首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple glucan-binding proteins of Streptococcus sobrinus.   总被引:1,自引:0,他引:1       下载免费PDF全文
Several proteins from culture supernatants of Streptococcus sobrinus were able to bind avidly to Sephadex G-75. The proteins could be partially eluted from the Sephadex by low-molecular-weight alpha-1,6 glucan or fully eluted by 4 M guanidine hydrochloride. Elution profiles were complex, yielding proteins of 16, 45, 58 to 60, 90, 135, and 145 kDa, showing that the wild-type strain possessed multiple glucan-binding proteins. Two mutants of Streptococcus sobrinus incapable of aggregation by high-molecular-weight alpha-1,6 glucan were isolated. One mutant was spontaneous, from a cell suspension to which glucan had been added, whereas the other was induced by ethyl methanesulfonate. Both mutants were devoid of a 60-kDa protein, as shown by gel electrophoresis of culture supernatants and whole cells. Amino acid analysis showed that the 58- to 60-kDa protein and the 90-kDa protein were distinct, although both were N-terminally blocked. Both mutants retained their ability to adhere to glass in the presence of sucrose and to ferment mannitol and sorbitol. Both mutants retained their glucosytransferase activities, as shown by activity gels. Western blots (immunoblots), employing antibody against a glucan-binding protein of Streptococcus mutans, failed to reveal cross-reactivity with S. sobrinus proteins. The results show that even though S. sobrinus produces several proteins capable of binding alpha-1,6 glucans, the 60-kDa protein is probably the lectin needed for glucan-dependent cellular aggregation.  相似文献   

2.
Reconstitution of trimethylamine-dependent coenzyme M (CoM) methylation was achieved with three purified polypeptides. Two of these polypeptides copurified as a trimethylamine methyl transfer (TMA-MT) activity detected by stimulation of the TMA:CoM methyl transfer reaction in cell extracts. The purified TMA-MT fraction stimulated the rate of methyl-CoM formation sevenfold, up to 1.7 micromol/min/mg of TMA-MT protein. The TMA-MT polypeptides had molecular masses of 52 and 26 kDa. Gel permeation of the TMA-MT fraction demonstrated that the 52-kDa polypeptide eluted with an apparent molecular mass of 280 kDa. The 26-kDa protein eluted primarily as a monomer, but some 26-kDa polypeptides also eluted with the 280-kDa peak, indicating that the two proteins weakly associate. The two polypeptides could be completely separated using gel permeation in the presence of sodium dodecyl sulfate. The corrinoid remained associated with the 26-kDa polypeptide at a molar ratio of 1.1 corrin/26-kDa polypeptide. This polypeptide was therefore designated the TMA corrinoid protein, or TCP. The TMA-MT polypeptides, when supplemented with purified methylcorrinoid:CoM methyltransferase (MT2), could effect the demethylation of TMA with the subsequent methylation of CoM and the production of dimethylamine at specific activities of up to 600 nmol/min/mg of TMA-MT protein. Neither dimethylamine nor monomethylamine served as the substrate, and the activity required Ti(III) citrate and methyl viologen. TMA-MT could interact with either isozyme of MT2 but had the greatest affinity for the A isozyme. These results suggest that TCP is uniquely involved in TMA-dependent methanogenesis, that this corrinoid protein is methylated by the substrate and demethylated by either isozyme of MT2, and that the predominant isozyme of MT2 found in TMA-grown cells is the favored participant in the TMA:CoM methyl transfer reaction.  相似文献   

3.
We investigated the biochemical characteristics of the 51-kDa protein that is a major mitotic apparatus-associated basic protein of sea urchin eggs (Toriyama, M., Ohta, K., Endo, S., and Sakai, H. (1988) Cell Motil. Cytoskeleton 9, 117-128). The amino acid composition of the 51-kDa protein was apparently different from those of tubulin, actin, histones, and myelin basic protein; yet it was similar to those of polypeptide elongation factors 1 alpha (EF-1 alpha). In addition, antibody to EF-1 alpha from yeast cross-reacted with the 51-kDa protein. [3H] GTP binding activity was detected in the phosphocellulose-purified fraction (PC fraction) which predominantly contained the 51-kDa protein and was shown to be specific to GTP, GDP, guanylyl imidodiphosphate, and ITP. Photo-affinity labeling using [alpha-32P]8-azidoguanosine triphosphate (8-azido-GTP) demonstrated that a 51-kDa polypeptide in the PC fraction specifically bound 8-azido-GTP. This GTP-binding polypeptide was bound to a GTP affinity column, could be eluted by the addition of GTP, and was immunoreactive with anti-51-kDa protein antibodies. When the PC fraction was applied to a gel filtration chromatography column, GTP binding activity was completely coeluted with the 51-kDa protein. Furthermore, the PC fraction and the gel filtration-purified fraction had EF-1 alpha activity: [14C]Phe-tRNA transferring activity to ribosomes in the presence of poly(U) and ribosome-dependent GTPase activity. The results indicate that the mitotic apparatus-associated 51-kDa protein is a GTP-binding protein and suggest that it is structurally and functionally related to yeast EF-1 alpha.  相似文献   

4.
Low molecular weight GTP-binding proteins and their cellular interactions were examined in cardiac muscle. Heart homogenate was separated into various subcellular fractions by differential and sucrose density gradient centrifugation. Various fractions were separated by sodium dodecyl sulfate-gel electrophoresis, blotted to nitrocellulose, and GTP-binding proteins detected by incubating with [alpha-32]GTP. Three polypeptides of M(r) 23,000, 26,000, and 29,000 were specifically labeled with [alpha-32P]GTP in all the fractions examined and enriched in sarcolemmal membranes. The 23-kDa polypeptide was labeled to a higher extent with [alpha-32P]GTP than the 26- and 29-kDa polypeptides. A polypeptide of M(r) 40,000 was weakly labeled with [alpha-32P]GTP in the sarcolemmal membrane and tentatively identified as Gi alpha by immunostaining with anti-Gi alpha antibodies. Cytosolic GTP-binding proteins were labeled with [alpha-32P]GTP and their potential sites of interaction investigated using the blot overlay approach. A polypeptide of 32 kDa present in sarcolemmal membranes, intercalated discs, and enriched in heart gap junctions was identified as a major site of interaction. The low molecular weight GTP-binding proteins associated with the 32-kDa polypeptide through a complex involving cytosolic components of M(r) 56,000, 36,000, 26,000, 23,000, and 12,000. A monoclonal antibody against connexin 32 from liver strongly recognized the 32-kDa polypeptide in heart gap junctions, whereas polyclonal antibodies only weakly reacted with this polypeptide. The low molecular weight GTP-binding proteins associated with a 32-kDa polypeptide in liver membranes that was also immunologically related to connexin 32. These results indicate the presence of a subset of low molecular weight GTP-binding proteins in a membrane-associated and a cytoplasmic pool in cardiac muscle. Their association with a 32-kDa component that is related to the connexins suggests that these polypeptides may be uniquely situated to modulate communication at the cell membrane.  相似文献   

5.
Tn5-tagged invasion plasmid DNA (pWR110) from Shigella flexneri serotype 5 (strain M90T) was cloned into the expression vector lambda gt11. Recombinant phage (lambda gt11Sfl) expressing pWR110-encoded polypeptide antigens were identified by using rabbit antisera directed against S. flexneri M90T invasion plasmid antigens. Antigens encoded by lambda gt11Sfl recombinant phage were characterized by reacting affinity-purified antibodies, eluted from nitrocellulose-bound plaques of lambda gt11Sfl recombinants, with virulent, wild-type S. flexneri M90T polypeptides in Western blot analyses. lambda gt11Sfl clones directing the synthesis of complete, truncated, and beta-galactosidase fusion versions of three previously identified outer membrane polypeptides (57-, 43-, and 39-kilodalton [kDa] antigens) were isolated. A fourth polypeptide, similar in size to the 57-kDa antigen (ca. 58 kDa) but unrelated as determined by DNA homology and serological measurements, was also identified. Southern blot analysis of S. flexneri M90T invasion plasmid DNA hybridized with lambda gt11Sfl insert DNA probes was used to construct a map of invasion plasmid antigen genes (ipa) corresponding to the 57-kDa (ipaB), 43-kDa (ipaC), and 39-kDa (ipaD) polypeptides. Genes ipaB, ipaC and ipaD mapped to contiguous 4.6-kilobase (kb) and 1.0-kb HindIII fragments contained within a larger (23-kb) BamHI fragment. The ipaH gene, which encodes the synthesis of the 58-kDa polypeptide, did not map in or near the ipaBCD gene cluster, suggesting a distinct location of ipaH on the invasion plasmid.  相似文献   

6.
The virion host shutoff (Vhs) protein (UL41) is a minor component of herpes simplex virus virions which, following penetration, accelerates turnover of host and viral mRNAs. Infected cells contain 58-kDa and 59.5-kDa forms of Vhs, which differ in the extent of phosphorylation, yet only a 58-kDa polypeptide is incorporated into virions. In pulse-chase experiments, the primary Vhs translation product comigrated in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with the 58-kDa virion polypeptide, and could be chased to 59.5 kDa. While both 59.5-kDa and 58-kDa forms were found in nuclear and cytoplasmic fractions, the 59.5-kDa form was significantly enriched in the nucleus. Both forms were associated with intranuclear B and C capsids, yet only the 58-kDa polypeptide was found in enveloped cytoplasmic virions. A 58-kDa form, but not the 59.5-kDa form, was found in L particles, noninfectious particles that contain an envelope and tegument but no capsid. The data suggest that virions contain two populations of Vhs that are packaged by different pathways. In the first pathway, the primary translation product is processed to 59.5 kDa, is transported to the nucleus, binds intranuclear capsids, and is converted to 58 kDa at some stage prior to final envelopment. The second pathway does not involve the 59.5-kDa form or interactions between Vhs and capsids. Instead, the primary translation product is phosphorylated to the 58-kDa virion form and packaged through interactions with other tegument proteins in the cytoplasm or viral envelope proteins at the site of final envelopment.  相似文献   

7.
We have previously reported that purified thyroid lysosomes bind to reconstituted microtubules to form stable complexes (Mithieux, G., Audebet, C., and Rousset, B. (1988) Biochim. Biophys. Acta 969, 121-130), a process which is inhibited by ATP (Mithieux, G., and Rousset, B. (1988) Biochim. Biophys. Acta 971, 29-37). Among detergent-solubilized lysosomal membrane protein, we identified a 50-kDa molecular component which binds to preassembled microtubules. The binding of this polypeptide to microtubules was decreased in the presence of ATP. We purified this 50-kDa protein by affinity chromatography on immobilized ATP. The 50-kDa protein bound to the ATP column was eluted by 1 mM ATP. The purified protein, labeled with 125I, exhibited the ability of interacting with microtubules. The binding process was inhibited by increasing concentrations of ATP, the half-maximal inhibitory effect being obtained at an ATP concentration of 0.35 mM. The interaction of the 50-kDa protein with microtubules is a saturable phenomenon since the binding of the 125I-labeled 50-kDa protein was inhibited by unlabeled solubilized lysosomal membrane protein containing the 50-kDa polypeptide but not by the same protein fraction from which the 50-kDa polypeptide had been removed by the ATP affinity chromatography procedure. The 50-kDa protein has the property to bind to pure tubulin coupled to an insoluble matrix. The 50-kDa protein was eluted from the tubulin affinity column by ATP. These findings support the conclusion that a protein inserted into the lysosomal membrane is able to bind directly to microtubules in a process which can be regulated by ATP. We propose that this protein could account for the association of lysosomes to microtubules demonstrated both in vitro and in intact cells.  相似文献   

8.
DNA fragments coding for the N-terminal 185 amino acids (aa) and for the entire coding region of the adenovirus (Ad)12 E1b 58-kDa protein have been cloned in a prokaryotic expression vector. The N-terminal region of the 58-kDa viral protein (aa 21-205) is expressed as a beta-galactosidase (beta Gal) fusion protein encoded by plasmid pB58Ngal. Escherichia coli strains transformed with this plasmid synthesize a full-length fusion protein of 150-kDa and two truncated proteins: a 140-kDa protein containing aa 64-205 and a 120-kDa polypeptide containing aa 158-205 of the E1b 58-kDa protein. Antibodies raised against purified fusion proteins specifically immunoprecipitate the E1b 58-kDa protein from Ad12-infected and transformed cells. Bacteria transformed with plasmid pB58 carrying the entire E1b 58-kDa coding region (minus the first N-terminal 20 aa which are replaced by 4 aa of beta Gal) showed dramatically reduced growth properties after induction of 58K gene expression. We have not been able to detect substantial amounts of the 58-kDa protein in these cells. However, the viral 58-kDa polypeptide could be synthesized in vitro from plasmid pB58 in a DNA-dependent translation system from E. coli.  相似文献   

9.
The presence of low molecular weight GTP-binding proteins was investigated in subcellular fractions from skeletal muscle. Skeletal muscle homogenate, transverse tubules, triads, sarcoplasmic reticulum membranes, and cytosol fractions were separated in sodium dodecyl sulfate-gel electrophoresis and blotted onto nitrocellulose. The presence of GTP-binding proteins was explored by incubation of these blots with [alpha-32P] GTP. GTP labeled two polypeptides of Mr = 23,000 and 29,000 in all the fractions examined. Binding of [alpha-32P]GTP was specific and dependent on Mg2+. The 23-kDa polypeptide was labeled to a higher extent with [alpha-32P]GTP than the 29-kDa polypeptide, although both were enriched in transverse tubule fractions. A GTP-binding polypeptide of 40 kDa was also enriched in transverse tubule preparations and identified as Gi alpha by immunostaining with anti-Gi alpha. Using a blot overlay approach and [alpha-32P]GTP-labeled cytosolic components, several polypeptides were identified that interact with the 23- and 29-kDa GTP-binding proteins. Among these components were polypeptides of Mr = 60,000, 47,000, 44,000, 42,000, and 38,000, which were mainly of cytosolic origin but also associated with triads and transverse tubule membranes. The 47-, 44-, 42-, and 38-kDa polypeptides were found to be structurally related to the glycolytic enzymes enolase, 3-phosphoglyceric phosphokinase, aldolase, and glycoeraldehyde-3-phosphate dehydrogenase, respectively. The purified glycolytic enzymes specifically bound the 23- and 29-kDa GTP-binding proteins under both denaturing and nondenaturing conditions. The association of the GTP-binding proteins with these polypeptides was resistant to detergents such as 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS), Triton X-100, and Tween. A 23-kDa GTP-binding protein purified from chromaffin cells bound to a 157-kDa polypeptide in triads and chromaffin cell membranes. The 157-kDa polypeptide was a minor component in these membranes and not related to the subunits of the dihydropyridine receptor. In view of the proposed function of low molecular weight GTP-binding proteins in processes such as membrane communication and secretion coupling, the association of these proteins with transverse tubules and triads in skeletal muscle is discussed in terms of a role in signal transmission.  相似文献   

10.
The polypeptide composition of the NO-3-sensitive H+-ATPase of vacuolar membrane (tonoplast) vesicles isolated from red beet (Beta vulgaris L.) storage root was investigated by affinity labeling with [alpha-32P]3-O-(4-benzoyl)benzoyladenosine 5'-triphosphate [( alpha-32P]BzATP) and [14C]N,N'-dicyclohexylcarbodiimide [( 14C]DCCD). The photoactive affinity analog of ATP, BzATP, is a potent inhibitor of the tonoplast ATPase (apparent KI = 11 microM) and the photolysis of [alpha-32P]BzATP in the presence of native tonoplast yields one major 32P-labeled polypeptide of 57 kDa. Photoincorporation into the 57-kDa polypeptide shows saturation with respect to [alpha-32P]BzATP concentration and is blocked by ATP. [14C]DCCD, a hydrophobic carboxyl reagent and potent irreversible inhibitor of the tonoplast ATPase (k50 = 20 microM) labels a 16-kDa polypeptide in native tonoplast. The tonoplast ATPase is purified approximately 12-fold by Triton X-100 solubilization and Sepharose 4B chromatography. Partial purification results in the enrichment of two prominent polypeptides of 67 and 57 kDa. Solubilization, chromatography, and sodium dodecylsulfate-polyacrylamide gel electrophoresis of tonoplast labeled with [alpha-32P]BzATP or [14C]DCCD results in co-purification of the 57- and 16-kDa labeled polypeptides with ATPase activity. It is concluded that the tonoplast H+-ATPase is a multimer containing structurally distinct BzATP- and DCCD-binding subunits of 57 and 16 kDa, respectively. The data also suggest the association of a 67-kDA polypeptide with the ATPase.  相似文献   

11.
The domain structures of the Escherichia coli Rep and Helicase II proteins and their ligand-dependent conformational changes have been examined by monitoring the sensitivity of these helicases to proteolysis by trypsin and chymotrypsin. Limited treatment of unliganded Rep protein (73 kDa) with trypsin results in cleavage at a single site in its carboxyl-terminal region, producing a 68-kDa polypeptide which is stabilized in the presence of ATP, ADP, or adenosine 5'-O-thiotriphosphate) (ATP gamma S). The purified 68-kDa Rep tryptic polypeptide retains single-stranded (ss) DNA binding, DNA unwinding (helicase), and full ATPase activities. When bound to ssDNA, the Rep protein can be cleaved by trypsin at an additional site in its carboxyl-terminal region, producing a 58-kDa polypeptide that also retains ssDNA binding and ATPase activities. This 58-kDa Rep tryptic polypeptide can also be produced by further tryptic treatment of the 68-kDa Rep tryptic polypeptide when the latter is bound to ssDNA. This 58-kDa polypeptide displays a lower affinity for ssDNA indicating that the 10-kDa carboxyl-terminal peptide facilitates Rep protein binding to ssDNA. The 58-kDa Rep tryptic polypeptide is also stabilized in the presence of nucleotides. Based on these and previous studies that showed that the 68-kDa Rep tryptic polypeptide cannot support DNA replication in a system that is dependent upon the phi X174 cis-A protein (Arai, N. & Kornberg, A. (1981) J. Biol. Chem. 256, 5294-5298), we conclude that the carboxyl-terminal end (approximately 5 kDa) of the Rep protein is not required for its helicase or ATPase activities. However, we suggest that this region of the Rep protein is important for its interactions with the phi X174 cis-A protein. Limited treatment of unliganded Helicase II protein (82 kDa) with chymotrypsin results in cleavage after Tyr254, producing a 29-kDa amino-terminal polypeptide and a 53-kDa carboxyl-terminal polypeptide, which remain associated under nondenaturing conditions. This chymotrypsin cleavage reduces the ssDNA binding activity and eliminates the ssDNA-dependent ATPase and helicase activities of the Helicase II protein. The binding of ATP, ADP, ATP gamma S, and/or DNA to Helicase II protein results in protection of this site (Tyr254) from cleavage by chymotrypsin. Limited treatment of Helicase II protein with trypsin results in cleavage near its carboxyl-terminal end producing two polypeptides with apparent Mr = 72,000, in a manner similar to that observed with the Rep protein; these polypeptides are also stabilized by binding ATP or single-stranded DNA.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Earlier studies have localized the Heymann nephritis (HN) autoantigen (gp330) in the coated pits of the plasma membrane and multivesicular bodies of the glomerular epithelial cell. Because of these locations in the glomerular epithelial cells, it has been suggested that the HN Ag may be a receptor. The aim of our study was to search for a ligand which can bind the HN autoantigen. Normal rat serum was subjected to SDS-PAGE under reducing and non-reducing conditions followed by Western analysis of the separated polypeptides. A reaction was revealed directly by autoradiography using 125I labeled HN autoantigen as a probe and indirectly by enzyme immunodetection using unlabeled nephritogenic autoantibody (anti-gp330) eluted from glomeruli of diseased rats followed by biotinylated rabbit anti-rat IgG avidin-peroxidase complex. A polypeptide of 76 kDa Mr was identified under non-reducing conditions as a serum protein reacting with the HN autoantigen. Reactivity of the 76-kDa polypeptide was lost when serum was electrophoresed under reducing conditions. Direct binding of the 76-kDa polypeptide obtained from serum to the HN autoantigen obtained from kidney suggests that the 76-kDa polypeptide may be a ligand for the autoantigen. This is the first documentation of a possible ligand for the HN autoantigen. Not only does this polypeptide bind to the HN autoantigen but it also shows direct binding with the nephritogenic autoantibody eluted from glomerular deposits. This characteristic of the 76-kDa polypeptide indicates that this serum protein may potentially play a role in the development of the glomerular lesion of active HN. Further analysis of this serum component should assist in understanding the normal function of the HN autoantigen.  相似文献   

13.
The purified Ca2+-pumping ATPase of the erythrocyte membrane has been exposed to trypsin at 37 degrees C, in the presence of different effectors of its activity. The control proteolytic pattern is characterized by a number of transient and of limit polypeptides (Zurini, M., Krebs, J., Penniston, J. T., and Carafoli, E. (1984) J. Biol. Chem. 259, 618-627). The effectors influence the pattern in the Mr region 90,000-76,000, which contains the calmodulin binding domain and the active site of the enzyme. In this region, polypeptides of 90, 85, 81, and 76 kDa are clearly visible in the controls. 1) Calmodulin plus Ca2+ induces the faster disappearance of the 90-kDa product and the relative accumulation of the 85-kDa with respect to the 81-kDa polypeptide. 2) Vanadate plus Mg2+ also accelerates the disappearance of the 90-kDa product. However, they induce the relative accumulation of the 81-kDa polypeptide. 3) Linoleic acid, which stimulates the activity of the enzyme to the same levels obtained with calmodulin, greatly accelerates the rate of trypsin proteolysis, causing the virtual disappearance of all polypeptides in the 90-76-kDa region. 4) The 81-kDa polypeptide has maximal ATPase activity and is insensitive to calmodulin; the 85-kDa polypeptide has lower ATPase activity and binds calmodulin, but is not stimulated (or is stimulated only negligibly) by the activator.  相似文献   

14.
M V Rojiani  B B Finlay  V Gray  S Dedhar 《Biochemistry》1991,30(41):9859-9866
We endeavored to identify proteins interacting with KLGFFKR, a highly conserved motif in the cytoplasmic domain adjacent to the transmembrane domain of the alpha subunit of integrins. We found that affinity chromatography of cell extracts with this peptide followed by elution with EDTA resulted in the isolation of a 60-kDa protein (p60). The N-terminal amino acid sequence of this 60-kDa polypeptide was found to be highly homologous to the Ro/SS-A antigen, a 60-kDa protein homologous to calreticulin and Aplysia "memory molecule". The binding of p60 was found to be specific for the KLGFFKR sequence since this polypeptide did not bind to a peptide with a scrambled amino acid sequence (KLRFGFK), and it was also specifically eluted from the KLGFFKR affinity matrix ith soluble KLGFFKR peptide but not with the scrambled peptide. Solid phase in vitro binding assays demonstrated specific interaction of p60 with integrin alpha 3 and alpha 5 subunits but not with the beta 1 subunit. Furthermore, p60 could be copurified with alpha 3 beta 1 following coincubation in vitro. These interactions could be inhibited by KLGFFKR peptide and also by EDTA, indicating sequence-specific and divalent cation dependent binding. Despite the fact that calreticulin is thought to be localized in the endoplasmic reticulum, a pool of Ro/SS A antigen homologous 60-kDa polypeptide was found to be present in the soluble cytoplasm, indicating the feasibility of an interaction of p60 with the integrin alpha subunits. Our data suggest that p60 (Ro/SS-A Ag) can specifically bind to integrin alpha subunits via the highly conserved KLGFFKR amino acid sequence.  相似文献   

15.
Fibronectin receptors on mononuclear phagocytes are involved in the localization of monocytes at inflammatory sites and in the subsequent expression of macrophage-like phenotypes. In this study, we have investigated the hypothesis that proteolytically derived fragments of fibronectin may interfere with binding of fibronectin to monocytes in the extracellular matrix. We report on the reactivity of U937 cells with an 80-kDa tryptic fragment of fibronectin which contains the cell-binding domain but lacks the gelatin/collagen-binding domain. U937 cells attached to surfaces coated with the 80-kDa fragment as well as with intact fibronectin. Preincubation of the cells with the 80-kDa fragment inhibited attachment to both surfaces while intact fibronectin had little or no inhibitory effect. The Ki for inhibition of attachment (0.5 microM) was consistent with the Kd for binding of the 3H-labeled 80-kDa fragment (0.34 microM) to U937 cells in suspension. There were 4-5 x 10(5) 80-kDa binding sites per cell. The relatively high affinity of the 80-kDa fragment for the monocyte surface permitted the isolation and characterization of fibronectin-binding proteins from U937 cells and peripheral blood monocytes by affinity chromatography. When octylglucoside lysates of lactoperoxidase iodinated cells were applied to 80-kDa-Sepharose columns, a polypeptide complex of 152/125 kDa was eluted with the synthetic peptide GRGDSPC, but not with GRGESP. This complex resolved into a single diffuse band of 144 kDa upon reduction. Binding of the protein complex to the affinity column required divalent cations. The complex bound to wheat germ agglutinin and could be specifically eluted by N-acetylglucosamine. Similar cell-surface proteins were isolated from peripheral blood monocytes.  相似文献   

16.
Regulation of expression of a 69-kDa glycoprotein which occurs abundantly in tobacco (Nicotiana tabacum L.) pollen tubes but is absent in ungerminated pollen has been studied in vitro by means of a coupled translation/glycosylation system with RNA isolated from various stages of pollen development. Pollen mRNA could be translated in a rabbit reticulocyte lysate and the products glycosylated with canine pancreatic microsomal membranes. The electrophoretic pattern of translation products obtained with pollen-tube RNA showed a prominent polypeptide with an apparent molecular mass of 58 kDa. In the presence of the canine pancreatic microsomal membranes this polypeptide was glycosylated, producing the 69-kDa glycoprotein. The presence of mRNA encoding the 58-kDa precursor polypeptide was also demonstrated in ungerminated pollen and in young mid-binucleate pollen isolated from anthers. Initiation of synthesis of the 69-kDa glycoprotein at the onset of pollen germination thus occurs through unmasking of the mRNA transcribed during pollen differentiation and stored during pollen maturation and dormancy in an inactive state.Abbreviation pI isoelectric point  相似文献   

17.
The relative rates of initiation of alpha- and beta-globin mRNA translation in a Krebs II ascites cell-free system are differently modulated by a 50-kDa protein and two fractions containing either a 28-kDa or a 24-kDa polypeptide. Each of these fractions stimulated a discrete step that limits initiation of protein synthesis, but other rate-limiting steps take place upstream and/or downstream, resulting in characteristic kinetics of the stimulation of alpha- and beta-globin synthesis. The ascites extracts appear to be deficient in these activities.  相似文献   

18.
Calmodulin-dependent cyclic nucleotide phosphodiesterase from bovine brain is found to be composed of two distinct subunits, 60,000- and 63,000-dalton polypeptides. Peptide mapping of the subunits by partial proteolysis demonstrated that the 60-kDa polypeptide is not derived from the 63-kDa species. The interaction of the enzyme with three monoclonal antibodies, A6, C1, and A2, and the analysis of immunocomplexes by sucrose density gradient centrifugation revealed that calmodulin-dependent cyclic nucleotide phosphodiesterase exists in three different forms, i.e. (a) homodiamer of 60-kDa, (b) heterodimer of 60- and 63-kDa, and (c) homodimer of 63-kDa. A6 antibody reacts with both 60- and 63-kDa polypeptides indicating that they are immunologically related. C1 and A2 antibodies react with only 60-kDa polypeptide species. By using C1 Sepharose 4B affinity column chromatography, the 63-kDa homodimer which did not bind to the column (Fraction I) was separated from the 60-kDa polypeptide containing isozymes (the heterodimer and the 60-kDa homodimer) which were retained on the column and later eluted as a mixture (Fraction II). Fraction I, the 63-kDa homodimer enzyme, has higher Vmax toward cGMP as substrate than cAMP whereas the opposite was found with Fraction II. The specific activity of Fraction II enzyme toward cAMP was approximately 500 mumol/min/mg, the highest value ever reported for brain calmodulin-dependent cyclic nucleotide phosphodiesterase preparations.  相似文献   

19.
Cell-free translation of total RNA from rabbit intestinal mucosa in a rabbit reticulocyte lysate, after immunoprecipitation with antibodies directed against sucrase-isomaltase, yielded a polypeptide of 200 kDa, which was identified as pro-sucrase-isomaltase. Addition of dog pancreatic microsomal vesicles to the translation system resulted in the appearance of an additional 220-kDa polypeptide. The 220-kDa polypeptide was associated with the membranes in a way that made it inaccessible to proteolysis; this protection was abolished by lytic detergent concentrations, indicating that the polypeptide was segregated into the microsomal vesicle. The 220-kDa polypeptide was glycosylated as evidenced by it being bound to concanavalin A-Sepharose and eluted with alpha-methyl-D-mannopyranoside. The increase in apparent molecular mass (approximately 20 kDa) of the primary translation product upon translocation was due to the addition of carbohydrate; treatment of the 220-kDa polypeptide with endo-beta-N-acetylglucosaminidase H increased its electrophoretic mobility to that of the 200-kDa polypeptide which was obtained in the absence of membranes. Partial N-terminal amino acid sequence of a translation product labeled with [3H]Leu in the absence of membranes revealed that Leu was incorporated into identical positions as in the final (pro)-sucrase-isomaltase, thus indicating the lack of a transient signal peptide.  相似文献   

20.
Changes in activities of acid invertase and sucrose synthaseduring growth of mung bean seedlings were examined and the correlationbetween the activity of acid invertase and growth was confirmed.Acid invertase was purified from hypocotyls of etiolated seedlingsand separated into two fractions (A and B) by chromatographyon hydroxylapatite. Acid invertase in fraction B consisted oftwo polypeptides of 30 kDa and 38 kDa, but that in fractionA was 70 kDa in size. Antibodies raised against the 30-kDa polypeptideimmunoprecipitated enzymatic activity but those raised againstthe 38-kDa polypeptide did not. The concanavalin A-binding siteof acid invertase was contained in the 38-kDa polypeptide andnot in the 30-kDa polypeptide. However, when acid invertasewas bound to and eluted from concanavalin A-Sepharose, the 30-kDapolypeptide was found together with the 38-kDa polypeptide inthe eluate. Acid invertase in hypocotyls of mung bean seedlingsappears to be present in two forms: a monomer of 70 kDa anda hetero-dimer of 30-kDa and 38-kDa polypeptides. The monomerwas not converted to the heterodimer during incubation of acrude extract and was present together with the heterodimerin very young hypocotyls. In older hypocotyls, the heterodimerwas present but the monomer was barely detectable. We concludethat the two forms of acid invertase are present within cells,but the relationship between the two forms is unknown at present. (Received July 18, 1991; Accepted October 9, 1991)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号