首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mume (Japanese apricot: Prunus mume Sieb. et Zucc.) is a climacteric fruit that produces large amounts of ethylene as it ripens. Ripening is accompanied by marked increases in the activities of two ethylene-biosynthetic enzymes, namely, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase. To study the molecular aspects of ripening of mume, we isolated cDNA clones for proteins that we considered likely to be involved in the biosynthesis and perception of ethylene during ripening, namely, ACC synthase, ACC oxidase and the ethylene receptor. Northern blotting analysis revealed the markedly increased expression of ACC synthase prior to that of ACC oxidase and the increase in ethylene production during ripening. Overall, the levels of the mRNAs for the genes corresponded closely to the levels of activity of the ethylene-biosynthetic enzymes. Exposure of mature green mume fruit to ethylene for 12 h induced strong expression of ACC synthase, as well as of ACC oxidase. Wounding of the pericarp of mume fruit induced the expression of ACC synthase but not of ACC oxidase. The rate of ethylene production increased only slightly after wounding. These results suggest that expression of the genes for ACC synthase and ACC oxidase must be activated sequentially for maximum production of ethylene during ripening of mume fruit and that several mechanisms regulate the expression of ethylene-biosynthetic genes during ripening.  相似文献   

2.
3.
The plant hormone ethylene is involved in many plant processes ranging from seed germination to leaf and flower senescence and fruit ripening. Ethylene is synthesized from methionine, via S-adenosyl-L-methionine (SAM) and 1-amino-cyclopropane-1-carboxylic acid (ACC). The key ethylene biosynthetic enzymes are ACC synthase (ACS) and ACC oxidase (ACO). Manipulation of ethylene biosynthesis by chemicals and gene technology is discussed. Biotechnological modification of ethylene synthesis is a promising method to prevent spoilage of agricultural and horticultural products.  相似文献   

4.

The “Nanguo” pear is a typically climacteric fruit and ethylene is the main factor controlling the ripening process of climacteric fruit. Ethylene biosynthesis has been studied clearly and ACC synthase (ACS) is the rate-limited enzyme. ACO (ACC oxidase) is another important enzyme in ethylene biosynthesis. By exploring the pear genome, we identified 13 ACS genes and 11 ACO genes, respectively, and their expression patterns in fruit and other organs were investigated. Among these genes, 11 ACS and 8ACO genes were expressed in pear fruits. What’s more, 4 ACS and 3ACO genes could be induced by Ethephon and inhibited by 1-MCP treatment. This study is the first time to explore ACS and ACO genes at genome-wide level and will provide new data for research on pear fruit ripening.

  相似文献   

5.
6.
Diazocyclopentadiene (DACP), a competitive ethylene action inhibitor binds irreversibly to the ethylene receptor to reduce tissue responses to ethylene. Tomato fruit (Lycopersicon esculentum Mill cv lsquo;Rondellorsquo;) were treated with DACP at the mature green stage. Ethylene biosynthesis and respiration rate were depressed. Color changes from green to red were delayed. Compared to the control, ACC content increased and ACC oxidase activity in vivo decreased in DACP-treated fruit. Thus, decrease of ethylene production caused by DACP treatment was due to the reduction of ACC oxidase activity. The decline in ripening subsequently recovered after DACP treatment. Results from the Northern analysis for gene expression of ACC synthase and ACC oxidase, showed that expression of both genes declined in DACP-treated fruit, and then recovered. Therefore the recovery of ethylene production was due to the recovery in gene expression and activity of ACC oxidase. We conclude that the effects of DACP on ethylene biosynthesis are on expression of ACC synthase and ACC oxidase genes, and/or regulation of ACC oxidase activity.  相似文献   

7.
果实成熟乙烯相关基因工程研究进展(综述)   总被引:2,自引:1,他引:1  
果实成熟是一个复杂的生理生化过程,而乙烯是引发果实成熟的主要因素.本文简述乙烯合成过程中S-腺苷甲硫氨酸水解酶、ACC合成酶与ACC氧化酶、ACC脱氨酶基因和乙烯受体突变体的特性及克隆;同时,评述利用基因工程技术控制果实成熟的应用前景.  相似文献   

8.
The ripening of many fruits is controlled by an increase in ethylene hormone concentration. E8 is a fruit ripening protein that is related to the enzyme that catalyzes the last step in the ethylene biosynthesis pathway, 1-aminocyclopropane-1-carboxylic (ACC) oxidase. To determine the function of E8, we have transformed tomato plants with an E8 antisense gene. We show here that the antisense gene inhibits the accumulation of E8 protein during ripening. Whereas others have shown that reduction of ACC oxidase results in reduced levels of ethylene biosynthesis, we find that reduction of the related E8 protein produces the opposite effect, an increase in ethylene evolution specifically during the ripening of detached fruit. Thus, E8 has a negative effect on ethylene production in fruit.  相似文献   

9.
10.
11.
12.
Ethylene and fruit ripening   总被引:13,自引:0,他引:13  
The latest advances in our understanding of the relationship between ethylene and fruit ripening are reviewed. Considerable progress has been made in the characterisation of genes encoding the key ethylene biosynthetic enzymes, ACC synthase (ACS) and ACC oxidase (ACO) and in the isolation of genes involved in the ethylene signal transduction pathway, particularly those encoding ethylene receptors ( ETR ). These have allowed the generation of transgenic fruit with reduced ethylene production and the identification of the Nr tomato ripening mutant as an ethylene receptor mutant. Through these tools, a clearer picture of the role of ethylene in fruit ripening is now emerging. In climacteric fruit, the transition to autocatalytic ethylene production appears to result from a series of events where developmentally regulated ACO and ACS gene expression initiates a rise in ethylene production, setting in motion the activation of autocatalytic ethylene production. Differential expression of ACS and ACO gene family members is probably involved in such a transition. Finally, we discuss evidence suggesting that the NR ethylene perception and transduction pathway is specific to a defined set of genes expressed in ripening climacteric fruit and that a distinct ETR pathway regulates other ethylene-regulated genes in both immature and ripening climacteric fruit as well as in non-climacteric fruit. The emerging picture is one where both ethylene-dependent and -independent pathways coexist in both climacteric and non-climacteric fruits. Further work is needed in order to dissect the molecular events involved in individual ripening processes and to understand the regulation of the expression of both ethylene-dependent and -independent genes.  相似文献   

13.
Ethylene promotes fruit ripening, including softening. The fruit of melting-flesh peach (Prunus persica (L). Batsch) cultivar 'Akatsuki' produces increasing levels of ethylene, and the flesh firmness softens rapidly during the ripening stage. On the other hand, the fruit of stony hard peach cultivars 'Yumyeong', 'Odoroki', and 'Manami' does not soften and produces little ethylene during fruit ripening and storage. To clarify the mechanism of suppression of ethylene production in stony hard peaches, the expression patterns of four ethylene biosynthesis enzymes were examined: ACC synthases (Pp-ACS1, Pp-ACS2, and Pp-ACS3) and ACC oxidase (Pp-ACO1). In the melting-flesh cultivar 'Akatsuki', Pp-ACS1 mRNA was dramatically induced after harvesting, and a large amount of ethylene was produced. On the other hand, in stony hard peaches, Pp-ACS1 mRNA was not induced during the ripening stage, and ethylene production was inhibited. Since Pp-ACS1 mRNA was induced normally in senescing flowers, wounded leaves, and wounded immature fruit of 'Yumyeong', Pp-ACS1 was suppressed only at the ripening stage, and was not a defect in Pp-ACS1. These results indicate that the suppression of fruit softening in stony hard peach cultivars was caused by a low level of ethylene production, which depends on the suppressed expression of Pp-ACS1.  相似文献   

14.
15.
The shelf life of Japanese pear fruit is determined by its level of ethylene production. Relatively high levels of ethylene reduce storage potential and fruit quality. We have identified RFLP markers tightly linked to the locus that determines the rate of ethylene evolution in ripening fruit of the Japanese pear. The study was carried out using sequences of two types of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase genes (PPACS1 and pPPACS2) and a ACC oxidase gene (PPAOX1) as probes on 35 Japanese pear cultivars expressing different levels of ethylene (0.0∼300 μl/kg fresh weight/h) in ripening fruit. When total DNA was digested with HindIII and probed with pPPACS1, we identified a band of 2.8 kb which was specific to cultivars having very high ethylene levels (≧10 μ1/kg f.w./h) during fruit ripening. The probe pPPACS2 identified a band of 0.8 kb specific to cultivars with moderate ethylene levels (0.5 μl/kg f.w./h–10 μl/kg f.w./h) during fruit ripening. The cultivars that produce high levels of ethylene possess at least one additional copy of pPPACS1 and those producing moderate levels of ethylene have at least one additional copy of pPPACS2. These results suggest that RFLP analysis with different ACC synthase genes could be useful for predicting the maximum ethylene level during fruit ripening in Japanese pear. Received: 1 July 1998 / Accepted: 6 October 1998  相似文献   

16.
Experiments were carried out to evaluate the effect of glucose on ripening and ethylene biosynthesis in tomato fruit (Lycopersicon esculentum Mill.). Fruit at the light-red stage were vacuum infiltrated with glucose solutions post-harvest and changes in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, ACC, ACC oxidase, and ethylene production monitored over time. ACC oxidase activity was also measured in pericarp discs from the same fruits that were treated either with glucose, fructose, mannose, or galactose. While control fruit displayed a typical peak of ethylene production, fruit treated with glucose did not. Glucose appeared to exert its effect on ethylene biosynthesis by suppressing ACC oxidase activity. Fructose, mannose, and galactose did not inhibit ACC oxidase activity in tomato pericarp discs. Glucose treatment inhibited ripening-associated colour development in whole fruit. The extent of inhibition of colour development was dependent upon the concentration of glucose. These results indicate that glucose may play an important role in ethylene-associated regulation of fruit ripening.  相似文献   

17.
We investigated the function of the tomato (Lycopersicon esculentum) E8 gene. Previous experiments in which antisense suppression of E8 was used suggested that the E8 protein has a negative effect on ethylene evolution in fruit. E8 is expressed in flowers as well as in fruit, and its expression is high in anthers. We introduced a cauliflower mosaic virus 35S-E8 gene into tomato plants and obtained plants with overexpression of E8 and plants in which E8 expression was suppressed due to co-suppression. Overexpression of E8 in unripe fruit did not affect the level of ethylene evolution during fruit ripening; however, reduction of E8 protein by cosuppression did lead to elevated levels during ripening. Levels for ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), and ACC oxidase mRNA were increased approximately 7-fold in fruit of plants with reduced E8 protein. Levels of ACC synthase 2 mRNA were increased 2.5-fold, and ACC synthase 4 mRNA was not affected. Reduction of E8 protein in anthers did not affect the accumulation of ACC or of mRNAs encoding enzymes involved in ethylene biosynthesis. Our results suggest that the product of the E8 reaction participates in feedback regulation of ethylene biosynthesis during fruit ripening.  相似文献   

18.
19.
 Increased ethylene evolution accompanies seed germination of many species including Pisum sativum L., but only a little is known about the regulation of the ethylene biosynthetic pathway in different seed tissues. Biosynthesis of the direct ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), the expression of ACC oxidase (ACO), and ethylene production were investigated in the cotyledons and embryonic axis of germinating pea seeds. An early onset and sequential induction of ACC biosynthesis, accumulation of Ps-ACO1 mRNA and of ACO activity, and ethylene production were localized almost exclusively in the embryonic axis. Maximal levels of ACC, Ps-ACO1 mRNA, ACO enzyme activity and ethylene evolution were found when radicle emergence was just complete. Treatment of germinating seeds with ethylene alone or in combination with the inhibitor of ethylene action 2,5-norbornadiene showed that endogenous ethylene regulates its own biosynthesis through a positive feedback loop that enhances ACO expression. Accumulation of Ps-ACO1 mRNA and of ACO enzyme activity in the embryonic axis during the late phase of germination required ethylene, whereas Ps-ACS1 mRNA levels and overall ACC contents were not induced by ethylene treatment. Ethylene did not induce ACO in the embryonic axis during the early phase of germination. Ethylene-independent signalling pathways regulate the spatial and temporal pattern of ethylene biosynthesis, whereas the ethylene signalling pathway regulates high-level ACO expression in the embryonic axis, and thereby enhances ethylene evolution during seed germination. Received: 28 September 1999 / Accepted: 27 December 1999  相似文献   

20.

Purpose of work  

Melons have short shelf-lives due to fruit ripening caused by ethylene production. The 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase gene is essential for ethylene biosynthesis. As fruit ripening in other fruit crops can be deterred by down-regulation of ACC oxidase expression, we have carried out similar work to improve fruit quality and shelf-life of the melon Cucumis melo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号