首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Growth-arrested rat fibroblasts, 3Y1, and human diploid fibroblasts, TIG-1, were induced to synthesize DNA by stimulation with various agents such as fetal bovine serum (FBS), epidermal growth factor (EGF), colcemid, or colchicine. Taxol, a microtubule-stabilizing agent, blocked the induction of DNA synthesis after stimulation with colcemid or colchicine in both cell lines. Taxol inhibited the induction of DNA synthesis after stimulation with FBS or EGF in TIG-1, but did not in 3Y1. 12-O-tetradecanoylphorbol-13-acetate (TPA) induced DNA synthesis in TIG-1, which was reduced only partly by taxol. Taxol stabilized or polymerized microtubules in both cell lines. These results indicate that the inhibitory effect of taxol on the induction of DNA synthesis varied among cell lines and among growth factors, and suggest that signal transduction processes may be differentiated by taxol sensitivity. In TIG-1 cells, when taxol was added within 6 h, about halfway into the initiation of DNA synthesis after the addition of FBS or EGF, the inhibition of DNA synthesis still occurred. Taxol did not inhibit the induction of c-fos and c-myc genes by FBS or EGF stimulation. Colchicine itself did not induce these genes in TIG-1. Thus, taxol appeared to inhibit the induction of DNA synthesis not by blockage in the early transduction process of the growth signal from the cell surface to nuclei but by blockage in processes operating in the mid- or late-prereplicative phase.  相似文献   

2.
3.
4.
5.
X-irradiation and the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA) act in a synergistic manner to increase the yield of transformed C3H10T1/2 cells in vitro. TPA modulated both translocation from the cytosol to the plasma membrane, and down regulation of protein kinase C (PKC) after prolonged (48 h) TPA exposure. N-tosyl-L-phenylalanine chloromethyl ketone (TPCK), antipain, and soybean-derived Bowman-Birk inhibitor, protease inhibitors that suppress transformation of C3H10T1/2 cells, had no effect on these TPA-mediated alterations of PKC activity, suggesting that protease inhibitors suppress TPA-stimulated promotion in vitro via a PKC-independent pathway. Several experiments were performed to determine whether non-toxic concentrations of the PKC inhibitors, N-p-tosyl-L-lysine chloromethyl ketone (TLCK), TPCK, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), or 1-(5-isoquinoline-sulfonyl)-2-methyl-piperazine (H-7), modulated the movement of cells from a quiescent state into the cell cycle. TPCK and the combination of H-7 and W-7 lowered DNA synthesis when cells were stimulated to divide by TPA. Because other protease inhibitors that slow transformation in vitro did not have the same suppressive effect on DNA synthesis, the inhibitory pathway that suppresses carcinogenic activity is likely to be different from the suppression of DNA synthesis.  相似文献   

6.
Addition of epinephrine to primary cultured adult rat hepatocytes stimulated their DNA synthesis dose-dependently, especially in presence of insulin and epidermal growth factor. This effect of epinephrine was strongly inhibited by an alpha 1-antagonist, prazosin, but not by a beta-antagonist, propranolol, and was also slightly inhibited by an alpha 2-antagonist, yohinbin. These results indicate that the stimulation of DNA synthesis of hepatocytes by epinephrine is mediated predominantly by an alpha 1-action. 12-o-Tetradecanoylphorbol-13-acetate (TPA) or Ca2+-ionophore A-23187 stimulated DNA synthesis of Swiss 3T3 cells, but did not induce DNA synthesis of hepatocytes either singly or in combination. The fact that pretreatment of hepatocytes with TPA caused down-regulation of the stimulatory effect of epinephrine on DNA synthesis of hepatocytes within 15 min suggested that the effect of epinephrine on hepatocytes is mediated by its alpha 1 receptor and that TPA activated protein kinase c in the hepatocytes. Addition of dibutyryl cGMP did not induce DNA synthesis of hepatocytes. Therefore, the alpha 1-action of epinephrine that induce stimulation of DNA synthesis of primary cultured adult rat hepatocytes was apparently not mediated by either activation of phospholipid-dependent protein kinase or Ca2+ mobilization. Possible alternative mechanism was discussed.  相似文献   

7.
Activation of protein kinase C (PKC) bu phorbol esters (TPA) results in a modification of the cyclic AMP system leading to either attenuation or amplification of the cyclic AMP signal. In the non-neoplastic T51B rat live cell line, TPA, when added to intact cells, had no effect on the basal level of cyclic AMP synthesis but caused a 1.5 fold amplification of the stimulation induced by β-adrenergic agents, cholera toxin and forskolin. The effect appeared to be mediated by PKC since diacylglycerols caused the same amplification as did TPA while inactive phorbol esters were without effect. Phosphorylation of Gs or the catalytic subunit of adenylate cyclase by PKC is likely to be responsible for the enhancement of cyclic AMP synthesis. TPA also caused translocation of PKC; however, the time course of the translocation was loner than the time course of the enhancement of adenylate cyclase activity. Thus, the ability of TPA to amplify cyclic AMP synthesis is probably mediated by activation of PKC that is already present in the membrane.  相似文献   

8.
Previous reports have suggested that phorbol esters can decrease the affinity of epidermal growth factor (EGF) for its cellular receptors. Investigations of the consequences of the interaction between phorbol esters and EGF, however, have been limited to EGF-stimulated Na/H exchange in A431 cells (Whitely, B., D. Cassel, Y.-X. Zuang, and L. Glaser, 1984, J. Cell Biol., 99:1162-1166). In the present study, the effect of the phorbol ester 12-O-tetradecanoyl phorbol-13-acetate (TPA) on EGF-stimulated ion transport and DNA synthesis was determined in cultured vascular smooth muscle cells (A7r5). It was found that TPA stimulated Na/H exchange when added alone (half-maximal stimulatory concentration, 25 nM). However, when cells were pretreated with TPA and then challenged with EGF, TPA significantly inhibited EGF-stimulated Na/H exchange (78%; half-maximal inhibition [Ki] at 2.5 nM). Subsequently the effects of TPA on Na/K/Cl co-transport were measured. TPA was observed to inhibit Na/K/Cl co-transport (half-maximal inhibitory concentration, 50 nM) and also to inhibit EGF-stimulated Na/K/Cl co-transport (100%; Ki at 5 nM). Finally, the effects of TPA on DNA synthesis were assessed. TPA had a modest stimulatory effect on DNA synthesis (half-maximal stimulatory concentration, 6 nM), but had a significant inhibitory effect on EGF-stimulated DNA synthesis (56%; Ki at 5 nM). These findings suggest that the inhibitory effect of TPA on EGF-receptor functions goes beyond previously reported effects on Na/H exchange in A431 cells and extends to EGF-stimulation of Na/K/Cl co-transport and DNA synthesis in vascular smooth muscle cells.  相似文献   

9.
We previously reported that prostaglandin F(2alpha) (PGF(2alpha)) activates both phosphoinositide-hydrolyzing phospholipase C and phosphatidylcholine-hydrolyzing phospholipase D in osteoblast-like MC3T3-E1 cells and then induces the activation of protein kinase C (PKC). In this study, we investigated the effect of PGF(2alpha) on the induction of heat shock protein 27 (HSP27), a low-molecular-weight heat shock protein, in these cells. PGF(2alpha) significantly induced the accumulation of HSP27 dose-dependently within the range of 10 nM to 10 microM. PGF(2alpha) stimulated the increase in the levels of mRNA for HSP27. A total of 10 nM 12-O-tetradecanoylphorbol-13-acetate (TPA), an activator of PKC, induced the accumulation of HSP27. The stimulative effect of PGF(2alpha) was reduced in the PKC down-regulated cells. Calphostin C, a specific inhibitor of PKC, suppressed the PGF(2alpha)-induced HSP27 accumulation as well as that induced by TPA. HSP27 induction by PGF(2alpha) was reduced by U-73122, a phospholipase C inhibitor, or propranolol, a phosphatidic acid phosphohydrolase inhibitor. PGF(2alpha) and TPA stimulated p42/p44 mitogen-activated protein (MAP) kinase. PD98059, an inhibitor of the upstream kinase that activates p42/p44 MAP kinase, suppressed the induction of HSP27 stimulated by PGF(2alpha) or TPA. PD98059 and calphostin C reduced the levels of mRNA for HSP27 increased by PGF(2alpha). These results indicate that PGF(2alpha) stimulates the induction of HSP27 via p42/p44 MAP kinase activation, which depends on upstream PKC activation in osteoblasts.  相似文献   

10.
Phorbol ester (TPA) and retinoic acid (RA) are two potent immunomodulatory agents whose actions are mediated through distinct signal transduction pathways involving protein kinase C (PKC) and nuclear RA receptors, respectively. We have investigated the interactions between these two pathways in the regulation of expression of the inflammatory cytokine IL-8 in human skin fibroblasts. TPA (as previously reported) and RA both induced IL-8 mRNA and protein in a time- and dose-dependent manner. IL-8 mRNA induction by TPA (10 nM) was maximal (15-fold) within 6 h, and returned to baseline within 24 h of treatment, although maximal induction (10-fold) by RA (1 microM) did not occur until 24 h posttreatment. Induction of IL-8 by TPA was blocked by 1-(5-isoquinolinyl-sulfonyl)-2-methylpiperazine, which inhibits PKC and cAMP-dependent protein kinases (PKA), but not by N-(2-ganidinoethyl)-5-isoquinoline sulfonamide, which preferentially inhibits PKA, consistent with the participation of PKC in the induction of IL-8 by TPA. In contrast, induction of IL-8 by RA was inhibited by both 1-(5-isoquinoline sulfonamide and N-(2-gamidinoethyl)-5-isoquinoline sulfonamide, suggesting the participation of PKA in the induction of IL-8 by RA. However, activation of PKA by addition of cAMP analogues was not sufficient to induce IL-8 expression. Induction of IL-8 by RA also did not appear to be mediated indirectly through induction of IL-1, because addition of IL-1R antagonist did not block IL-8 induction by RA. RA and TPA added in combination synergistically enhanced expression of IL-8 mRNA, measured at 6 (2-fold) and 24 h (10-fold) posttreatment. To investigate the mechanism of this synergy, the effect of TPA and RA on fibroblast PKC activation and PKC isozyme levels were determined. TPA, either alone or together with RA, but not RA alone, stimulated phosphorylation of an endogenous 80-kDa PKC substrate. Dermal fibroblasts expressed three PKC isozymes (alpha, (delta, and (epsilon). TPA, but not RA, down-regulated PKC-alpha, neither TPA or RA affected the level of PKC-delta, and both TPA and RA down-regulated PKC-epsilon. This latter effect was enhanced 2-fold by addition of RA and TPA together. These data suggest that modulation of PKC-epsilon may be a common participant in the regulation of IL-8 expression by TPA and RA.  相似文献   

11.
Activation of protein kinase C (PKC) by TPA in human U937 myeloid leukemia cells is associated with induction of adherence, differentiation, and G0/G1 cell cycle arrest. In this study, we demonstrate that in addition to these differentiating cells about 25% of U937 cells accumulated in the subG1 phase after TPA treatment. This effect proved to be phorbol ester-specific, since other compounds such as retinoic acid or vitamin D3 failed to induce apoptosis in conjunction with differentiation. Only a specific inhibitor of PKC, GF109203X, but not the broad-spectrum kinase inhibitor staurosporine or a tyrosine kinase inhibitor genistein could reverse the induction of apoptosis. Bryostatin-1, another specific PKC activator with distinct biochemical activity failed to induce apoptosis. Moreover, bryostatin-1 completely abolished the induction of apoptosis in U937 cells even if added 8 hours after TPA treatment. Apart from apoptosis induced by various chemotherapeutic drugs, TPA-related cell death is not mediated by an autocrine Fas-FasL loop and could not be prevented by a blocking antibody to the Fas receptor. However, a 75% reduction in the number of apoptotic cells after TPA stimulation was achieved by preincubation with a blocking antibody to the TNFalpha receptor. Tetrapeptide cleavage assays revealed a four-fold increase in the DEVD-cleavage activity in U937 cells compared to a three-fold increase in TUR cells. Immunoblotting demonstrated that TUR cells did not activate significant levels of caspase-3 or -7, whereas in U937 cells a 20-kDa cleavage product corresponding to activated caspase-3 was detectable after 3 d TPA exposure. Moreover, immunoblots revealed a strongly reduced expression of the adaptor molecule APAF-1, which is required for cytochrome c-dependent activation of caspase-9 and subsequently caspase-3. APAF-1 proved to be inducible after PKC activation with phorbol ester in U937, but not in TUR cells. Thus, APAF-1 expression may, at least in part, be regulated by PKC activity and reduced APAF-1 levels are associated with resistance to various inducers of apoptosis. Furthermore, TPA exposure of U937 cells is associated with increased levels of the pro-apoptotic proteins Bak and Bcl-xs, whereas simultaneously a decline in the Bcl-2 expression was noticable.  相似文献   

12.
In cloned osteoblast-like cells, MC3T3-E1, prostaglandin F2 alpha (PGF2 alpha) stimulated arachidonic acid (AA) release in a dose-dependent manner in the range between 1 nM and 10 microM. 12-O-tetradecanoylphorbol-13-acetate (TPA), a protein kinase C (PKC) activator, which by itself had little effect on AA release, markedly amplified the release of AA stimulated by PGF2 alpha in a dose-dependent manner. 4 alpha-phorbol 12,13-didecanoate, a phorbol ester which is inactive for PKC, showed little effect on the PGF2 alpha-induced AA release. 1-oleoyl-2-acetylglycerol (OAG), a specific activator for PKC, mimicked TPA by enhancement of the AA release induced by PGF2 alpha. H-7, a PKC inhibitor, markedly suppressed the effect of OAG on PGF2 alpha-induced AA release. Quinacrine, a phospholipase A2 inhibitor, showed partial inhibitory effect on PGF2 alpha-induced AA release, while it suppressed the amplification by OAG of PGF2 alpha-induced AA release almost to the control level. Furthermore, TPA enhanced the AA release induced by melittin, known as a phospholipase A2 activator. On the other hand, TPA inhibited the formation of inositol trisphosphate stimulated by PGF2 alpha. Under the same condition, PGF2 alpha indeed stimulated prostaglandin E2 (PGE2) synthesis and TPA markedly amplified the PGF2 alpha-induced PGE2 synthesis as well as AA release. These results indicate that the activation of PKC amplifies PGF2 alpha-induced both AA release and PGE2 synthesis through the potentiation of phospholipase A2 activity in osteoblast-like cells.  相似文献   

13.
The hypertriglyceridemia of diabetes is accompanied by decreased lipoprotein lipase (LPL) activity in adipocytes. Although the mechanism for decreased LPL is not known, elevated glucose is known to increase diacylglycerol, which activates protein kinase C (PKC). To determine whether PKC is involved in the regulation of LPL, we studied the effect of 12-O-tetradecanoyl phorbol 13-acetate (TPA) on adipocytes. LPL activity was inhibited when TPA was added to cultures of 3T3-F442A and rat primary adipocytes. The inhibitory effect of TPA on LPL activity was observed after 6 h of treatment, and was observed at a concentration of 6 nM. 100 nM TPA yielded maximal (80%) inhibition of LPL. No stimulation of LPL occurred after short term addition of TPA to cultures. To determine whether TPA treatment of adipocytes decreased LPL synthesis, cells were labeled with [35S]methionine and LPL protein was immunoprecipitated. LPL synthetic rate decreased after 6 h of TPA treatment. Western blot analysis of cell lysates indicated a decrease in LPL mass after TPA treatment. Despite this decrease in LPL synthesis, there was no change in LPL mRNA in the TPA-treated cells. Long term treatment of cells with TPA is known to down-regulate PKC. To assess the involvement of the different PKC isoforms, Western blotting was performed. TPA treatment of 3T3-F442A adipocytes decreased PKC alpha, beta, delta, and epsilon isoforms, whereas PKC lambda, theta, zeta, micro, iota, and gamma remained unchanged or decreased minimally. To directly assess the effect of PKC inhibition, PKC inhibitors (calphostin C and staurosporine) were added to cultures. The PKC inhibitors inhibited LPL activity rapidly (within 60 min). Thus, activation of PKC did not increase LPL, but inhibition of PKC resulted in decreased LPL synthesis by inhibition of translation, indicating a constitutive role of PKC in LPL gene expression.  相似文献   

14.
15.
In order to examine the role of phosphatidylinositol bisphosphate (PIP2) hydrolysis in B cell activation, we studied the effect of various classes of protein kinase C (PKC) activators on anti-Ig-mediated B cell stimulation. Anti-Ig-stimulated PIP2 hydrolysis, elevations in [Ca2+]i, and induction of DNA synthesis were inhibited by PMA (a phorbol ester) as previously reported. In contrast, indolactam (an alkaloid PKC activator) inhibited PIP2 hydrolysis and elevations in [Ca2+]i, but stimulated rather than inhibited cellular proliferation. In order to examine whether the binding avidity of the PKC activators to PKC played a role in determining their activity to stimulate or inhibit B cell activation, we studied two other PKC activators, bryostatin and mezerein. Again, both inhibited anti-Ig mediated PIP2 hydrolysis and elevations in [Ca2+]i, whereas only the former inhibited induction of DNA synthesis. These data suggest that a) high levels of PIP2 hydrolysis and elevations in [Ca2+]i are not essential for anti-Ig-mediated induction of B cell DNA synthesis and b) activation of PKC may induce both stimulatory and inhibitory pathways of B cell activation, and whether stimulation or inhibition of cell activation is observed may depend on the combined intensity of these two signals.  相似文献   

16.
17.
Abstract: Treatment of cultured bovine adrenal chromaffin cells with 12- O -tetradecanoylphorbol 13-acetate (TPA), an activator of protein kinase C (PKC), decreased [3H]saxitoxin ([3H]STX) binding in a concentration (IC50 = 19 n M )- and time ( t 1/2 = 4.5 h)-dependent manner. TPA (100 n M for 15 h) lowered the B max of [3H]STX binding by 53% without altering the K D value. Phorbol 12,13-dibutyrate (PDBu) also reduced [3H]STX binding, whereas 4α-TPA, an inactive analogue, had no effect. The inhibitory effect of TPA was abolished when H-7 (an inhibitor of PKC), but not H-89 (an inhibitor of cyclic AMP-dependent protein kinase), was included in the culture medium for 1 h before and during TPA treatment. Simultaneous treatment with TPA in combination with either actinomycin D or cycloheximide, an inhibitor of protein synthesis, nullified the effect of TPA. TPA treatment also attenuated veratridine-induced 22Na+ influx but did not alter the affinity of veratridine for Na channels as well as an allosteric potentiation of veratridine-induced 22Na+ influx by brevetoxin. These results suggest that an activation of PKC down-regulates the density of Na channels without altering their pharmacological features; this down-regulation is mediated via the de novo synthesis of an as yet unidentified protein(s), rather than an immediate effect of Na channel phosphorylation.  相似文献   

18.
The murine Leydig tumor cell line, MLTC-1, contains a gonadotropin receptor-coupled adenylate cyclase. Although the binding of human choriogonadotropin (hCG) initially causes cells to accumulate cAMP, in time, the response to hCG is attenuated by desensitization. Treating intact cells with the tumor promoter, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), or with diacylglycerol also causes desensitization of the hCG response. These compounds are activators of calcium/phospholipid-dependent protein kinase (PKC). Treating MLTC-1 cells with TPA or dioctanoylglycerol increased the portion of PKC in the cell membrane fraction. This phenomenon is associated with activation of PKC. Treating isolated membranes with purified PKC desensitize the hCG response. Thus, desensitization caused by TPA or dioctanoylglycerol is probably mediated by PKC. PKC is normally activated when phosphoinositides are metabolized to diacylglycerol and inositol phosphates. There was no significant accumulation of inositol phosphates when cells were treated with hCG. hCG did not increase the portion of PKC in the cell membrane fraction. However, hCG could desensitize isolated membranes, but TPA could not. We conclude that although protein kinase C activity can desensitize the gonadotropin response, hCG does not cause desensitization by activating PKC. The implications of this observation are discussed.  相似文献   

19.
20.
Even though the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) is known to bind to and activate protein kinase C (PKC), it is still not certain that all cellular responses to phorbol esters are necessarily mediated by PKC. In BALB/c 3T3 preadipose cells, TPA has previously been shown to rapidly inhibit Na+K+Cl- -cotransport activity, stimulate 2-deoxyglucose uptake and induce ornithine decarboxylase activity. The cell-permeable diacylglycerol sn-1,2-dioctanoylglycerol (DiC8) was used in order to distinguish between PKC-dependent and -independent responses of BALB/c 3T3 cells. DiC8 modulated 86Rb+ fluxes in BALB/c 3T3 cells in the same manner as TPA: furosemide-sensitive 86Rb+ influx and efflux was inhibited, while in cotransport-defective cells no effect was observed. In contrast, DiC8 did not stimulate 2-deoxyglucose uptake in either parental or cotransport-defective cell lines, even though TPA is a very effective inducer of this transport system in both cell types. Pretreatment of cells with DiC8 did not substantially alter the subsequent induction of 2-deoxyglucose uptake by TPA, although a slight but reproducible reduction in the magnitude of the response was observed in DiC8-pretreated cells. The PKC-dependent phosphorylation of an acidic 80-kDa protein was stimulated by both TPA and DiC8 in parental and cotransport-defective cell lines, suggesting that a gross defect in the primary effector system used by both TPA and diacylglycerols cannot explain any of our results. Ornithine decarboxylase was induced by DiC8 and the K1/2 was approximately the same as that for inhibition of Na+/K+/Cl- cotransport in these cells. Thus, our results suggest that PKC is clearly essential for some phorbol ester membrane transport responses (such as inhibition of Na+/K+/Cl- cotransport), but our results do not allow us to conclude that other responses (such as stimulation of 2-deoxyglucose uptake) necessarily require PKC activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号