首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 332 毫秒
1.
2.
The marine dinoflagellate Gambierdiscus toxicus produces highly lipophilic, polycyclic ether toxins that cause a seafood poisoning called ciguatera. Ciguatoxins (CTXs) and gambierol represent the two major causative agents of ciguatera intoxication, which include taste alterations (dysgeusiae). However, information on the mode of action of ciguatera toxins in taste cells is scarce. Here, we have studied the effect of synthetic CTX3C (a CTX congener) on mouse taste cells. By using the patch-clamp technique to monitor membrane ion currents, we found that CTX3C markedly affected the operation of voltage-gated Na(+) channels but was ineffective on voltage-gated K(+) channels. This result was the exact opposite of what we obtained earlier with gambierol, which inhibits K(+) channels but not Na(+) channels. Thus, CTXs and gambierol affect with high potency the operation of separate classes of voltage-gated ion channels in taste cells. Our data suggest that taste disturbances reported in ciguatera poisoning might be due to the ability of ciguatera toxins to interfere with ion channels in taste buds.  相似文献   

3.
1. Ciguatera is a disease caused by sodium channel activator toxins and results from the consumption of warm water fish contaminated by the ciguatoxin class of polyether toxins.2. Other toxins, including okadaic acid and maitotoxin, have no proven role in causing human illness associated with ciguatera.3. Ciguatera often affects only a discrete region of a reef, with flare-ups of ciguatera being both temporally and spatially unpredictable.4. The ciguatoxins likely arise through the biotransformation and acid-catalysed spiroisomerisation of gambiertoxin-4A produced by Gambierdiscus toxicus and it is unlikely that other toxic benthic dinoflagellates are involved.5. Events leading to a ciguatera outbreak are initiated by environmental and genetic factors that favour the proliferation of gambiertoxins, with an apparent role for anthropomorphic effects; however, the precise factors involved are yet to be determined.6. The gambiertoxins and/or ciguatoxins are transferred from the benthos to herbivorous species (fish, invertebrates etc) and then to carnivorous fish via marine food chains.7. Factors influencing the concentration of ciguatoxins that accumulate in fish include the rate of dietary intake, the efficiency of assimilation, the degree and nature of any toxin biotransformation, the rate of depuration, and the rate of growth of fish.  相似文献   

4.
This review describes the ionic mechanisms involved in the nodal swelling of frog myelinated axons caused by specific marine neurotoxins (ciguatoxins, brevetoxins, Conus consors toxin and equinatoxin-II), analysed using confocal laser scanning microscopy. We have focussed on toxins that either target neuronal voltage-dependent Na+ channels, or that form cation-selective pores and indirectly affect the functioning of the Na(+)-Ca(++)exchanger.  相似文献   

5.
Since highly concentrated NaCl is suspected to enter into the heart of the seawater eels, effects of high NaCl concentration on the atrial beating was examined, and plasma ion concentrations and osmolality were measured simultaneously in the blood collected from the bulbus arteriosus and from the caudal vessels. When 100 mmole l(-1) NaCl was added to the incubation medium, atrial contraction was enhanced significantly. Similar enhancement in the atrial contractility was also observed after addition of NaCH3SO4 (100 mmole l(-1)) or Tris HCl (100 mmole l(-1)), indicating that Na(+) and Cl(-) are not indispensable for the positive inotropic effect. Furthermore, an addition of sucrose (200 mmole l(-1)) also enhanced the contraction. Inversely, hypoosmotic solution reduced the atrial contraction. These results indicate that the eel atrium is sensitive to environmental osmolarity. The eel atrium responses even at 20 mmole l(-1) sucrose. Such an inotropic effect of sucrose was not depressed after blocking adrenoceptor with betaxolol, a beta1-adrenoceptor antagonist, indicating that the effect is not due to adrenaline release from nerve endings. Plasma osmolality and Na(+) concentration were higher in bulbus arteriosus than in caudal vessels, indicating that the eel heart is really exposed to hyperosmotic blood in sea water. The osmotically enhanced atrial contraction may increase the cardiac outflow into the gill. Such property of the atrium would have clear advantages for seawater teleosts, since the concentrated NaCl from the esophagus can be excreted immediately through the gill, without circulating their body, and blood homeostasis can be maintained efficiently.  相似文献   

6.
Some dinoflagellates with benthic habits are related to ciguatera intoxication by fish consumption, especially in tropical areas. In the Mexican Caribbean, ciguatera is relatively common, but only one paper seems to have been published on the subject, and there are very few publicactions on phytoplankton and benthic microalgae. Material collected along the coast of the State of Quintana Roo with phytoplankton net (54 mm) and directly from sediment and epiphytes of macroscopic plants, was searched for toxic and other associated dinoflagellates. Samples were studied by light and scanning electron microscopy. Morphological characters were useful for species identification, but eventually physiological, ecological and molecular characters could also be used. Three species of Gambierdiscus, related to the production of ciguatera toxins, were identified: G. belizeanus, G. toxicus and G. yasumotoi. They are distributed in shallow coastal areas, including coastal lagoons.  相似文献   

7.

Dinoflagellates of the genera Gambierdiscus and Fukuyoa are known to produce several bioactive compounds including the potent neurotoxic ciguatoxins (CTXs) which are able to accumulate in fish and through the food web. When humans ingest fish contaminated with CTXs, it can result in an intoxication named ciguatera. Although not all the currently recognized species are able to produce toxins, G. australes and G. excentricus have been highlighted to be the most abundant and toxic among the species present in the Atlantic. Even though the genera Gambierdiscus and Fukuyoa are endemic to tropical areas, recently their presence was recorded in subtropical and temperate regions. In this work, the development of three molecular assays for the detection of the Gambierdiscus and Fukuyoa genera and for G. australes and G. excentricus species, based on the combination of recombinase polymerase amplification with detection via hybridization, is successfully described. Furthermore, a remarkable limit of detection of a single cell was achieved. Additionally, six different species have been used to check the ability of each primer set to give an amplified product, even in presence of potentially interfering non-target DNAs. Therefore, these developments provide a rapid and cost-effective strategy for detection of both genera and two of the most toxic species, which will undoubtedly contribute to reliable screening of samples and ciguatera risk assessment, guaranteeing seafood safety and protection of human health.

  相似文献   

8.
The goal of the present review is to report information concerning cardiac innervation or more precisely to approach the modulation of cardiac electrical and mechanical activity by parasympathetic innervation. Acetylcholine (ACh) release by nerve endings from the vagus nerve hyperpolarizes the membrane, shortens action potential (AP) duration and has a negative inotropic effect on cardiac muscle. Toxins are usefull tools in the study of membrane signals. The Caribbean ciguatoxin (C-CTX-1) has a muscarinic effect on frog atrial fibres. The toxin evokes the release of ACh from motoneuron nerve terminals innervating this tissue which allows us to propose a model, similar to the one of the neuromuscular junction (nmj), to describe the events occurring during the triggering and release of ACh. Trachynilysin (TLY) is a proteic toxin which causes an influx of Ca2+ into the cells and releases ACh from nmj synaptic vesicles. TLY has a muscarinic effect on atrial fibres which is explicated in the release of neurotransmitter from the nerve endings generated by the TLY-induced Ca2+ influx. It is known that ACh release from nmj is known to be due to exocytosis of synaptic vesicles via the activation of a proteic complex blocked by botulinum toxins. One of these proteins SNAP-25 is the target of type A botulinum toxin (BoNT/A). The study of hearts isolated from BoNT/A poisoned frogs show that atrial AP is lengthened and reveals the presence of SNAP-25 in nerve endings of this tissue. Moreover, the electrical activity of ventricular muscle is markedly altered; in BoNT/A treated frog, an important outward current activated by internal Ca2+ develops. ACh released from nerve terminals binds to a G protein coupled membrane receptor and activates a K+ channel and other effectors. Five subtypes of muscarinic receptors have been cloned from different tissue (M1, M2, M3, M4) subtypes have been identified in cardiac tissues throughout many species. These receptors coupled with different G-proteins activate different effectors. M1 receptors modulate the cardiac plateau and therefore the magnitude of the peak contraction. M2 receptors are mainly involved in the repolarization phase of the AP and modulate the duration of the peak contraction. The roles of M3 and M4 are not yet clearly defined; however, they may activate K+ currents. In conclusion, ACh releases from parasympathetic nerve endings which innervate cardiac cells follows to similar events (Ca2+ influx; presence of a SNAP-25 protein) to those which produce ACh release from nmj, stimulates different G proteins coupled muscarinic receptors, and activates different effectors involved in the modulation of cardiac electrical and mechanical activity.  相似文献   

9.
Cui XL  Chen HZ  Wu DM  Wu BW 《生理学报》2004,56(6):713-716
本文旨在研究氨甲酰胆碱(carbachol, CCh)对豚鼠心肌的正性变力性机制。用Axon200A膜片钳放大器观察CCh 对电压钳制下的豚鼠心肌细胞L-型钙电流(ICa)和钠钙交换电流(INa/Ca)的效应。结果表明, CCh(100 μmol/L)分别使正向INa/Ca从对照组的(1.2 ± 0.1) pA/pF 增加到(2.0 ± 0.3) pA/pF,使反向 INa/Ca 从对照组的(1.3 ± 0.5) pA/pF 增加到(2.1 ± 0.8) pA/pF (P<0.01)。CCh对ICa无影响。CCh 对INa/Ca的激动作用可被阿托品和methoctramine所阻断。以上结果提示, CCh 对豚鼠心脏的正性变力作用是通过激动了钠钙交换,而且是 M2 毒蕈碱受体所介导的。  相似文献   

10.
Biological significance of peptides from Anemonia sulcata   总被引:2,自引:0,他引:2  
Three polypeptide toxins have been isolated from the sea anemone Anemonia sulcata and characterized: ATX I (mol wt 4702), ATX II (mol wt 4935), and ATX II (mol wt 2678). In different crustacean and amphibian preparations the toxins act primarily on the fast sodium channels, which leads to delayed inactivation of fast sodium permeability and thus increases the duration of the action potential. When applied to crustacean preparations the three toxins are nearly equally effective. However, in a comparison of the biological activities of ATX I and ATX II in myelinated nerves of the frog, ATX I seems to be inactive. It is suggested that cardiotoxicity is the primary cause of death in mammals, ATX II being more toxic than ATX I. At very low concentrations ATX II induces a pronounced positive inotropic effect in different mammalian heart preparations, which is accompanied by a prolongation of the action potential. It is suggested that the positive inotropic effect of ATX II is caused by a delayed inactivation of the fast sodium current, which leads to an increase of the sodium transient and of the pump activity of Na+,K+-ATPase. In contrast to the presynaptic mode of action on crustacean and frog nerve-muscle preparations, ATX II has a direct effect on mammalian skeletal muscle fiber membranes and induces a sodium-dependent increase of twitch responses and duration of the action potential.  相似文献   

11.
Developmental changes in functions of myocardial sodium channels were examined from inotropic effects of several neurotoxins in ventricular muscle preparations obtained from prenatal (20-22 day gestation) or adult (3-4 months old) rat hearts. Tetrodotoxin caused a negative inotropic effect in low concentrations and a loss of muscle responsiveness to electrical stimulation in high concentrations in preparations obtained from either prenatal or adult rat heart. The tetrodotoxin concentration that caused a 50% decrease in developed tension was higher in prenatal rats. Anemonia sulcata toxin, Androctonus australis toxin, veratridine, and Centruroides sculpturatus toxin all produced positive inotropic effects in adult rat heart. The effects were largest with A. sulcata and A. australis toxins, intermediate with veratridine, and smallest with C. sculpturatus toxin. Prenatal heart required higher concentrations of either veratridine, or A. sulcata or A. australis toxins to produce comparable positive inotropic effects. With C. sculpturatus toxin, no significant positive inotropic effect was observed in prenatal heart muscle preparations. These results indicate that cardiac sodium channels undergo significant functional changes during development and that negative and positive inotropic effects of neurotoxins resulting from inhibition and enhancement of fast Na+ channels reflect developmental changes in the cardiac sodium channels.  相似文献   

12.
This review focuses on the neurobiological actions of ciguatoxins and brevetoxins which are phycotoxins produced respectively by the dinoflagellates Gambierdiscus toxicus and Ptychodiscus brevis. These actions are illustrated in particular by the effects of the toxins on myelinated nerve fibres and on skeletal neuromuscular junctions of vertebrates. Ciguatoxins and brevetoxins, through different vectors, are responsible for human intoxications characterized mainly by neurological disturbances. The molecular target of these families of lipid-soluble cyclic polyethers is the voltage-gated sodium channel, a fundamental transmembrane protein involved in cellular excitability. The different toxins share a common binding site (the receptor-site 5) located on the alpha sub-unit of this neuronal transmembrane protein. Electrophysiological studies of the mode of action of ciguatoxins and brevetoxins identify these toxins as specific sodium channel activators. Indeed, during the action of these phycotoxins, sodium channels remain permanently opened, at the resting membrane potential, which produces a continuous entry of sodium ions in most excitable cells. Such a sodium entry has various consequences on sodium-dependent physiological mechanisms, consisting in a membrane depolarization which, in turn, causes spontaneous and/or repetitive action potential discharges and thereby increases membrane excitability. These neuronal discharges may be transient or continuous according to the preparation and the toxin tested. The increase in membrane excitability during the action of ciguatoxins and brevetoxins is responsible for the different effects exerted by these toxins on various chemical synapses and secretory cells. Another consequence of the continuous entry of sodium ions into cells was revealed using confocal laser scanning microscopy and vital staining of plasma membranes with the fluorescent dye FM1-43. These techniques made feasible the dynamic study of morphological alterations produced by ciguatoxins and brevetoxins on various cellular preparations in situ. Thus, it has been possible to bring to the fore that these phycotoxins cause a marked increase in the volume of nodes of Ranvier of myelinated nerve fibres, motor nerve terminals innervating skeletal muscle and perisynaptic non-myelinating Schwann cell somata. This increase could be reversed by hyperosmotic external solutions and completely prevented by the blockade of voltage-gated sodium channels. The mechanisms involved in the increase in cellular volume, during the action of ciguatoxins and brevetoxins, are discussed.  相似文献   

13.
The effect of the Thai popular medicine Ya-hom on cardiovascular function was studied in isolated rat aortic ring and atrium by comparison with norepinephrine (NE). Water extraction of Ya-hom at concentrations of 0.83, 1.67, 8.33 and 16.67 mg/ml stimulated aortic ring contraction dose-dependently. The maximum contraction, at 16.67 mg/ml, was about 14% that of NE. This stimulatory effect of Ya-hom was inhibited partially by phentolamine, which indicated that the effect of Ya-hom was partially dependent on the alpha receptor, similar to NE. Administration of Ya-hom with NR decreased the force of aortic ring contraction as compared to the effect of NE alone, indicating that Ya-hom may have a partial alpha-agonist activity. Ya-hom at concentrations of 1.67, 8.33 and 16.67 mg/ml showed a dose-dependent, positive inotropic and negative chronotropic effects. Ya-hom increased the force of isolated atrial contraction with a slow onset and prolonged action. In contrast to norephinephrine, which acted on beta1 receptor, causing positive inotropic and chronotropic effects, propranolol did not alter the effect of Ya-hom on the atrial contraction. This shows that the action of Ya-hom on atrial contraction does not involve beta receptor.  相似文献   

14.
This study investigated the pattern of autonomic innervation of the heart of the fat-tailed dunnart (Sminthopsis crassicaudata) using isolated cardiac preparations. While the pattern of autonomic innervation of the atria was consistent with that found in other mammals, the ventricles displayed an unusual pattern of mammalian cardiac innervation. Transmural stimulation of the intramural nerves of isolated right ventricular preparations caused a decrease in the force of contraction of 46.8+/-3.2% followed by a rebound increase in the force of contraction beyond basal levels of 40.9+/-6.9%. These responses could be blocked independently by the application of the muscarinic receptor antagonist hyoscine and beta-adrenoreceptor antagonist propranolol respectively and could also be mimicked by the application of the agonists acetylcholine (Ach) and noradrenaline (NA). These findings indicated the presence of a functional cholinergic innervation of the ventricles that was capable of reducing the force of contraction below basal levels. This pattern of innervation has only been found previously in one other mammal, the bent-winged bat (Miniopterus schreibersii). Given that both of these species are heterotherms, it is possible that such a pattern of innervation may relate to the control of cardiac output during torpor. These findings are the first that demonstrate the homogeneity of a physiological control mechanism in a so-called 'shallow, daily torpidator' (S. crassicaudata) and a 'deep hibernator' (M. schreibersii) that is absent in mammalian homeotherms. These findings are consistent with recent work suggesting that there may be little difference between these types of heterothermy.  相似文献   

15.
Studies were carried out to study the effect of endocrine changes on rat cardiac performance, biochemistry, and responses to drugs. Hyperthyroidism increased contractility in rat hearts and enhanced the phosphorylase response to catecholamine. The inotropic response may be due to an increase in cardiac mass while the enzyme changes may be due to several factors. Hypothyroidism decreased force of contraction, enhanced alpha-adrenergic inotropic and chronotropic responses, and decreased beta-adrenergic responses in isolated atrial preparations. An interaction between cyclic AMP and cyclic GMP is suggested as a possible explanation. Diabetes induced by alloxan or streptozotocin produced a decrease in cardiac performance after 42 days which was correlated with a decrease in sarcoplasmic reticulum (SR) Ca2+ uptake. Insulin treatment reversed or prevented both SR and functional changes; other treatments were not as successful. Responses to cardiotonic drugs were altered by the diabetic state. The phosphorylase response to isoproterenol was enhanced while the inotropic response was not affected. An initial subsensitivity to carbachol at 30-100 days of diabetes subsequently converted to a supersensitivity to the muscarinic agent. Ouabain responses were decreased in atrial and papillary preparations from diabetic animals. Studies are continuing to elucidate the mechanisms involved in the altered pharmacological responses seen in hearts from diabetic animals.  相似文献   

16.
Human consumption of over 400 species of tropical fish containing polyether toxins (e.g. ciguatoxins, maitotoxins) causes ciguatera fish poisoning. The Caribbean barracuda (Sphyraena barracuda) is one of the most potent ciguatoxic fish. The objective of this study was to determine whether toxicity of 14 barracuda livers was correlated with lipid peroxidation. A significant correlation (p = 0.015, Pearson’s correlation) between lipid peroxidation and toxicity of barracuda liver was found. Because iron and copper are well-known catalysts of hydroxyl radical production and lipid peroxidation in biological systems, the correlation between the concentrations of these metals in barracuda liver and lipid peroxidation and toxicity was also investigated. Cadmium was significantly correlated (p = 0.014) with the toxicity of barracuda livers. This study provides the first data concerning the concentration of iron, copper, and cadmium in the liver of the Caribbean barracuda. Of the three metals studied in barracuda liver, iron was the most abundant, followed by copper and cadmium. Lipid peroxidation was highly variable and detected in five (36%) of the liver samples. Lipid peroxidation was not statistically significantly correlated (p > 0.05) with concentrations of iron, copper, and cadmium in barracuda liver. Collectively, these findings provide additional evidence that lipid peroxidation can be a mechanistic component of ciguatera toxicity in the Caribbean barracuda.  相似文献   

17.
The inotropic effect of Krebs-Henseleit solution rendered hyperosmotic by addition of NaCl or sucrose (increments of 50, 100, 150 and 200 mOsm/l) on myocardial contractile activity was studied in rat isolated left atria paced at 4, 16 and 64 stim/min. The solutions did not affect the peak tension (Tp) at 4 stim/min, whereas sucrose caused a dose-dependent increase in Tp at 16 stim/min and NaCl decreased Tp at 64 stim/min. The total time duration of the contraction was increased in a dose-dependent fashion by both solutes, but the effect of NaCl was attenuated at 64 stim/min. The results showed that, in the isolated rat atrial tissue exposed to hyperosmotic NaCl solutions, the negative inotropic effect of increased Na+ concentration overcomes the positive influence of hyperosmolality only at higher pacing rates (about 1 Hz).  相似文献   

18.
The effects of adenosine, adenosine 5'-triphosphate (ATP), a slowly degradable ATP analogue beta,gamma-methylene ATP (APPCP) and a degradation resistant ATP analogue alpha,beta-methylene ATP (APCPP) were examined on the turtle heart. Adenosine, ATP, APPCP and APCPP had no effect on the rate or force of contraction of either the atrium or ventricle. The effects of acetylcholine and noradrenaline were also examined on the turtle heart. Acetylcholine decreased the force and rate of contraction of turtle atria in a concentration-dependent manner. Noradrenaline increased the rate of contraction but caused a slight decrease in the force of contraction of the atrium. Neither acetylcholine nor noradrenaline produced an inotropic effect on the ventricle.  相似文献   

19.
Isolated perfused rat hearts were used to compare the effects of the synthetic neuropeptide Y (NPY) and 4-norleucine-NPY on cardiac function. Each peptide exhibited both negative inotropic and chronotropic effects, and also caused coronary vasoconstriction leading to a reduction in coronary flow. A comparison of the IC50 values from dose-response curves using 10(-14) to 10(-7) M peptides (IC50 is the peptide concentration that produced a 50% decrease of the maximal effect) indicated that NPY was more potent as inhibitor of contractility and less potently inhibited coronary flow and heart rate, whereas 4-norleucine-NPY had more inhibitory influence on coronary flow and heart rate and less on cardiac contractility. This difference in potencies suggests that the inhibitory effects of NPY on contractility, coronary flow and heart rate may be independent of each other. Since NPY also decreased the contractile force of isolated left atrial and right ventricular strips of the rat heart, the coronary flow decrease cannot be the cause of the negative inotropy of isolated heart. Pretreatment of atrial and ventricular strips with NPY did not influence the positive inotropic effect produced by the cardiac glycoside ouabain indicating that sarcolemmal Na+, K+-ATPase was not involved in the inhibitory inotropic effect of NPY. Further studies towards elucidating the mechanism of the negative inotropy of cardiac muscles using isolated heart mitochondria revealed that NPY uncoupled oxidative phosphorylation and blocked mitochondrial calcium uptake; the former event fosters negative inotropy. Since these effects on mitochondria occurred at concentrations 100-fold higher than those required for negative inotropy, the two effects of NPY may not be related.  相似文献   

20.
Ciguatera is a seafood intoxication that results from ingestion of reef fish contaminated with ciguatoxins at levels orally toxic for humans. Precursors of those toxins, gambiertoxins, are produced by benthic dinoflagellates (genus Gambierdiscus), and then accumulated and biotransformed by herbivorous and carnivorous fishes into ciguatoxins, more toxic for humans. In the absence of specific treatment, that disease remains a health problem with otherwise adverse socio-economic impacts. Thus a cost-effective means of detecting ciguatoxins in fish has long been searched for. Many assays have been developed, including in vivo, in vitro, chemical or immunochemical approaches. This review focuses on some biological methods, from the well-standardised mouse assay to the specific radio-labelled ligand binding assay that is performed on rat brain synaptosomes. In addition to the mouse, the chick and the mongoose were still recently used, in particular for preliminary tests before ciguatoxin extraction from fish, since assays in these animals can directly assay the whole flesh. In contrast, various other in vivo methods, such as the kitten, mosquito and diptera larvae assays, were abandoned despite their interesting results. Finally, the mouse neuroblastoma and rat brain synaptosome assays, carried out in vitro as alternative approaches to animal-using assays, are highly sensitive and much more specific than the in vivo methods to detect ciguatoxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号