首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diatoms are one of the key phytoplankton groups in the ocean, forming vast oceanic blooms and playing a significant part in global primary production. To shed light on the role of redox metabolism in diatom's acclimation to light–dark transition and its interplay with cell fate regulation, we generated transgenic lines of the diatom Thalassiosira pseudonana that express the redox‐sensitive green fluorescent protein targeted to various subcellular organelles. We detected organelle‐specific redox patterns in response to oxidative stress, indicating compartmentalized antioxidant capacities. Monitoring the GSH redox potential (EGSH) in the chloroplast over diurnal cycles revealed distinct rhythmic patterns. Intriguingly, in the dark, cells exhibited reduced basal chloroplast EGSH but higher sensitivity to oxidative stress than cells in the light. This dark‐dependent sensitivity to oxidative stress was a result of a depleted pool of reduced glutathione which accumulated during the light period. Interestingly, reduction in the chloroplast EGSH was observed in the light phase prior to the transition to darkness, suggesting an anticipatory phase. Rapid chloroplast EGSH re‐oxidation was observed upon re‐illumination, signifying an induction of an oxidative signaling during transition to light that may regulate downstream metabolic processes. Since light–dark transitions can dictate metabolic capabilities and susceptibility to a range of environmental stress conditions, deepening our understanding of the molecular components mediating the light‐dependent redox signals may provide novel insights into cell fate regulation and its impact on oceanic bloom successions.  相似文献   

2.
ROS and redox signalling in the response of plants to abiotic stress   总被引:2,自引:0,他引:2  
The redox state of the chloroplast and mitochondria, the two main powerhouses of photosynthesizing eukaryotes, is maintained by a delicate balance between energy production and consumption, and affected by the need to avoid increased production of reactive oxygen species (ROS). These demands are especially critical during exposure to extreme environmental conditions, such as high light (HL) intensity, heat, drought or a combination of different environmental stresses. Under these conditions, ROS and redox cues, generated in the chloroplast and mitochondria, are essential for maintaining normal energy and metabolic fluxes, optimizing different cell functions, activating acclimation responses through retrograde signalling, and controlling whole-plant systemic signalling pathways. Regulation of the multiple redox and ROS signals in plants requires a high degree of coordination and balance between signalling and metabolic pathways in different cellular compartments. In this review, we provide an update on ROS and redox signalling in the context of abiotic stress responses, while addressing their role in retrograde regulation, systemic acquired acclimation and cellular coordination in plants.  相似文献   

3.
The biogenesis and function of chloroplast are controlled both by anterograde mechanisms involving nuclear-encoded proteins targeted to chloroplast and by retrograde signals from plastid to nucleus contributing to regulation of nuclear gene expression. A number of experimental evidences support the implication of chlorophyll biosynthesis intermediates on the retrograde signaling, albeit an earlier-postulated direct link between accumulation of chlorophyll intermediates and changes in nuclear gene expression has recently been challenged. By characterization of Arabidopsis mutants lacking the chloroplast localized NADPH-thioredoxin reductase (NTRC) we have recently proposed that imbalanced activity of chlorophyll biosynthesis in developing cells modifies the chloroplast signals leading to alterations in nuclear gene expression. These signals appear to initiate from temporal perturbations in the flux through the pathway from protoporphyrin to protochlorophyllide rather than from the accumulation of a single intermediate of the tetrapyr-role pathway.Key words: chloroplast biogenesis, NADPH-thioredoxin reductase, porphyrins, ROS, signaling, tetrapyrrole, thioredoxinOrchestrated regulation of gene expression in the nucleus and plastids is crucial for the proper biogenesis of the organelle during the development and for the acclimation of plants to environmental cues. Multiple potential candidates for initiating plastidial signals have been recognized, including intermediates of the tetrapyrrole biosynthetic pathway, redox state of chloroplast electron transfer components and reactive oxygen species (ROS). These multiple signaling pathways are likely to interact with each others, resulting in a complex signaling network between plastid and nucleus (reviewed in ref. 1).  相似文献   

4.
Pathways of plastid-to-nucleus signaling   总被引:8,自引:0,他引:8  
  相似文献   

5.
Protein disulfide isomerase in redox cell signaling and homeostasis   总被引:1,自引:0,他引:1  
Thiol proteins may potentially act as redox signaling adaptor proteins, adjusting reactive oxygen species intermediates to specific signals and redox signals to cell homeostasis. In this review, we discuss redox effects of protein disulfide isomerase (PDI), a thioredoxin superfamily oxidoreductase from the endoplasmic reticulum (ER). Abundantly expressed PDI displays ubiquity, interactions with redox and nonredox proteins, versatile effects, and several posttranslational modifications. The PDI family contains >20 members with at least some apparent complementary actions. PDI has oxidoreductase, isomerase, and chaperone effects, the last not directly dependent on its thiols. PDI is a converging hub for pathways of disulfide bond introduction into ER-processed proteins, via hydrogen peroxide-generating mechanisms involving the oxidase Ero1α, as well as hydrogen peroxide-consuming reactions involving peroxiredoxin IV and the novel peroxidases Gpx7/8. PDI is a candidate pathway for coupling ER stress to oxidant generation. Emerging information suggests a convergence between PDI and Nox family NADPH oxidases. PDI silencing prevents Nox responses to angiotensin II and inhibits Akt phosphorylation in vascular cells and parasite phagocytosis in macrophages. PDI overexpression spontaneously enhances Nox activation and expression. In neutrophils, PDI redox-dependently associates with p47phox and supports the respiratory burst. At the cell surface, PDI exerts transnitrosation, thiol reductase, and apparent isomerase activities toward targets including adhesion and matrix proteins and proteases. Such effects mediate redox-dependent adhesion, coagulation/thrombosis, immune functions, and virus internalization. The route of PDI externalization remains elusive. Such multiple redox effects of PDI may contribute to its conspicuous expression and functional role in disease, rendering PDI family members putative redox cell signaling adaptors.  相似文献   

6.
A basic requirement of all photosynthetic organisms is a balance between overall energy supply through temperature-independent photochemical reactions and energy consumption through the temperature-dependent biochemical reactions of photosynthetic electron transport and contiguous metabolic pathways. Since the turnover of photosystem II (PSII) reaction centers is a limiting step in the conversion of light energy into ATP and NADPH, any energy imbalance may be sensed through modulation of the redox state of PSII. This can be estimated in vivo by chlorophyll a fluorescence as changes in the redox state of PSII, or photosystem II excitation pressure, which reflects changes in the redox poise of intersystem electron transport carriers. Through comparisons of photosynthetic adjustment, we show that growth at low temperature mimics growth at high light. We conclude that terrestrial plants, green algae and cyanobacteria do not respond to changes in growth temperature or growth irradiance per se, but rather, respond to changes in the redox state of intersystem electron transport as reflected by changes in PSII excitation pressure, We suggest that this chloroplastic redox sensing mechanism may be an important component for sensing abiotic stresses in general. Thus, in addition to its role in energy transduction, the chloroplast may also be considered a primary sensor of environmental change through a redox sensing/signalling mechanism that acts synergistically with other signal transduction pathways to elicit the appropriate molecular and physiological responses.  相似文献   

7.
Spectroscopic studies on photosynthetic electron transfer generally are based upon the monitoring of dark to light changes in the electron transfer chain. These studies, which focus on the light reactions of photosynthesis, also indirectly provide information on the redox or metabolic state of the chloroplast in the dark. Here, using the unicellular microalga Chlamydomonas reinhardtii, we study the impact of heterotrophic/mixotrophic acetate feeding on chloroplast carbon metabolism by using the spectrophotometric detection of P700(+), the photooxidized primary electron donor of photosystem I. We show that, when photosynthetic linear and cyclic electron flows are blocked (DCMU inhibiting PSII and methylviologen accepting electrons from PSI), the post-illumination reduction kinetics of P700(+) directly reflect the dark metabolic production of reductants (mainly NAD(P)H) in the stroma of chloroplasts. Such results can be correlated to other metabolic studies: in the absence of acetate, for example, the P700(+) reduction rate matches the rate of starch breakdown reported previously, confirming the chloroplast localization of the upstream steps of the glycolytic pathway in Chlamydomonas. Furthermore, the question of the interplay between photosynthetic and non-photosynthetic carbon metabolism can be addressed. We show that cyclic electron flow around photosystem I is twice as fast in a starchless mutant fed with acetate than it is in the WT, and we relate how changes in the flux of electrons from carbohydrate metabolism modulate the redox poise of the plastoquinone pool in the dark through chlororespiration.  相似文献   

8.
A food's-eye view of the transition from basal metazoans to bilaterians   总被引:2,自引:0,他引:2  
Living things invariably consist of some kind of compartmentalizedredox chemistry. Signaling pathways mediated by oxidation andreduction thus derive from the nature of life itself. The roleof such redox or metabolic signaling broadened with major transitionsin the history of life. Prokaryotes often use redox signalsto deploy one or more variant electron carriers and associatedenzymes to better utilize environmental energy sources. Eukaryotestranscend the strong surface-to-volume constraints inherentin prokaryotic cells by moving chemiosmotic membranes internally.As a consequence, eukaryotic redox signaling is frequently betweenthese organelle membranes and the nucleus, thus potentiallyinvolving levels-of-selection synergies and antagonisms. Gradientsof oxygen and substrate in simple multicellular organisms similarlyassociated metabolic signaling with levels of selection, nowat the level of the cell and the organism. By allowing sequestrationof large amounts of food, the evolution of the animal mouthwas a pivotal event in metabolic signaling, leading to "multicellular"redox regulation. Because concentrated food resources may bepatchy in time and space, long-lived sedentary animals withmouths employ such metabolic signaling and phenotypic plasticityin ways that adapt them to the changing availability of food.Alternatively, if the mouth is coupled to a battery of sensoryequipment, the organism can actively seek out and sequesterpatches of food. In these early bilaterians, competition forfood resources may have favored rapid development with littlesubsequent plasticity and metabolic signaling. With rapid dispersaland colonization, such "assembly-line" animals could effectivelycompete for patchy resources. Limiting metabolic signaling,however, resulted in a cascade of seemingly unrelated changes.These changes derive from the effectiveness of metabolic signalingin policing variation at the cellular level. If the signalsan organism uses to control cellular replication are the sameas the signals a cell uses to control its own metabolism, thencells that ignore these signals and carry out selfish replicationwill pay a fitness cost in terms of inefficient metabolism.Bilaterians with limited metabolic signaling thus require othermechanisms to police cell-level variation. Bilaterian featuressuch as restricted somatic cell potency, a sequestered germline, and determinate growth should be viewed in this context.Bilaterian senescence evolved as a by-product of restrictedpotency of somatic cells, itself a mechanism of cell policingrequired by limited metabolic signaling.  相似文献   

9.
Photosynthesis is a highly robust process allowing for rapid adjustment to changing environmental conditions. The efficient acclimation depends on balanced redox metabolism and control of reactive oxygen species release which triggers signaling cascades and potentially detrimental oxidation reactions. Thiol peroxidases of the peroxiredoxin and glutathione peroxidase type, and ascorbate peroxidases are the main peroxide detoxifying enzymes of the chloroplast. They use different electron donors and are linked to distinct redox networks. In addition, the peroxiredoxins serve functions in redox regulation and retrograde signaling. The complexity of plastid peroxidases is discussed in context of suborganellar localization, substrate preference, metabolic coupling, protein abundance, activity regulation, interactions, signaling functions, and the conditional requirement for high antioxidant capacity. Thus the review provides an opinion on the advantage of linking detoxification of peroxides to different enzymatic systems and implementing mechanisms for their inactivation to enforce signal propagation within and from the chloroplast.  相似文献   

10.
Cyanobacteria perform oxygenic photosynthesis, which makes them unique among the prokaryotes, and this feature together with their abundance and worldwide distribution renders them a central ecological role. Cyanobacteria and chloroplasts of plants and algae are believed to share a common ancestor and the modern chloroplast would thus be the remnant of an endosymbiosis between a eukaryotic cell and an ancestral oxygenic photosynthetic prokaryote. Chloroplast metabolic processes are coordinated with those of the other cellular compartments and are strictly controlled by means of regulatory systems that commonly involve redox reactions. Disulphide/dithiol exchange catalysed by thioredoxin is a fundamental example of such regulation and represents the molecular mechanism for light-dependent redox control of an ever-increasing number of chloroplast enzymatic activities. In contrast to chloroplast thioredoxins, the functions of the cyanobacterial thioredoxins have long remained elusive, despite their common origin. The sequenced genomes of several cyanobacterial species together with novel experimental approaches involving proteomics have provided new tools for re-examining the roles of the thioredoxin systems in these organisms. Thus, each cyanobacterial genome encodes between one and eight thioredoxins and all components necessary for the reduction of thioredoxins. Screening for thioredoxin target proteins in cyanobacteria indicates that assimilation and storage of nutrients, as well as some central metabolic pathways, are regulated by mechanisms involving disulphide/dithiol exchange, which could be catalysed by thioredoxins or related thiol-containing proteins.  相似文献   

11.
Reactive oxygen species (ROS) are produced in plants as byproducts during many metabolic reactions, such as photosynthesis and respiration. Oxidative stress occurs when there is a serious imbalance between the production of ROS and antioxidant defense. Generation of ROS causes rapid cell damage by triggering a chain reaction. Cells have evolved an elaborate system of enzymatic and nonenzymatic antioxidants which help to scavenge these indigenously generated ROS. Various enzymes involved in ROS-scavenging have been manipulated, over expressed or downregulated to add to the present knowledge and understanding the role of the antioxidant systems. The present article reviews the manipulation of enzymatic and nonenzymatic antioxidants in plants to enhance the environmental stress tolerance and also throws light on ROS and redox signaling, calcium signaling, and ABA signaling.  相似文献   

12.
13.
During the evolution of plants, chloroplasts have lost the exclusive genetic control over redox regulation and antioxidant gene expression. Together with many other genes, all genes encoding antioxidant enzymes and enzymes involved in the biosynthesis of low molecular weight antioxidants were transferred to the nucleus. On the other hand, photosynthesis bears a high risk for photo-oxidative damage. Concomitantly, an intricate network for mutual regulation by anthero- and retrograde signals has emerged to co-ordinate the activities of the different genetic and metabolic compartments. A major focus of recent research in chloroplast regulation addressed the mechanisms of redox sensing and signal transmission, the identification of regulatory targets, and the understanding of adaptation mechanisms. In addition to redox signals communicated through signalling cascades also used in pathogen and wounding responses, specific chloroplast signals control nuclear gene expression. Signalling pathways are triggered by the redox state of the plastoquinone pool, the thioredoxin system, and the acceptor availability at photosystem I, in addition to control by oxolipins, tetrapyrroles, carbohydrates, and abscisic acid. The signalling function is discussed in the context of regulatory circuitries that control the expression of antioxidant enzymes and redox modulators, demonstrating the principal role of chloroplasts as the source and target of redox regulation.  相似文献   

14.
Redox regulation based on dithiol-disulphide interchange is an essential component of the control of chloroplast metabolism. In contrast to heterotrophic organisms, and non-photosynthetic plant tissues, chloroplast redox regulation relies on ferredoxin (Fd) reduced by the photosynthetic electron transport chain, thus being highly dependent on light. The finding of the NADPH-dependent thioredoxin reductase C (NTRC), a chloroplast-localized NTR with a joint thioredoxin domain, showed that NADPH is also used as source of reducing power for chloroplast redox homeostasis. Recently we have found that NTRC is also in plastids of non-photosynthetic tissues. Because these non-green plastids lack photochemical reactions, their redox homeostasis depends exclusively on NADPH produced from sugars and, thus, NTRC may play an essential role maintaining the redox homeostasis in these plastids. The fact that redox regulation occurs in any type of plastids raises the possibility that the functions of chloroplasts and non-green plastids, such as amyloplasts, are integrated to harmonize the growth of the different organs of the plant. To address this question, we generated Arabidopsis plants the redox homeostasis of which is recovered exclusively in chloroplasts, by leaf-specific expression of NTRC in the ntrc mutant, or exclusively in amyloplasts, by root-specific expression of NTRC. The analysis of these plants suggests that chloroplasts exert a pivotal role on plant growth, as expected because chloroplasts constitute the major source of nutrients and energy, derived from photosynthesis, for growth of heterotrophic tissues. However, NTRC deficiency causes impairment of auxin synthesis and lateral root formation. Interestingly, recovery of redox homeostasis of chloroplasts, but not of amyloplasts, was sufficient to restore wild type levels of lateral roots, showing the important signaling function of chloroplasts for the development of heterotrophic organs.  相似文献   

15.
16.
Ruckle ME  DeMarco SM  Larkin RM 《The Plant cell》2007,19(12):3944-3960
Plastid signals are among the most potent regulators of genes that encode proteins active in photosynthesis. Plastid signals help coordinate the expression of the nuclear and chloroplast genomes and the expression of genes with the functional state of the chloroplast. Here, we report the isolation of new cryptochrome1 (cry1) alleles from a screen for Arabidopsis thaliana genomes uncoupled mutants, which have defects in plastid-to-nucleus signaling. We also report genetic experiments showing that a previously unidentified plastid signal converts multiple light signaling pathways that perceive distinct qualities of light from positive to negative regulators of some but not all photosynthesis-associated nuclear genes (PhANGs) and change the fluence rate response of PhANGs. At least part of this remodeling of light signaling networks involves converting HY5, a positive regulator of PhANGs, into a negative regulator of PhANGs. We also observed that mutants with defects in both plastid-to-nucleus and cry1 signaling exhibited severe chlorophyll deficiencies. These data show that the remodeling of light signaling networks by plastid signals is a mechanism that plants use to integrate signals describing the functional and developmental state of plastids with signals describing particular light environments when regulating PhANG expression and performing chloroplast biogenesis.  相似文献   

17.
Thiol chemistry and specificity in redox signaling   总被引:1,自引:1,他引:0  
  相似文献   

18.
19.
The unique chemistry of oxygen has been both a resource and threat for life on Earth for at least the last 2.4 billion years. Reduction of oxygen to water allows extraction of more metabolic energy from organic fuels than is possible through anaerobic glycolysis. On the other hand, partially reduced oxygen can react indiscriminately with biomolecules to cause genetic damage, disease, and even death. Organisms in all three superkingdoms of life have developed elaborate mechanisms to protect against such oxidative damage and to exploit reactive oxygen species as sensors and signals in myriad processes. The sulfur amino acids, cysteine and methionine, are the main targets of reactive oxygen species in proteins. Oxidative modifications to cysteine and methionine can have profound effects on a protein’s activity, structure, stability, and subcellular localization. Non-reversible oxidative modifications (oxidative damage) may contribute to molecular, cellular, and organismal aging and serve as signals for repair, removal, or programmed cell death. Reversible oxidation events can function as transient signals of physiological status, extracellular environment, nutrient availability, metabolic state, cell cycle phase, immune function, or sensory stimuli. Because of its chemical similarity to sulfur and stronger nucleophilicity and acidity, selenium is an extremely efficient catalyst of reactions between sulfur and oxygen. Most of the biological activity of selenium is due to selenoproteins containing selenocysteine, the 21st genetically encoded protein amino acid. The most abundant selenoproteins in mammals are the glutathione peroxidases (five to six genes) that reduce hydrogen peroxide and lipid hydroperoxides at the expense of glutathione and serve to limit the strength and duration of reactive oxygen signals. Thioredoxin reductases (three genes) use nicotinamide adenine dinucleotide phosphate to reduce oxidized thioredoxin and its homologs, which regulate a plethora of redox signaling events. Methionine sulfoxide reductase B1 reduces methionine sulfoxide back to methionine using thioredoxin as a reductant. Several selenoproteins in the endoplasmic reticulum are involved in the regulation of protein disulfide formation and unfolded protein response signaling, although their precise biological activities have not been determined. The most widely distributed selenoprotein family in Nature is represented by the highly conserved thioredoxin-like selenoprotein W and its homologs that have not yet been assigned specific biological functions. Recent evidence suggests selenoprotein W and the six other small thioredoxin-like mammalian selenoproteins may serve to transduce hydrogen peroxide signals into regulatory disulfide bonds in specific target proteins.  相似文献   

20.
Reducing equivalents produced in the chloroplast are essential for many key cellular metabolic enzyme reactions. Two redox shuttle systems transfer reductant out of the chloroplast; these systems consist of metabolite transporters, coupled with stromal and cytosolic dehydrogenase isozymes. The transporters function in the redox shuttle and also operate as key enzymes in carbon/nitrogen metabolism. To maintain adequate levels of reductant and proper metabolic balance, the shuttle systems are finely controlled. Also, in the leaves of C(4) plants, cell-specific division of carbon and nitrogen assimilation includes cell-specific localization of the redox shuttle systems. The redox shuttle systems are tightly linked to cellular metabolic pathways and are essential for maintaining metabolic balance between energy and reducing equivalents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号