: This study is the first evaluation of the environmental contaminants in stem cell banks and can serve as initial evaluation for these establishments. The introduction of environmental monitoring programmes in the processing of stem cell lines could diminish the risk of contamination in stem cell cultures.  相似文献   

2.
Microbiological control in stem cell banks: approaches to standardisation   总被引:4,自引:0,他引:4  
The transplant of cells of human origin is an increasingly complex sector of medicine which entails great opportunities for the treatment of a range of diseases. Stem cell banks should assure the quality, traceability and safety of cultures for transplantation and must implement an effective programme to prevent contamination of the final product. In donors, the presence of infectious micro-organisms, like human immunodeficiency virus, hepatitis B virus, hepatitis C virus and human T cell lymphotrophic virus, should be evaluated in addition to the possibility of other new infectious agents (e.g. transmissible spongiform encephalopathies and severe acute respiratory syndrome). The introduction of the nucleic acid amplification can avoid the window period of these viral infections. Contamination from the laboratory environment can be achieved by routine screening for bacteria, fungi, yeast and mycoplasma by European pharmacopoeia tests. Fastidious micro-organisms, and an adventitious or endogenous virus, is a well-known fact that will also have to be considered for processes involving in vitro culture of stem cells. It is also a standard part of current good practice in stem cell banks to carry out routine environmental microbiological monitoring of the cleanrooms where the cell cultures and their products are prepared. The risk of viral contamination from products of animal origin, like bovine serum and mouse fibroblasts as a “feeder layer” for the development of embryonic cell lines, should also be considered. Stem cell lines should be tested for prion particles and a virus of animal origin that assure an acceptable quality.  相似文献   

3.
Design and implementation of an environmental monitoring program is vital to assure the maintenance of acceptable quality conditions in a pharmaceutical manufacturing unit of human mesenchymal stem cells. Since sterility testing methods require 14 days and these cells are only viable for several hours, they are currently administered without the result of this test. Consequently environmental monitoring is a key element in stem cell banks for assuring low levels of potential introduction of contaminants into the cell products. The aim of this study was to qualitatively and quantitatively analyze the environmental microbiological quality in a pharmaceutical manufacturing unit of human mesenchymal stem cells production for use in advanced therapies. Two hundred and sixty one points were tested monthly during one year, 156 from air and 105 from surfaces. Among the 6264 samples tested, 231 showed contamination, 76.6% for bacteria and 23.4% for fungi. Microbial genuses isolated were Staphylococcus (89.7%), Microccocus (4.5%), Kocuria (3.2%) and Bacillus (2.6%). In the identification of fungi, three genuses were detected: Aspergillus (56%), Penicillium (26%) and Cladosporium (18%). The origin of the contamination was found to be due to personnel manipulation and air microbiota. For all sampling methods, alert limits were set and corrective measures suggested.  相似文献   

4.
Modern high-technology industrial practices like pharmaceutical and stem cell line production demand high-quality environmental conditions to avoid particle contamination in the final product. Particles are important because their presence can affect both the output and the productivity and because they can have repercussion on human health. In this kind of production practice it is necessary to implement optimal methods for particle management and to introduce an environmental monitoring program. This should also address the regional regulatory requirements and will depend on local conditions in each processing center. Each center must evaluate its specific needs and establish appropriate monitoring procedures.  相似文献   

5.
Several studies have proposed that the microbiological quality of the air in operating theatres be indirectly evaluated by means of particle counting, a technique derived from industrial clean-room technology standards, using airborne particle concentration as an index of microbial contamination. However, the relationship between particle counting and microbiological sampling has rarely been evaluated and demonstrated in operating theatres. The aim of the present study was to determine whether particle counting could predict microbiological contamination of the air in an operating theatre during 95 surgical arthroplasty procedures. This investigation was carried out over a period of three months in 2010 in an orthopedic operating theatre devoted exclusively to prosthetic surgery. During each procedure, the bacterial contamination of the air was determined by means of active sampling; at the same time, airborne particulate contamination was assessed throughout the entire procedure. On considering the total number of surgical operations, the mean value of the total bacterial load in the center of the operating theatre proved to be 35 CFU/m3; the mean particle count was 4,194,569 no./m3 for particles of diameter ≥0.5 µm and 13,519 no./m3 for particles of diameter ≥5 µm. No significant differences emerged between the median values of the airborne microbial load recorded during the two types of procedure monitored. Particulates with a diameter of ≥0.5 µm were detected in statistically higher concentrations (p<0.001) during knee-replacement procedures. By contrast, particulates with a diameter of ≥5 µm displayed a statistically higher concentration during hip-replacement procedures (p<0.05). The results did not reveal any statistically significant correlation between microbial loads and particle counts for either of the particle diameters considered (≥0.5 µm and ≥5 µm). Consequently, microbiological monitoring remains the most suitable method of evaluating the quality of air in operating theatres.  相似文献   

6.
The short-term dynamics and distribution of airborne biological and total particles have been assessed in a large university hallway by particle counting using laser particle counters and impaction air samplers. Particle numbers of four different size ranges were determined every 2 min over several hours. Bioaerosols (culturable bacteria and fungi determined as colony-forming units) were directly collected every 5 min on Petri dishes containing the appropriate growth medium. Results clearly show distinct short-term dynamics of particulate aerosols, of both biological and non-biological origin. These reproducible periodic patterns are closely related to periods when lectures are held in lecture rooms and the intermissions in between when students are present in the hallway. Peaks of airborne culturable bacteria were observed with a periodicity of 1 h. Bioaerosol concentrations follow synchronously the variation in the total number of particles. These highly reproducible temporal dynamics should be considered when monitoring indoor environments to determine air quality.  相似文献   

7.
Regenerative medicine and cell therapy are emerging clinical disciplines in the field of stem cell biology. The most important sources for cell transplantation are human embryonic and adult stem cells. The future use of these human stem cell lines in humans requires a guarantee of exhaustive control with respect to quality control, safety and traceability. Genetic instability and chromosomal abnormalities represent a potential weakness in basic studies and future therapeutic applications based on these stem cell lines, and may explain, at least in part, their usual tumourigenic properties. So, the introduction of the cytogenetic programme in the determination of the chromosomal stability is a key point in the establishment of the stem cell lines. The aim of this review is to provide readers with an up-to-date overview of all the cytogenetic techniques, both conventional methods and molecular fluorescence methods, to be used in a stem cell bank or other stem cell research centres. Thus, it is crucial to optimize and validate their use in the determination of the chromosomal stability of these stem cell lines, and assess the advantages and limitations of these cutting-edge cytogenetic technologies.  相似文献   

8.
Using tissue explantation and cryopreservation biotechniques, a Jingning chicken embryonic fibroblast bank was successfully established, which includes 43 embryo samples and a stock of 178 cryovials, each one containing 3.0×106 cells. Most of the cells were apparently fibroblasts in their morphology, and the population doubling time (PDT) was about 48 h. The total chromosome number of a diploid cell was 78. According to karyotyping and G-banding, the diploid rate in the cell bank was 97.62±2.12%. The cells were tested for microbial contamination and found free of infections from bacteria, fungi, viruses and mycoplasms. There was no cross-contamination from other cell lines as revealed by lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) isoenzyme polymorphisms. Six fluorescent proteins were transfected into the Jingning chicken embryonic fibroblasts, and the transfection efficiencies of these genes were between 10.1 and 41.9%. All the tests showed that the quality of the cell line conforms to the quality criteria of the ATCC (American type culture collection). This work succeeded not only in preserving the genetic resources of Jingning chicken, but it also established a new protocol to preserve endangered animal breeds.  相似文献   

9.
Establishment of continuous cell lines from human normal and tumor tissues is an extended and useful methodology for molecular characterization of cancer pathophysiology and drug development in research laboratories. The exchange of these cell lines between different labs is a common practice that can compromise assays reliability due to contamination with microorganism such as mycoplasma or cells from different flasks that compromise experiment reproducibility and reliability. Great proportions of cell lines are contaminated with mycoplasma and/or are replaced by cells derived for a different origin during processing or distribution process. The scientific community has underestimated this problem and thousand of research experiment has been done with cell lines that are incorrectly identified and wrong scientific conclusions have been published. Regular contamination and authentication tests are necessary in order to avoid negative consequences of widespread misidentified and contaminated cell lines. Cell banks generate, store and distribute cell lines for research, being mandatory a consistent and continuous quality program. Methods implementation for guaranteeing both, the absence of mycoplasma and authentication in the supplied cell lines, has been performed in the Andalusian Health System Biobank. Specifically, precise results were obtained using real time PCR detection for mycoplasma and 10 STRs identification by capillary electrophoresis for cell line authentication. Advantages and disadvantages of these protocols are discussed.  相似文献   

10.
Human embryonic stem cells (hESC), which are derived from the inner cell mass (ICM) of blastocyst stage embryos, are of great importance because of their unpredictable two unique features: their differentiation ability into all types of cells derived from three germ layers and their potentially unlimited capacity of self renewing with stable karyotype. These distinguished properties make hESC very promising cell source for regenerative medicine, tissue replacement therapies, and drug screening studies as well as genomics. However, due to the several technical problems, such as risk of teratoma formation, immune response, and unknown genetic pathways for lineage specific differentiation, and ethical drawbacks of their using in clinical treatments, hESC researches are still waiting to advance beyond to animal trials and drug studies. During the last decade, more than 300 new hESC lines have been derived and published by researchers worldwide. However, despite their similar well-known unique properties, recent studies reported that hESC lines have very individual properties and are differed from each other with regards to their differentiation ability and gene expression profiles. Therefore, all hESC lines should be characterized in detail and then registered in a stem cell bank for generating global database. In this report, the characteristic of hESC lines, which were established in Istanbul Memorial Hospital between 2003 and 2005, and derivation methods were described in detail to inform researchers and to facilitate new prospective cooperative studies.  相似文献   

11.
A unique agar drum sampler is described which indicates, continuously, the number of viable, bacterial particles per unit volume of air at the time and point of sampling. By selection of the timer and the sampling rate the sampler is suitable for quite a wide range of concentration and time. An impaction line of 484 in. greatly increases the capacity of this device over slit samplers and other instruments designed to give time-concentration data for viable airborne particles. This sampler should prove useful for: (i) monitoring airborne bacteria in hospitals, public places, and food and industrial plants; (ii) decay rate studies of bacterial aerosols; (iii) evaluation of aerial germicides; (iv) determination of effectiveness of air conditioning systems in removing airborne bacteria; and (v) many other studies in aerobiology.  相似文献   

12.
The primary objective of this study was to determine quantitatively and qualitatively the predominant types of microbial contamination occurring in conventional and laminar flow clean rooms. One horizontal laminar flow, three conventional industrial clean rooms, and three open factory areas were selected for microbiological tests. The results showed that as the environment and personnel of a clean room were controlled in a more positive manner with respect to the reduction of particulate contamination, the levels of airborne and surface microbial contaminants were reduced accordingly. The chief sources of microbial contamination were associated with the density and activity of clean room personnel. In addition, the majority of microorganisms isolated from the intramural air by air samplers were those indigenous to humans. Studies on the fallout and accumulation of airborne microorganisms on stainless-steel surfaces showed that, although there were no significant differences in the levels of microbial contamination among the conventional clean rooms, the type of microorganism detected on stainless-steel surfaces was consistently and significantly different. In addition, the "plateau phenomenon" occurred in all environments studied. It was concluded that the stainless-steel strip method for detecting microbial accumulation on surfaces is efficient and sensitive in ultra-clean environments and is the most reliable and practical method for monitoring microbial contamination in future class 100 clean rooms to be used for the assembly of spacecraft which will be sterilized.  相似文献   

13.
Raval JS  Koch E  Donnenberg AD 《Cytotherapy》2012,14(9):1144-1150
Background aimsAirborne particulate monitoring is mandated as a component of good manufacturing practice. We present a procedure developed to monitor and interpret airborne particulates in an International Organization for Standardization (ISO) class 7 cleanroom used for the cell processing of Section 351 and Section 361 products.MethodsWe collected paired viable and non-viable airborne particle data over a period of 1 year in locations chosen to provide a range of air quality. We used receiver operator characteristic (ROC) analysis to determine empirically the relationship between non-viable and viable airborne particle counts.ResultsViable and non-viable particles were well-correlated (r2 = 0.78), with outlier observations at the low end of the scale (non-viable particles without detectable airborne colonies). ROC analysis predicted viable counts ≥ 0.5/feet3 (a limit set by the United States Pharmacopeia) at an action limit of ≥ 32 000 particles (≥ 0.5 µ)/feet3, with 95.6% sensitivity and 50% specificity. This limit was exceeded 2.6 times during 18 months of retrospective daily cleanroom data (an expected false alarm rate of 1.3 times/year). After implementing this action limit, we were alerted in real time to an air-handling failure undetected by our hospital facilities management.ConclusionsA rational action limit for non-viable particles was determined based on the correlation with airborne colonies. Reaching or exceeding the action limit of 32 000 non-viable particles/feet3 triggers suspension of cleanroom cell-processing activities, deep cleaning, investigation of air handling, and a deviation management process. Our full procedure for particle monitoring is available as an online supplement.  相似文献   

14.
Blood collection and preparation is a relatively open operation in a conventional environment, and is vulnerable to be contaminated by various types of airborne pathogenic microorganisms. It is important to establish stable and effective air disinfection methods for all types of environments in blood transfusion services, in order to control air hygiene quality and thus reduce the probability of contamination during blood collection. This paper analyzes and summarizes the principles, advantages, and disadvantages of commonly used chemical and physical air disinfection methods and their application status. It is suggested that over-reliance on chemical reagents and disinfection facilities be reduced, so that better results can be achieved with the combination of multiple disinfection methods and dynamic air hygiene monitoring.  相似文献   

15.
Knowledge of the target cells is fundamental to maximise efficiency in attempts at immortalisation of specific cell types. It is also important to optimise the primary cell culture system to promote the survival of the target cell population. Other important factors that may influence the success in obtaining immortalised cells include the toxicity and efficiency of the immortalisation procedure. These can be assessed experimentally and if necessary appropriate techniques can be employed to purify the target cells. When cell lines have been established it is vital to assess them at an early stage for desired scientific and practical features as well as determining their stability and life-span. Furthermore, early characterisation of cell line authenticity (e.g. genetic characters, species of origin) and quality control testing will avoid wasted time and resources should contamination with micro-organisms or another cell line occur. Establishing a programme of immortalisation is a serious undertaking that should only be considered when there are no candidate continuous cell lines available. However, new approaches to modify the biology of cells to give extended life-span, whilst retaining the characteristics of differentiated cells in vivo, will hopefully provide valuable new substrates for in vitro toxicology.  相似文献   

16.
A microbiological hood was designed to reduce the danger of airborne infection of laboratory workers. The hood uses absolute filters to deliver sterile air in a laminar flow to the work area. An air curtain across the hood opening permits easy access but separates the worker from aerosols produced in the hood, and protects material inside the hood from contamination by room air. Tests with bacterial and viral aerosols showed that the air curtain is at least 99.96% effective in preventing airborne particles from entering the work area.  相似文献   

17.
《Small Ruminant Research》2010,88(1-3):17-26
An ear marginal fibroblast cell bank was established from the Jining Black Grey (JBG) goat using attachment culture and freezing biotechniques. This bank included 32 ear samples (15 males and 17 females) and has stocks of 168 cryogenically preserved vials, each vial contained 4.0 × 106 cells per milliliter. The cells of the bank that were checked for the quality and the biological characteristics showed a typical fibroblast morphology when they cultured in vitro. The growth curve consisted of a growth curve consisting of a latent phase, logarithmic growth phase and stationary phase, cell population doubling time (PDT) of 48 h. The chromosome analysis showed that the frequency of cells having the diploid number of chromosomes (60) was 98.65 ± 2.89%, and no microbe contamination (bacteria, epiphyte, virus or mycoplasma) was detected. In addition, lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) zymography indicated that this cell bank was free of cross-contamination. At 24, 48 and 72 h after transfection, the expression efficiency of pEGFP-C1, pEGFP-N3, pEYFP-N1, pECFP-N1, pECFP-mito and pDsRed1-N1 were between 11.8% and 56.3%. The fluorescence could be observed well-distributed in cytoplasm and nucleus except for some cryptomere vesicles at 24 h after transfection. These newly established cell lines meet all the quality control standards established by the American Type Culture Collection. We have employed a new method for conserving the genetic resources of an important and endangered animal breed. The fibroblast bank that we have established from the JBG goat also provides an invaluable material resource for future studies that will utilize molecular and cell biology applications.  相似文献   

18.
We developed a program to facilitate the monitoring of biological samples (cell lines, sera, etc.) that are stored in liquid nitrogen containers. The program consists of a "virtual" container in which scientists can store their samples and a program that records the location of each sample, cell characteristics, storage dates, names of the manipulators and much more. Additional comments and a photograph can be associated with each vial, allowing for reliable tracking of samples. Vials can then be identified according to any parameter of interest to the scientist, including associated comments. Once identified, the program visually presents the location of these vials, which simplifies retrieving them from the real container. The program records the thawing of vials, along with the date and the name of the operator. Any academic laboratory requesting this standalone program will be granted a free license for its use.  相似文献   

19.
The use of human stem cells in biomedical research projects is increasing steadily and the number of cells that are being derived develops at a remarkable pace. However, stem cells around the world are vastly different in their provenance, programming, and potentials. Furthermore, knowledge on the actual number of cell types, their derivation, availability, and characteristics is rather sparse. Usually, "colleague-supply" avenues constantly furnish cells to laboratories around the world without ensuring their correct identity, characterization, and quality. These parameters are critical if the cells will be eventually used in toxicology studies and drug discovery. Here, we outline some basic principles in establishing a stem cell-specific bank.  相似文献   

20.
Cell misidentification and cross-contamination have plagued biomedical research for as long as cells have been employed as research tools. Examples of misidentified cell lines continue to surface to this day. Efforts to eradicate the problem by raising awareness of the issue and by asking scientists voluntarily to take appropriate actions have not been successful. Unambiguous cell authentication is an essential step in the scientific process and should be an inherent consideration during peer review of papers submitted for publication or during review of grants submitted for funding. In order to facilitate proper identity testing, accurate, reliable, inexpensive, and standardized methods for authentication of cells and cell lines must be made available. To this end, an international team of scientists is, at this time, preparing a consensus standard on the authentication of human cells using short tandem repeat (STR) profiling. This standard, which will be submitted for review and approval as an American National Standard by the American National Standards Institute, will provide investigators guidance on the use of STR profiling for authenticating human cell lines. Such guidance will include methodological detail on the preparation of the DNA sample, the appropriate numbers and types of loci to be evaluated, and the interpretation and quality control of the results. Associated with the standard itself will be the establishment and maintenance of a public STR profile database under the auspices of the National Center for Biotechnology Information. The consensus standard is anticipated to be adopted by granting agencies and scientific journals as appropriate methodology for authenticating human cell lines, stem cells, and tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号