首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
Normovolemic hemodilution is a possible way to improve the brain recovery after ischemia and reperfusion. Therefore we have decided to examine how this process may affect the post-ischemic protein synthesis machinery. We analysed rat brains after 4-vessel-occlusion and different time intervals of reperfusion using normovolemic hemodilution. We achieved an important increase of [4,5-3H]leucine incorporation into polypeptides in vitro in the rat brain neocortex 30 minutes after ischemia, but concurrently there was no significant change in the hippocampus and striatum. By extending the time course of reperfusion we did not observe any important deviation of in vitro [4,5-3H]leucine incorporation in the studied brain areas. Thus, although hemodilution increased protein synthesis in selective vulnerable regions after ischemia, this improvement is not of significant importance.  相似文献   

3.
Abstract: Proteolytic degradation of numerous calpain substrates, including cytoskeletal and regulatory proteins, has been observed during brain ischemia and reperfusion. In addition, calpain inhibitors have been shown to decrease degradation of these proteins and decrease postischemic neuronal death. Although these observations support the inference of a role for μ-calpain in the pathophysiology of ischemic neuronal injury, the evidence is indirect. A direct indicator of μ-calpain proteolytic activity is autolysis of its 80-kDa catalytic subunit, and therefore we examined the μ-calpain catalytic subunit for evidence of autolysis during cerebral ischemia. Rabbit brain homogenates obtained after 0, 5, 10, and 20 min of cardiac arrest were electrophoresed and immunoblotted with a monoclonal antibody specific to the μ-calpain catalytic subunit. In nonischemic brain homogenates the antibody identified an 80-kDa band, which migrated identically with purified μ-calpain, and faint 78- and 76-kDa bands, which represent autolyzed forms of the 80-kDa subunit. The average density of the 80-kDa band decreased by 25 ± 4 ( p = 0.008) and 28 ± 9% ( p = 0.004) after 10 and 20 min of cardiac arrest, respectively, whereas the average density of the 78-kDa band increased by 111 ± 50% ( p = 0.02) after 20 min of cardiac arrest. No significant change in the density of the 76-kDa band was detected. These results provide direct evidence for autolysis of brain μ-calpain during cerebral ischemia. Further work is needed to characterize the extent, duration, and localization of μ-calpain activity during brain ischemia and reperfusion as well as its role in the causal pathway of postischemic neuronal injury.  相似文献   

4.
Phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α), which is one of the substrates of protein phosphatase 1 (PP1), occurs rapidly during the first minutes of post-ischemic reperfusion after an episode of cerebral ischemia. In the present work, two experimental models of transient global ischemia and ischemic tolerance (IT) were used to study PP1 interacting/regulatory proteins following ischemic reperfusion. For that purpose we utilized PP1 purified by microcystin chromatography, as well as 2D DIGE of PP1α and PP1γ immunoprecipitates. The highest levels of phosphorylated eIF2α found after 30 min reperfusion in rats without IT, correlated with increased levels in PP1 immunoprecipitates of the inhibitor DARPP32 as well as GRP78 and HSC70 proteins. After 4 h reperfusion, the levels of these proteins in PP1c complexes had returned to control values, in parallel to a significant decrease in eIF2α phosphorylated levels. IT that promoted a decrease in eIF2α phosphorylated levels after 30 min reperfusion induced the association of GADD34 with PP1c, while prevented that of DARPP32, GRP78, and HSC70. Different levels of HSC70 and DARPP32 associated with PP1α and PP1γ isoforms, whereas GRP78 was only detected in PP1γ immunoprecipitates. Here we suggest that PP1, through different signaling complexes with their interacting proteins, may modulate the eIF2α phosphorylation/dephosphorylation during reperfusion after a transient global ischemia in the rat brain. Of particular interest is the potential role of GADD34/PP1c complexes after tolerance acquisition.  相似文献   

5.
The time course of the reduction in brain protein synthesis following transient bilateral ischemia in the gerbil was characterized and compared with changes in a number of metabolites related to brain energy metabolism. The recovery of brain protein synthesis was similar following ischemic periods of 5, 10, or 20 min; in vitro incorporation activity of brain supernatants was reduced to approximately 10% of control at 10 or 30 min recirculation, showed slight recovery at 60 min, and returned to 60% of control activity by 4 h. Protein synthesis activity was indistinguishable from control at 24 h. One minute of ischemia produced no detectable effect on protein synthesis measured after 30 min reperfusion; longer periods of ischemia resulted in progressive inhibition, with 5 min producing the maximal effect. Pentobarbital (50 mg/kg) increased by 1-2 min the threshold ischemic duration required to produce a given effect. Whereas most metabolites recovered quickly following 5 min ischemia, glycogen showed a delayed recovery comparable to that seen for protein synthesis. These results are discussed in relation to possible mechanisms for the coordinate regulation of brain energy metabolism and protein synthesis. An improved method for the fluorimetric measurement of guanine nucleotides is described.  相似文献   

6.
Abstract: Reversible spinal cord ischemia in rabbits induced a rapid loss of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) activity measured as incorporation of phosphate into exogenous substrates. About 70% of the activity was lost from the cytosolic fraction of spinal cord homogenates after 15 min of ischemia preceding irreversible paraplegia, which takes 25 min in this model. The loss of enzyme activity correlated with a loss of in situ renaturable autophosphorylation activity and a loss of CaM kinase II α and β subunits in the cytosol detected by immunoblotting. CaM kinase II activity in the particulate fraction also decreased but the protein levels of the a and β subunits increased. Thus ischemia resulted in an inactivation of CaM kinase II and a sequential or concurrent subcellular redistribution of the enzyme. However, denaturation and renaturation in situ of the CaM kinase subunits immobilized on membranes partly reversed the apparent inactivation of the enzyme in the particulate fraction. CaM kinase II activity was restored after reperfusion following short (≤25 min) durations of ischemia but not after longer durations (60 min) that result in irreversible paraplegia. The ischemia-induced inactivation of CaM kinase II, which phosphorylates proteins regulating many cellular processes, may be important in the cascade of events leading to delayed neuronal cell death.  相似文献   

7.
Neurofilaments subunits (NF-H, NF-M, NF-L) and glial fibrillary acidic protein (GFAP) were investigated in the hippocampus of rats after distinct periods of reperfusion (1 to 15 days) following 20 min of transient global forebrain ischemia in the rat. In vitro [14Ca]leucine incorporation was not altered until 48 h after the ischemic insult, however concentration of intermediate filament subunits significantly decreased in this period. Three days after the insult, leucine incorporation significantly increased while the concentration NF-H, NF-M, and NF-L were still diminished after 15 days of reperfusion. In vitro incorporation of32P into NF-M and NF-L suffered immediately after ischemia, but returned to control values after two days of reperfusion. GFAP levels decreased immediately after ischemia but quickly recovered and significantly peaked from 7 to 10 days after the insult. These results suggest that transient ischemia followed by reperfusion causes proteolysis of intermediate filaments in the hippocampus, and that proteolysis could be facilitated by diminished phosphorylation levels of NF-M and NF-L.  相似文献   

8.
It was previously shown that BHK21 cells were arrested in the G1 phase of the cell cycle when cultured in medium lacking serine. In this study the effect of serine limitation on protein synthesis was examined. Shifting cells from medium supplemented with 10% fetal calf serum to medium supplemented with 10% dialyzed serum resulted in a 50% reduction in the rate of protein synthesis. The reduced rate was attained within 4–10 min after shift-down and was restored completely within 5–15 min after shift-up to 10% dialyzed serum plus 0.05 mM serine, the same approximate concentration of serine present in 10% fetal calf serum. Exogenous serine appears to be incorporated into protein from a precursor pool which is functionally compartmentalized inasmuch as incorporation of serine into protein became linear within 10 min after the addition of label while the specific activity of serine in the acid soluble fraction did not attain a constant value during 60 min of labeling. The serine: leucine ratio in total cellular protein was determined from cells cultured in ten percent dialyzed serum plus 0.05 mM serine by amino acid analysis and was compared with the ratio of [3H]serine and [14C]leucine incorporated into protein. The results indicated that 50–60% of the serine utilized for protein synthesis under these conditions was derived from the medium while the other 40–50% was generated within the cell.  相似文献   

9.
A growing body of evidence supports the role of free radicals in triggering the functional and metabolic disturbances following transient cerebral ischemia. This study was designed to evaluate whether the extent of reperfusion-induced inhibition of protein synthesis initiation as well as tissue injury can be reduced by Tanakan (Ginkgo biloba extract, EGb 761) (Beaufour-Ipsen Industrie). Rats received Tanakan in the dose of 40 mg/kg/day for 7 days before surgical intervention. Transient forebrain ischemia was induced by 4-vessel occlusion. Rats were subjected to 20 min of ischemia followed by 30 min, 4 h or 7 days of reperfusion. Protein synthesis rate, reinitiation ability and neurodegeneration in the frontal cortex and hippocampus were measured by the incorporation of radioactively labelled leucine into polypeptide chains in postmitochondrial supernatants and by Fluoro-Jade B staining. The protective effect was observed, concerning both the protein synthesis and the number of surviving neurons, in the Tanakan-treated groups. Tanakan significantly reduced the ischemia/reperfusion-induced inhibition of translation in the neocortex as well as in the highly sensitive hippocampus. Our results indicate that free radicals play an important role in the development of reperfusion-induced injury, and the treatment of ischemic and reperfused brain with free radical scavengers may reduce the severity of reperfusion damage.  相似文献   

10.
The effects of an adenosine deaminase inhibitor (deoxycoformycin, 500 μg/kg) and of an inhibitor of nucleoside transport (propentofylline, 10 mg/kg) on adenosine and adenine nucleotide levels in the ischemic rat brain were investigated. The brains of the rats were microwaved before, at the end of a 20 min period of cerebral ischemia (4 vessel occlusion+hypotension), or after 5, 10, 45, and 90 min of reperfusion. Deoxycoformycin increased brain adenosine levels during both ischemia and the initial phases of reperfusion. AMP levels were elevated during ischemia and after 5 min of reperfusion. ATP levels were elevated above those in the non-treated animals after 10 and 45 min of reperfusion. ADP levels were elevated above the non-drug controls at 90 min. These increases in ATP, ADP and AMP resulted in significant increases in total adenylates during ischemia, and after 10 min and 90 min of reperfusion. Propentofylline administration resulted in enhanced AMP levels during ischemia but did not alter adenosine or adenine nucleotide levels during reperfusion in comparison with non-treated controls.  相似文献   

11.
Eukaryotic initiation factor 2 (eIF-2) was isolated from salt-washed microsomes of 4-day-old rat brain which show a high rate of protein synthesis. A three-step purification scheme was employed, including heparin-Sepharose, phosphocellulose, and DEAE-cellulose column chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the isolated factor revealed three polypeptides with molecular weights of 43,000, 54,000, and 59,000 and 90% purity. The rat brain eIF-2 forms ternary complexes with [3H]methionyl-tRNAi and GTP. In terms of specific activity, the purification does not correspond to that revealed by electrophoretic analysis. During purification there is an apparent loss of additional factors that modulates the activity of eIF-2 and explains the high rate of activity of the crude fraction.  相似文献   

12.
We have used brain (dog, rat) and spinal cord (dog, rabbit) cell-free systems to study early postischaemic inhibition of protein synthesis. Ischaemia alone produced a relatively small decrease in activity of all subcellular systems used. When 15 min of normoxic reperfusion was used, more than 30% decrease (p less than 0.01) in [14C]-leucine incorporation was detected. A translational inhibitor that appeared in the postribosomal supernatant fraction at the early stage of reperfusion reduced translational capacity of an initiating cell-free system. It also phosphorylated the small (38 kDa) subunit of eukaryotic initiation factor 2 (eIF-2) in vitro. Effect of the inhibitor can be reversed by addition of partially purified intact eIF-2 and/or high concentration (2 mmol/l) of GTP. A prevention of postischaemic free oxygen radical formation by the reoxygenation with hypoxaemic blood, containing 37.5 mm Hg O2 at 0-5 min and 56 mm Hg O2 at 6-10 min of recirculation, that was followed by 5 min of normoxic reperfusion, resulted in a significant increase (p less than 0.02) of polypeptide chain synthesis in vitro when compared with normoxic reperfusion.  相似文献   

13.
—It is generally believed that leucine serves primarily as a precursor for protein synthesis in the central nervous system. However, leucine is also oxidized to CO2 in brain. The present investigation compares leucine oxidation and incorporation into protein in brain slices and synaptosomes. In brain slices from adult rats, these processes were linear for 90min and 14CO2 production from 0·1 mm -l -[l-14C]leucine was 23 times more rapid than incorporation into protein. The rate of oxidation increased further with greater leucine concentrations. Experiments with l -[U-14C]leucine suggested that all of the carbons from leucine were oxidized to CO2 with very little incorporation into lipid. Oxidation of leucine also occurred in synaptosomes. In slices, leucine oxidation and incorporation into protein were inhibited by removal of glucose or Na+, or addition of ouabain. In synaptosomes, replacement of Na+ by choline also reduced leucine oxidation; and this effect did not appear to be due to inhibition of leucine transport. The rate of leucine oxidation did not change in brain slices prepared from fasted animals. Fasting, however, reduced the incorporation of leucine into protein in brain slices prepared from young but not from adult rats. These findings indicate that oxidation is the major metabolic fate of leucine in brain of fed and fasted animals.  相似文献   

14.
Abstract: A membrane cytoskeletal protein, fodrin, is a substrate for a Ca2+-dependent protease, calpain. It remains unknown whether μ-calpain or m-calpain is involved in the proteolysis of either α- or β-fodrin and in what subcellular localization during ischemia and reperfusion of the brain. To address these issues, we examined the distribution of fodrin and calpain and the activities of calpain and calpastatin (endogenous calpain inhibitor) in the same subcellular fractions. Rat forebrain was subjected to ischemia by a combination of occlusion of both carotid arteries and systemic hypotension, whereas reperfusion was induced by releasing the occlusion. Immunoblotting, activity measurement, and casein zymography did not detect the presence of μ-calpain or a significant change of m-calpain level after ischemia or reperfusion. However, casein zymography revealed a unique Ca2+-dependent protease that was eluted with both 0.18 and 0.40 M NaCl from a DEAE-cellulose column. α- and β-fodrins and m-calpain were found to be rich in the synaptosomal, nuclear, and cytosolic subfractions by immunoblotting analysis. Reperfusion (60 min) following ischemia (30 min) induced selective proteolysis of α-fodrin, which was inhibited by a calpain inhibitor, acetylleucylleucylnorleucinal (400 µ M , 1 ml, i.v.). The μ-calpain-specific fragment of β-fodrin was not generated during ischemia-reperfusion, supporting the possibility of the involvement of m-calpain rather than μ-calpain in the α-fodrin proteolysis.  相似文献   

15.
Subtilase cytotoxin (SubAB) is a AB5 type toxin produced by Shiga-toxigenic Escherichia coli , which exhibits cytotoxicity to Vero cells. SubAB B subunit binds to toxin receptors on the cell surface, whereas the A subunit is a subtilase-like serine protease that specifically cleaves chaperone BiP/Grp78. As noted previously, SubAB caused inhibition of protein synthesis. We now show that the inhibition of protein synthesis was transient and occurred as a result of ER stress induced by cleavage of BiP; it was closely associated with phosphorylation of double-stranded RNA-activated protein kinase-like ER kinase (PERK) and eukaryotic initiation factor-2α (eIF2α). The phosphorylation of PERK and eIF2α was maximal at 30–60 min and then returned to the control level. Protein synthesis after treatment of cells with SubAB was suppressed for 2 h and recovered, followed by induction of stress-inducible C/EBP-homologous protein (CHOP). BiP degradation continued, however, even after protein synthesis recovered. SubAB-treated cells showed cell cycle arrest in G1 phase, which may result from cyclin D1 downregulation caused by both SubAB-induced translational inhibition and continuous prolonged proteasomal degradation.  相似文献   

16.
The stimulation of translation in starfish oocytes by the maturation hormone, 1-methyladenine (1-MA), requires the activation or mobilization of both initiation factors and mRNAs [Xu and Hille, Cell Regul. 1:1057, 1990]. We identify here the translational initiation complex, eIF-4F, and the guanine nucleotide exchange factor for eIF-2, eIF-2B, as the rate controlling components of protein synthesis in immature oocytes of the starfish, Pisaster orchraceus. Increased phosphorylation of eIF-4E, the cap binding subunit of the eIF-4F complex, is coincident with the initial increase in translational activity during maturation of these oocytes. Significantly, protein kinase C activity increased during oocyte maturation in parallel with the increase in eIF-4E phosphorylation and protein synthesis. An increase in the activities of cdc2 kinase and mitogen-activated myelin basic protein kinase (MBP kinase) similarly coincide with the increase in eIF-4E phosphorylation. However, neither cdc2 kinase nor MBP kinase phosphorylates eIF-4E in vitro. Casein kinase II activity does not change during oocyte maturation, and therefore, cannot be responsible for the activation of translation. Treatment of oocytes with phorbol 12-myristate 13-acetate, an activator of protein kinase C, for 30 min prior to the addition of 1-MA resulted in the inhibition of 1-MA-induced phosphorylation of eIF-4E, translational activation, and germinal vesicle breakdown. Therefore, protein kinase C may phosphorylate eIF-4E, after very early events of maturation. Another possibility is that eIF-4E is phosphorylated by an unknown kinase that is activated by the cascade of reactions stimulated by 1-MA. In conclusion, our results suggest a role for the phosphorylation of eIF-4E in the activation of translation during maturation, similar to translational regulation during the stimulation of growth in mammalian cells. © 1993 Wiley-Liss, Inc.  相似文献   

17.
Five minutes of bilateral carotid occlusion in unanesthetized gerbils produced substantial changes in spontaneous locomotor activity. Behavior was decreased after 1 hr of reperfusion and was increased at 24 hrs post-ischemia. Adenylate cyclase activity was measured in homogenates of frontal cortex and hippocampus at 90 min and 24 hrs following 5 min of cerebral ischemia. Enzyme activity was determined in the absence and presence of the activators guanosine-5'-triphosphate (GTP), guanylyl-5'-imidodiphosphate (GppNHp), isoproterenol (Iso) plus GTP, and forskolin (Fors) plus GTP. Homogenates responded with expected increases over basal adenylate cyclase activity with addition of all activators. An additional small increase in isoproterenol-stimulated activity was observed in frontal cortex homogenates at 90 min post-ischemia. No other significant changes in adenylate cyclase activity were observed after either 90 min or 24 hrs of reperfusion. The substantial increases in locomotor activity evident at 24 hrs after transient ischemia are not associated with measurable changes in adenylate cyclase activity in homogenates of frontal cortex or hippocampus.  相似文献   

18.
Brain nuclear DNA survives cardiac arrest and reperfusion.   总被引:1,自引:0,他引:1  
Iron-mediated peroxidation of brain lipids is known to occur during reperfusion following cardiac arrest. Since in vitro damage to DNA is caused by similar iron-dependent peroxidation, we tested whether free radical damage to genomic DNA also develops during reperfusion following cardiac arrest and resuscitation. Genomic DNA was isolated from the cerebral cortex in (i) normal dogs, (ii) dogs subjected to a 20-min cardiac arrest, and (iii) dogs resuscitated from a 20-min cardiac arrest and then allowed to reperfuse for 2 or 8 h. DNA strand nicks were evaluated by in vitro labeling of newly created 3' and 5' termini. DNA base damage was evaluated utilizing reaction with piperidine prior to labeling of 5' termini. The 3' DNA termini were labeled before and after digestion with exonuclease III, and the 5' DNA termini were labeled before and after treatment with piperidine. In vitro experiments with genomic DNA damaged by oxygen radicals verified that these labeling methods identified radical damage. In the experimental animal groups, terminal incorporation and electrophoretic mobility of brain nuclear DNA are not significantly changed either by 20 min of complete brain ischemia or during the first 8 h of reperfusion. We conclude that genomic DNA is not extensively damaged during cardiac arrest and early reperfusion, and therefore such DNA damage does not appear to be an important early aspect of the neurologic injury that accompanies cardiac arrest and resuscitation.  相似文献   

19.
Cortical neurons are vulnerable to ischemic insult, which may cause cytoskeletal changes and neurodegeneration. Tau is a microtubule-associated protein expressed in neuronal and glial cells. We examined the phosphorylation status of tau protein in the gerbil brain cortex during 5 min ischemia induced by bilateral common carotid artery occlusion followed by reperfusion for 20 min to 7 days. Control brain homogenates contained 63, 65 and 68 kD polypeptides of tau immunoreactive with Alz 50, Tau 14 and Tau 46 antibodies raised against non-phosphorylated tau epitopes. Gerbil tau was also immunoreactive with some (PHF-1 and 12E8) but not all (AT8, AT100, AT180 and AT270) antibodies raised against phosphorylated tau epitopes. PHF-1 recognized a single 68 kD polypeptide and 12E8 bound the 63 kD polypeptide. During 5 min ischemia, PHF-1 immunoreactivity declined to 6%, then recovered to control levels after 20 min of blood recirculation and subsequently increased above control values 3 and 7 days later. In contrast, 12E8 immunoreactivity remained stable during ischemia and reperfusion. Our results suggest that the two phosphorylated epitopes of tau are regulated by different mechanisms and may play different roles in microtubule dynamics. They may also define various pools of neuronal/glial cells vulnerable to ischemia. Special issue dedicated to John P. Blass.  相似文献   

20.

Background

Cardiac arrest induces whole body ischemia, which causes damage to multiple organs particularly the heart and the brain. There is clinical and preclinical evidence that neurological injury is responsible for high mortality and morbidity of patients even after successful cardiopulmonary resuscitation. A better understanding of the metabolic alterations in the brain during ischemia will enable the development of better targeted resuscitation protocols that repair the ischemic damage and minimize the additional damage caused by reperfusion.

Method

A validated whole body model of rodent arrest followed by resuscitation was utilized; animals were randomized into three groups: control, 30 minute asphyxial arrest, or 30 minutes asphyxial arrest followed by 60 min cardiopulmonary bypass (CPB) resuscitation. Blood gases and hemodynamics were monitored during the procedures. An untargeted metabolic survey of heart and brain tissues following cardiac arrest and after CPB resuscitation was conducted to better define the alterations associated with each condition.

Results

After 30 min cardiac arrest and 60 min CPB, the rats exhibited no observable brain function and weakened heart function in a physiological assessment. Heart and brain tissues harvested following 30 min ischemia had significant changes in the concentration of metabolites in lipid and carbohydrate metabolism. In addition, the brain had increased lysophospholipid content. CPB resuscitation significantly normalized metabolite concentrations in the heart tissue, but not in the brain tissue.

Conclusion

The observation that metabolic alterations are seen primarily during cardiac arrest suggests that the events of ischemia are the major cause of neurological damage in our rat model of asphyxia-CPB resuscitation. Impaired glycolysis and increased lysophospholipids observed only in the brain suggest that altered energy metabolism and phospholipid degradation may be a central mechanism in unresuscitatable brain damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号