首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recombinant proteins encoded by the human papillomavirus type 6b (HPV6b) L1 open reading frame react with sera from patients with condylomata acuminata and also react with rabbit antiserum raised against sodium dodecyl sulfate-disrupted bovine papillomavirus type 1 (BPV1) virions. To map the immunoreactive epitopes, a series of procaryotic expression plasmids was made which contained a nested set of 3' to 5' deletions in the HPV6b L1 open reading frame. The deleted plasmids expressed a set of carboxy to amino terminus truncated fusion proteins. Regions containing the immunoreactive epitopes were mapped by determining which of the deleted fusion proteins retained reactivity with sera in Western immunoblot assays. The coding sequence for a human antibody-reactive linear epitope mapped between HPV6b nucleotide coordinates 7045 and 7087, and the rabbit anti-BPV1-reactive epitope coding sequence mapped between coordinates 6377 and 6454. Synthetic peptides derived from the epitope mapping were reacted with sera in enzyme-linked immunosorbent assay. Human sera reacted with synthetic peptide QSQAITCQKPTPEKEKPDPYK (HPV6b L1 amino acids 417 through 437). Rabbit anti-BPV1 and rabbit antisera raised against HPV16 L1 recombinant proteins reacted with the synthetic peptide DGDMVDTGFGAMNFADLQTNKSDVPIDI (HPV6b L1 amino acids 193 through 220). Human sera which reacted with HPV6b L1 fusion proteins cross-reacted with an HPV11 L1 fusion protein but did not react with fusion proteins encoded by HPV1a, HPV16, or HPV18. Rabbit anti-BPV1 reacted with L1 fusion proteins encoded by all of these HPV types. In contrast to the type-common (rabbit anti-BPV1-reactive) epitope, the human antibody-reactive epitope appears to be relatively HPV type specific.  相似文献   

2.
We have generated four mouse monoclonal antibodies (MAbs) to bovine papillomavirus virions that bound type-specific, adjacent, and conformationally dependent epitopes on the L1 major capsid protein. All four MAbs were neutralizing at ratios of 1 MAb molecule per 5 to 25 L1 molecules, but only three effectively blocked binding of the virus to the cell surface. Therefore, antibodies can prevent papillomavirus infection by at least two mechanisms: inhibition of cell surface receptor binding and a subsequent step in the infectious pathway. The neutralizing epitopes of the bovine papillomavirus L2 minor capsid protein were mapped to the N-terminal half of L2 by blocking the neutralizing activity of full-length L2 antiserum with bacterially expressed peptides of L2. In addition, rabbit antiserum raised against amino acids 45 to 173 of L2 had a neutralizing titer of 1,000, confirming that at least part of the N terminus of L2 is exposed on the virion surface.  相似文献   

3.
S W Ludmerer  D Benincasa    G E Mark  rd 《Journal of virology》1996,70(7):4791-4794
Characterization of virus binding by neutralizing antibodies is important both in understanding early events in viral infectivity and in development of vaccines. Neutralizing monoclonal antibodies (MAbs) to human papillomavirus type 11 (HPV11) have been described, but mapping the binding site has been difficult because of the conformational nature of key type-specific neutralization epitopes on the L1 coat protein. We have determined those residues of the L1 protein of HPV11 which confer type specificity to the binding of HPV11-neutralizing MAbs. Binding of three HPV11-specific neutralizing MAbs could be redirected to HPV6 L1 virus-like particles in which as few as two substitutions of corresponding amino acid residues from HPV11 L1 have been made, thus demonstrating the importance of these residues to MAb binding through the transfer of a conformationally dependent epitope. In addition, a fourth neutralizing MAb could be distinguished from the other neutralizing MAbs in terms of the amino acid residues which affect binding, suggesting the possibility that it neutralizes HPV11 through a different mechanism.  相似文献   

4.
The Eastern equine encephalitis virus (EEEV) E2 protein is one of the main targets of the protective immune response against EEEV. Although some efforts have done to elaborate the structure and immune molecular basis of Alphaviruses E2 protein, the published data of EEEV E2 are limited. Preparation of EEEV E2 protein-specific antibodies and define MAbs-binding epitopes on E2 protein will be conductive to the antibody-based prophylactic and therapeutic and to the study on structure and function of EEEV E2 protein. In this study, 51 EEEV E2 protein-reactive monoclonal antibodies (MAbs) and antisera (polyclonal antibodies, PAbs) were prepared and characterized. By pepscan with MAbs and PAbs using enzyme-linked immunosorbent assay, we defined 18 murine linear B-cell epitopes. Seven peptide epitopes were recognized by both MAbs and PAbs, nine epitopes were only recognized by PAbs, and two epitopes were only recognized by MAbs. Among the epitopes recognized by MAbs, seven epitopes were found only in EEEV and two epitopes were found both in EEEV and Venezuelan equine encephalitis virus (VEEV). Four of the EEEV antigenic complex-specific epitopes were commonly held by EEEV subtypes I/II/III/IV (1-16aa, 248-259aa, 271-286aa, 321-336aa probably located in E2 domain A, domain B, domain C, domain C, respectively). The remaining three epitopes were EEEV type-specific epitopes: a subtype I-specific epitope at amino acids 108–119 (domain A), a subtype I/IV-specific epitope at amino acids 211–226 (domain B) and a subtype I/II/III-specific epitope at amino acids 231–246 (domain B). The two common epitopes of EEEV and VEEV were located at amino acids 131–146 and 241–256 (domain B). The generation of EEEV E2-specific MAbs with defined specificities and binding epitopes will inform the development of differential diagnostic approaches and structure study for EEEV and associated alphaviruses.  相似文献   

5.
Studies of virus neutralization by antibody are a prerequisite for development of a prophylactic vaccine strategy against human papillomaviruses (HPVs). Using HPV16 and -6 pseudovirions capable of inducing beta-galactosidase in infected monkey COS-1 cells, we examined the neutralizing activity of mouse monoclonal antibodies (MAbs) that recognize surface epitopes in HPV16 minor capsid protein L2. Two MAbs binding to a synthetic peptide with the HPV16 L2 sequence of amino acids (aa) 108 to 120 were found to inhibit pseudoinfections with HPV16 as well as HPV6. Antisera raised by immunizing BALB/c mice with the synthetic peptide had a cross-neutralizing activity similar to that of the MAb. The data indicate that HPV16 and -6 have a common cross-neutralization epitope (located within aa 108 to 120 of L2 in HPV16), suggesting that this epitope may be shared by other genital HPVs.  相似文献   

6.
The variable surface loops on human papillomavirus (HPV) virions required for type-specific neutralization by human sera remain poorly defined. To determine which loops are required for neutralization, a series of hybrid virus-like particles (VLPs) were used to adsorb neutralizing activity from HPV type 16 (HPV16)-reactive human sera before being tested in an HPV16 pseudovirion neutralization assay. The hybrid VLPs used were composed of L1 sequences of either HPV16 or HPV31, on which one or two regions were replaced with homologous sequences from the other type. The regions chosen for substitution were the five known loops that form surface epitopes recognized by monoclonal antibodies and two additional variable regions between residues 400 and 450. Pretreatment of human sera, previously found to react to HPV16 VLPs in enzyme-linked immunosorbent assays, with wild-type HPV16 VLPs and hybrid VLPs that retained the neutralizing epitopes reduced or eliminated the ability of sera to inhibit pseudovirus infection in vitro. Surprisingly, substitution of a single loop often ablated the ability of VLPs to adsorb neutralizing antibodies from human sera. However, for all sera tested, multiple surface loops were found to be important for neutralizing activity. Three regions, defined by loops DE, FG, and HI, were most frequently identified as being essential for binding by neutralizing antibodies. These observations are consistent with the existence of multiple neutralizing epitopes on the HPV virion surface.  相似文献   

7.
Human serum samples derived from a case-control study of patients with cervical carcinoma (n = 174) or condyloma acuminatum (n = 25) were tested for the presence of immunoglobulin G antibodies to human papillomavirus type 6 (HPV6) L2 and HPV11 L2 recombinant proteins in a Western immunoblot assay. Thirty-six samples (18%) were positive for HPV6 L2 antibodies alone, 25 (13%) were positive for HPV11 L2 antibodies alone, and 34 (17%) were positive for both HPV6 L2 and HPV11 L2 antibodies. Thirty samples that were positive for both antibodies were tested for the presence of HPV6-HPV11 L2 cross-reactive antibodies. Fifteen (50%) serum samples contained HPV6-HPV11 L2 cross-reactive antibodies, and 15 (50%) contained independent, type-specific HPV6 L2 and HPV11 L2 antibodies. Altogether, 82% of the HPV6 L2 and HPV11 L2 antibody reactivities were type specific and 18% were HPV6-HPV11 cross-reactive. There was no significant difference in the prevalence of antibody reactivities between samples from patients with cervical carcinoma and those with condyloma acuminatum. Deletion mapping identified five HPV6 L2 regions that reacted with HPV6 type-specific antibodies: 6U1 (amino acids [aa] 152 to 173), 6U2 (aa 175 to 191), 6U3 (aa 187 to 199), 6U4 (aa 201 to 217), and 6U5 (aa 351 to 367). Five HPV11 L2 regions that reacted with HPV11 type-specific antibodies were identified: 11U1 (aa 49 to 84), 11U2 (aa 147 to 162), 11U3 (aa 179 to 188), 11U4 (aa 180 to 200), and 11U5 (aa 355 to 367). Two HPV6-HPV11 cross-reactive regions were identified: 6CR1 (HPV6 L2 aa 106 to 128)/11CR1 (HPV11 L2 aa 103 to 127) and 6CR2 (HPV6 L2 aa 187 to 199)/11CR2 (HPV11 L2 aa 180 to 200).  相似文献   

8.
The surface of the mature dengue virus (DENV) particle is covered with 180 envelope (E) proteins arranged as homodimers that lie relatively flat on the virion surface. Each monomer consists of three domains (ED1, ED2, and ED3), of which ED3 contains the critical neutralization determinant(s). In this study, a large panel of DENV-2 recombinant ED3 mutant proteins was used to physically and biologically map the epitopes of five DENV complex-specific monoclonal antibodies (MAbs). All five MAbs recognized a single antigenic site that includes residues K310, I312, P332, L389, and W391. The DENV complex antigenic site was located on an upper lateral surface of ED3 that was distinct but overlapped with a previously described DENV-2 type-specific antigenic site on ED3. The DENV complex-specific MAbs required significantly higher occupancy levels of available ED3 binding sites on the virion, compared to DENV-2 type-specific MAbs, in order to neutralize virus infectivity. Additionally, there was a great deal of variability in the neutralization efficacy of the DENV complex-specific MAbs with representative strains of the four DENVs. Overall, the differences in physical binding and potency of neutralization observed between DENV complex- and type-specific MAbs in this study demonstrate the critical role of the DENV type-specific antibodies in the neutralization of virus infectivity.  相似文献   

9.
Hantavirus pulmonary syndrome (HPS) is a human disease caused by a newly identified hantavirus, which we will refer to as Four Corners virus (FCV). FCV is related most closely to Puumala virus (PUU) and to Prospect Hill virus (PHV). Twenty-five acute HPS serum samples were tested for immunoglobulin G (IgG) and IgM antibody reactivities to FCV-encoded recombinant proteins in Western blot (immunoblot) assays. All HPS serum samples contained both IgG and IgM antibodies to the FCV nucleocapsid (N) protein. FCV N antibodies cross-reacted with PUU N and PHV N proteins. A dominant FCV N epitope was mapped to the segment between amino acids 17 and 59 (QLVTARQKLKDAERAVELDPDDVNKSTLQSRRAAVSALETKLG). All HPS serum samples contained IgG antibodies to the FCV glycoprotein-1 (G1) protein, and 21 of 25 serum samples contained FCV G1 IgM antibodies. The FCV G1 antibodies did not cross-react with PUU G1 and PHV G1 proteins. The FCV G1 type-specific antibody reactivity mapped to a segment between amino acids 59 and 89 (LKIESSCNFDLHVPATTTQKYNQVDWTKKSS). One hundred twenty-eight control serum samples were tested for IgG reactivities to the FCV N and G1 proteins. Nine (7.0%) contained FCV N reactivities, 3 (2.3%) contained FCV G1 reactivities, and one (0.8%) contained both FCV N and FCV G1 reactivities. The epitopes recognized by antibodies present in control serum samples were different from the epitopes recognized by HPS antibodies, suggesting that the control antibody reactivities were unrelated to FCV infections. These reagents constitute a type-specific assay for FCV antibodies.  相似文献   

10.
A conformational change in the structure of Sindbis (SB) virus was detected after virion attachment to baby hamster kidney cells but before internalization. The alteration was manifested as increased virion binding of certain glycoprotein E1 and E2 monoclonal antibodies (MAbs) that recognized transitional epitopes. These epitopes were inaccessible to MAb on native virions but became accessible to their cognate MAbs in the early stages of infection. Transit of virions through a low-pH compartment apparently was not required for the conformational change. Exposure of transitional epitopes was unaffected by treatment of BHK cells with NH4Cl and occurred normally in Chinese hamster ovary cells temperature sensitive for endosomal acidification. However, the rearrangement was correlated with both the time course and temperature dependence of SB virus penetration, and the rearrangement occurred earlier with an SB virus mutant having an accelerated penetration phenotype. In addition, MAb to a transitional epitope, a probe specific for rearranged particles, retarded penetration of infectious virions. These results suggested that the SB virus E1/E2 glycoprotein spike undergoes a structural rearrangement as a consequence of virion interaction with the cell surface and that this altered virion form may be an important early intermediate in an entry pathway leading to productive infection.  相似文献   

11.

Background

Human papillomavirus (HPV) capsids are composed of 72 pentamers of the major capsid protein L1, and an unknown number of L2 minor capsid proteins. An N-terminal “external loop” of L2 contains cross-neutralizing epitopes, and native HPV16 virions extracted from 20-day-old organotypic tissues are neutralized by anti-HPV16 L2 antibodies but virus from 10-day-old cultures are not, suggesting that L2 epitopes are more exposed in mature, 20-day virions. This current study was undertaken to determine whether cross-neutralization of other HPV types is similarly dependent on time of harvest and to screen for the most effective cross-neutralizing epitope in native virions.

Methodology and Principal Findings

Neutralization assays support that although HPV16 L2 epitopes were only exposed in 20-day virions, HPV31 or HPV18 epitopes behaved differently. Instead, HPV31 and HPV18 L2 epitopes were exposed in 10-day virions and remained so in 20-day virions. In contrast, presumably due to sequence divergence, HPV45 was not cross-neutralized by any of the anti-HPV16 L2 antibodies. We found that the most effective cross-neutralizing antibody was a polyclonal antibody named anti-P56/75 #1, which was raised against a peptide consisting of highly conserved HPV16 L2 amino acids 56 to 75.

Conclusions and Significance

This is the first study to determine the susceptibility of multiple, native high-risk HPV types to neutralization by L2 antibodies. Multiple anti-L2 antibodies were able to cross-neutralize HPV16, HPV31, and HPV18. Only neutralization of HPV16 depended on the time of tissue harvest. These data should inform attempts to produce a second-generation, L2-based vaccine.  相似文献   

12.
The mechanisms of human papillomavirus (HPV) neutralization by antibodies are incompletely understood. We have used HPV16 pseudovirus infection of HaCaT cells to analyze how several neutralizing monoclonal antibodies (MAbs) generated against HPV16 L1 interfere with the process of keratinocyte infection. HPV16 capsids normally bind to both the cell surface and extracellular matrix (ECM) of HaCaT cells. Surprisingly, two strongly neutralizing MAbs, V5 and E70, did not prevent attachment of capsids to the cell surface. However, they did block association with the ECM and prevented internalization of cell surface-bound capsids. In contrast, MAb U4 prevented binding to the cell surface but not to the ECM. The epitope recognized by U4 was inaccessible when virions were bound to the cell surface but became accessible after endocytosis, presumably coinciding with receptor detachment. Treatment of capsids with heparin, which is known to interfere with binding to cell surface heparan sulfate proteoglycans (HSPGs), also resulted in HPV16 localization to the ECM. These results suggest that the U4 epitope on the intercapsomeric C-terminal arm is likely to encompass the critical HSPG interaction residues for HPV16, while the V5 and E70 epitopes at the apex of the capsomer overlap the ECM-binding sites. We conclude that neutralizing antibodies can inhibit HPV infection by multiple distinct mechanisms, and understanding these mechanisms can add insight to the HPV entry processes.  相似文献   

13.
Glycoprotein D (gD) is a virion envelope component of herpes simplex virus types 1 (HSV-1) and 2 (HSV-2) which plays an important role in viral infection and pathogenesis. Previously, anti-gD monoclonal antibodies (MAbs) were arranged into groups which recognize distinct type-common and type-specific sites on HSV-1 gD (gD-1) and HSV-2 gD (gD-2). Several groups recognize discontinuous epitopes which are dependent on tertiary structure. Three groups, VII, II, and V, recognize continuous epitopes present in both native and denatured gD. Previously, group II consisted of a single MAb, DL6, whose epitope was localized between amino acids 268 and 287. In the study reported here, we extended our analysis of the antigenic structure of gD, concentrating on continuous epitopes. The DL6 epitope was localized with greater precision to residues 272 to 279. Four additional MAbs including BD78 were identified, each of which recognizes an epitope within residues 264 to 275. BD78 and DL6 blocked each other in binding to gD. In addition, a mutant form of gD was constructed in which the proline at 273 was replaced by serine. This change removes a predicted beta turn in gD. Neither antibody reacted with this mutant, indicating that the BD78 and DL6 epitopes overlap and constitute an antigenic site (site II) within residues 264 to 279. A separate antigenic site (site XI) was recognized by MAb BD66 (residues 284 to 301). This site was only six amino acids downstream of site II, but was distinct as demonstrated by blocking studies. Synthetic peptides mimicking these and other regions of gD were screened with polyclonal antisera to native gD-1 or gD-2. The results indicate that sites II, V, VII, and XI, as well as the carboxy terminus, are the major continuous antigenic determinants on gD. In addition, the results show that the region from residues 264 through 369, except the transmembrane anchor, contains a series of continuous epitopes.  相似文献   

14.
Both the Human papillomavirus (HPV) major (L1) and minor (L2) capsid proteins have been well investigated as potential vaccine candidates. The L1 protein first oligomerizes into pentamers, and these capsomers assemble into virus-like particles (VLPs) that are highly immunogenic. Here we examine the potential of using HPV type 16 (HPV-16) L1 subunits to display a well-characterized HPV-16 L2 epitope (LVEETSFIDAGAP), which is a common-neutralizing epitope for HPV types 6 and 16, in various regions of the L1 structure. The L2 sequence was introduced by PCR (by replacing 13 codons) into sequences coding for L1 surface loops D-E (chideltaC-L2), E-F (chideltaA-L2), and an internal loop C-D (chideltaH-L2); into the h4 helix (chideltaF-L2); and between h4 and beta-J structural regions (chideltaE-L2). The chimeric protein product was characterized using a panel of monoclonal antibodies (MAbs) that bind to conformational and linear epitopes, as well as a polyclonal antiserum raised to the L2 epitope. All five chimeras reacted with the L2 serum. ChideltaA-L2, chideltaE-L2, and chideltaF-L2 reacted with all the L1 antibodies, chideltaC-L2 did not bind H16:V5 and H16:E70, and chideltaH-L2 did not bind any conformation-dependent MAb. The chimeric particles elicited high-titer anti-L1 immune responses in BALB/c mice. Of the five chimeras tested only chideltaH-L2 did not elicit an L2 response, while chideltaF-L2 elicited the highest L2 response. This study provides support for the use of PV particles as vectors to deliver various epitopes in a number of locations internal to the L1 protein and for the potential of using chimeric PV particles as multivalent vaccines. Moreover, it contributes to knowledge of the structure of HPV-16 L1 VLPs and their derivatives.  相似文献   

15.
Infectious molecular clones have been isolated from two maedi-visna virus (MVV) strains, one of which (KV1772kv72/67) is an antigenic escape mutant of the other (LV1-1KS1). To map the type-specific neutralization epitope, we constructed viruses containing chimeric envelope genes by using KV1772kv72/67 as a backbone and replacing various parts of the envelope gene with equivalent sequences from LV1-1KS1. The neutralization phenotype was found to map to a region in the envelope gene containing two deletions and four amino acid changes within 39 amino acids (positions 559 to 597 of Env). Serum obtained from a lamb infected with a chimeric virus, VR1, containing only the 39 amino acids from LV1-1KS1 in the KV1772kv72/67 backbone neutralized LV1-1KS1 but not KV1772kv72/67. The region in the envelope gene that we had thus shown to be involved in escape from neutralization was cloned into pGEX-3X expression vectors, and the resulting fusion peptides from both molecular clones were tested in immunoblots for reactivity with the KV1772kv72/67 and VR1 type-specific antisera. The type-specific KV1772kv72/67 antiserum reacted only with the fusion peptide from KV1772kv72/67 and not with that from LV1-1KS1, and the type-specific VR1 antiserum reacted only with the fusion peptide from LV1-1KS1 and not with that from KV1772kv72/67. Pepscan analysis showed that the region contained two linear epitopes, one of which was specific to each of the molecularly cloned viruses. This linear epitope was not bound by all type-specific neutralizing antisera, however, which indicates that it is not by itself the neutralization epitope but may be a part of it. These findings show that mutations within amino acids 559 to 597 in the envelope gene of MVV virus result in escape from neutralization. Furthermore, the region contains one or more parts of a discontinuous neutralization epitope.  相似文献   

16.
Neutralization of flaviviruses in vivo correlates with the development of an antibody response against the viral envelope (E) protein. Previous studies demonstrated that monoclonal antibodies (MAbs) against an epitope on the lateral ridge of domain III (DIII) of the West Nile virus (WNV) E protein strongly protect against infection in animals. Based on X-ray crystallography and sequence analysis, an analogous type-specific neutralizing epitope for individual serotypes of the related flavivirus dengue virus (DENV) was hypothesized. Using yeast surface display of DIII variants, we defined contact residues of a panel of type-specific, subcomplex-specific, and cross-reactive MAbs that recognize DIII of DENV type 2 (DENV-2) and have different neutralizing potentials. Type-specific MAbs with neutralizing activity against DENV-2 localized to a sequence-unique epitope on the lateral ridge of DIII, centered at the FG loop near residues E383 and P384, analogous in position to that observed with WNV-specific strongly neutralizing MAbs. Subcomplex-specific MAbs that bound some but not all DENV serotypes and neutralized DENV-2 infection recognized an adjacent epitope centered on the connecting A strand of DIII at residues K305, K307, and K310. In contrast, several MAbs that had poor neutralizing activity against DENV-2 and cross-reacted with all DENV serotypes and other flaviviruses recognized an epitope with residues in the AB loop of DIII, a conserved region that is predicted to have limited accessibility on the mature virion. Overall, our experiments define adjacent and structurally distinct epitopes on DIII of DENV-2 which elicit type-specific, subcomplex-specific, and cross-reactive antibodies with different neutralizing potentials.  相似文献   

17.
Herpes simplex virus type 1 (HSV-1) glycoprotein C (gC-1) elicits a largely serotype-specific immune response directed against previously described determinants designated antigenic sites I and II. To more precisely define these two immunodominant antigenic regions of gC-1 and to determine whether the homologous HSV-2 glycoprotein (gC-2) has similarly situated antigenic determinants, viral recombinants containing gC chimeric genes which join site I and site II of the two serotypes were constructed. The antigenic structure of the hybrid proteins encoded by these chimeric genes was studied by using gC-1- and gC-2-specific monoclonal antibodies (MAbs) in radioimmunoprecipitation, neutralization, and flow cytometry assays. The results of these analyses showed that the reactivity patterns of the MAbs were consistent among the three assays, and on this basis, they could be categorized as recognizing type-specific epitopes within the C-terminal or N-terminal half of gC-1 or gC-2. All MAbs were able to bind to only one or the other of the two hybrid proteins, demonstrating that gC-2, like gC-1, contains at least two antigenic sites located in the two halves of the molecule and that the structures of the antigenic sites in both molecules are independent and rely on limited type-specific regions of the molecule to maintain epitope structure. To fine map amino acid residues which are recognized by site I type-specific MAbs, point mutations were introduced into site I of the gC-1 or gC-2 gene, which resulted in recombinant mutant glycoproteins containing one or several residues from the heterotypic serotype in an otherwise homotypic site I background. The recognition patterns of the MAbs for these mutant molecules demonstrated that (i) single amino acids are responsible for the type-specific nature of individual epitopes and (ii) epitopes are localized to regions of the molecule which contain both shared and unshared amino acids. Taken together, the data described herein established the existence of at least two distinct and structurally independent antigenic sites in gC-1 and gC-2 and identified subtle amino acid sequence differences which contribute to type specificity in antigenic site I of gC.  相似文献   

18.
We studied human papillomavirus (HPV) minor nucleocapsid protein (L2) by epitope scanning. Conserved antigenic epitopes identified by rabbit antiserum to bovine papillomavirus (BPV) were revealed in HPV-6b (amino acids, aa, 196-205); HPV-16 (aa:s 376-85) and HPV-18 (aa:s 221-230). L2 proteins. The first two epitopes were situated in hydrophilic regions of the proteins. Aligning the aa-sequences that corresponded to the epitopes with the total L2 sequences of BPV and HPV1a revealed consensus motifs between BPV, HPV1a and the reactive HPV type. In the non-reactive types amino acid alterations were noted. Mismatch between HPV1a sequences and the corresponding HPV-6b and HPV-16, HPV-6b and HPV-18, and HPV-16 and HPV-18 sequences suggests that the alterations may have evolved to facilitate immune surveillance of the genital HPV types.  相似文献   

19.
Ebola virus causes lethal hemorrhagic fever in humans, but currently there are no effective vaccines or antiviral compounds for this infectious disease. Passive transfer of monoclonal antibodies (MAbs) protects mice from lethal Ebola virus infection (J. A. Wilson, M. Hevey, R. Bakken, S. Guest, M. Bray, A. L. Schmaljohn, and M. K. Hart, Science 287:1664-1666, 2000). However, the epitopes responsible for neutralization have been only partially characterized because some of the MAbs do not recognize the short synthetic peptides used for epitope mapping. To identify the amino acids recognized by neutralizing and protective antibodies, we generated a recombinant vesicular stomatitis virus (VSV) containing the Ebola virus glycoprotein-encoding gene instead of the VSV G protein-encoding gene and used it to select escape variants by growing it in the presence of a MAb (133/3.16 or 226/8.1) that neutralizes the infectivity of the virus. All three variants selected by MAb 133/3.16 contained a single amino acid substitution at amino acid position 549 in the GP2 subunit. By contrast, MAb 226/8.1 selected three different variants containing substitutions at positions 134, 194, and 199 in the GP1 subunit, suggesting that this antibody recognized a conformational epitope. Passive transfer of each of these MAbs completely protected mice from a lethal Ebola virus infection. These data indicate that neutralizing antibody cocktails for passive prophylaxis and therapy of Ebola hemorrhagic fever can reduce the possibility of the emergence of antigenic variants in infected individuals.  相似文献   

20.
The neutralizing activities of polyclonal antibodies and monoclonal antibodies (MAbs) obtained by immunization of mice with L1 virus-like particles (VLPs) were investigated by using pseudovirion infectivity assays for human papillomavirus type 16 (HPV-16), HPV-31, HPV-33, HPV-45, HPV-58, and HPV-59 to obtain a better definition of cross-neutralization between high-risk HPVs. In this study, we confirmed and extended previous studies indicating that most genital HPV genotypes represent separate serotypes, and the results suggest that the classification of serotypes is similar to that of genotypes. In addition, three cross-neutralizing MAbs were identified (HPV-16.J4, HPV-16.I23, and HPV-33.E12). MAb HPV-16.J4 recognized a conserved linear epitope located within the FG loop of the L1 protein, and HPV-16.I23 recognized another located within the DE loop. The results suggested that reactivity of MAb HPV-16.I23 to L1 protein is lost when leucine 152 of the HPV-16 L1 protein is replaced by phenylalanine. This confirmed the existence of linear epitopes within the L1 protein that induce neutralizing antibodies, and this is the first evidence that such linear epitopes induce cross-neutralization. However, the cross-neutralization induced by L1 VLPs represents less than 1% of the neutralizing activity induced by the dominant conformational epitopes, and it is questionable whether this is sufficient to offer cross-protection in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号