首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A split-EGFP based bimolecular fluorescence complementation (BiFC) assay has been used to detect interactions between the Saccharomyces cerevisiae cytoskeletal scaffolding protein Iqg1p and three targets: myosin essential light chain (Mlc1p), calmodulin (Cmd1p) and the small GTPase Cdc42p. The format of the BiFC assay used ensures that the proteins are expressed at wild type levels thereby avoiding artefacts due to overexpression. This is the first direct in vivo detection of these interactions; in each case, the complex is localised to discrete regions of the yeast cytoplasm. The labelling with EGFP fragments results in changes in growth kinetics, cell size and budding frequency. This is partly due to the reassembled EGFP locking the complexes into essentially permanent interactions. The consequences of this for Iqg1p interactions and BiFC assays in general are discussed.  相似文献   

2.
We have used the two PFK genes of Saccharomyces cerevisiae encoding the alpha and beta-subunit of the enzyme phosphofructokinase (Pfk) as heterologous probes to isolate fragments of the respective genes from the dimorphic pathogenic fungus Candida albicans. The complete coding sequences were obtained by combining sequences of chromosomal fragments and fragments obtained by inverse polymerase chain reaction (PCR). The CaPFK1 and CaPFK2 comprise open reading frames of 2961 bp and 2838 bp, respectively, encoding Pfk subunits with deduced molecular masses of 109 kDa and 104 kDa. The genes presumably evolved by a duplication event from a prokaryotic type ancestor, followed by another duplication. Heterologous expression in S. cerevisiae revealed that each gene alone was able to complement the glucose-negative phenotype of a pfk1 pfk2 double mutant. In vitro Pfk activity in S. cerevisiae was not only obtained after coexpression of both genes, but also in conjunction with the respective complementary subunits from S. cerevisiae. This indicates the formation of functional hetero-oligomers consisting of C. albicans and S. cerevisiae Pfk subunits. In C. albicans, specific Pfk activity was shown to decrease twofold upon induction of hyphal growth. CaPfk cross-reacts with a polyclonal antiserum raised against ScPfk and displays similar allosteric properties, i.e. inhibition by ATP and activation by AMP and fructose 2,6-bisphosphate.  相似文献   

3.
4.
5.
Wang Q  Li L  Chen M  Qi Q  Wang PG 《Biotechnology letters》2007,29(10):1561-1566
A versatile vector was developed for heterologous proteins display on the cell surface of Pichia pastoris using the C-terminal half of alpha-agglutinin from Saccharomyces cerevisiae as a membrane anchor under the control of the alcohol oxidase 1 promoter (pAOX1). Multiple cloning sites and the sequence encoding the Xpress epitope (-Asp-Leu-Tyr-Asp-Asp-Asp-Asp-Lys-) were introduced into the vector for insertion of heterologous genes and selective cleavage of target proteins. Enhanced green fluorescence protein (EGFP) was used as a model protein to check the function of this vector. The expression of EGFP on the P. pastoris surface was confirmed by confocal laser scanning microscopy. Fluorescence microscopy and western blot analysis confirmed that EGFP can be successfully cleaved from the cell surface by treating with enterokinase.  相似文献   

6.
In order to investigate the functional signal peptide of silkworm fibroin heavy chain (FibH) and the effect of N- and C-terminal parts of FibH on the secretion of FibH in vivo, N- and C-terminal segments of fibh gene were fused with enhanced green fluorescent protein (EGFP) gene. The fused gene was then introduced into silkworm larvae and expressed in silk gland using recombinant AcMNPV (Autographa californica multiple nuclear polyhedrosis virus) as vector. The fluorescence of EGFP was observed with fluorescence microscope. FibH-EGFP fusion proteins extracted from silk gland were analyzed by Western blot. Results showed that the two alpha helices within N-terminal 163 amino acid residues and the C-terminal 61 amino acid residues were not necessary for cleavage of signal peptide and secretion of the fusion protein into silk gland. Then the C-terminal 61 amino acid residues were substituted with a His-tag in the fusion protein to facilitate the purification. N-terminal sequencing of the purified protein showed that the signal cleavage site is between position 21 and 22 amino acid residues.  相似文献   

7.
Sdh3/Shh3, a subunit of mitochondrial succinate dehydrogenase, contains transmembrane domains with a hydrophobicity comparable to that of endoplasmic reticulum (ER) proteins. Here, we show that a C-terminal reporter fusion to Sdh3/Shh3 results in partial mis-targeting of the protein to the ER. This mis-targeting is mediated by the signal recognition particle (SRP) and depends on the length of the C-terminal tail. These results imply that if nuclear-encoded mitochondrial proteins contain strongly hydrophobic transmembrane domains and a long C-terminal tail, they have the potential to be recognized by SRP and mis-targeted to the ER.  相似文献   

8.
Here, we present a protocol for isolating the large N-terminal fragment of enhanced green fluorescent protein (EGFP) with a preformed chromophore. By itself, the chromophore-containing EGFP fragment exhibits very weak fluorescence, but it rapidly becomes brightly fluorescent upon complementation with the corresponding small, C-terminal EGFP fragment. Each EGFP fragment is cloned and overexpressed in E. coli as a fusion with self-splitting intein. After solubilizing and refolding these fusions from inclusion bodies, both EGFP fragments are cleaved from intein and purified using chitin columns. When these EGFP fragments are linked with the two complementary oligonucleotides and combined in equimolar amounts, fluorescence develops within a few minutes. The isolation of profluorescent protein fragments from recombinant E. coli cells requires approximately 3 d, and their conjugation to oligonucleotides requires 1-4 h.  相似文献   

9.
Bimolecular fluorescence complementation (BiFC) represents one of the most advanced and powerful tools for studying and visualizing protein-protein interactions in living cells. In this method, putative interacting protein partners are fused to complementary non-fluorescent fragments of an autofluorescent protein, such as the yellow spectral variant of the green fluorescent protein. Interaction of the test proteins may result in reconstruction of fluorescence if the two portions of yellow spectral variant of the green fluorescent protein are brought together in such a way that they can fold properly. BiFC provides an assay for detection of protein-protein interactions, and for the subcellular localization of the interacting protein partners. To facilitate the application of BiFC to plant research, we designed a series of vectors for easy construction of N-terminal and C-terminal fusions of the target protein to the yellow spectral variant of the green fluorescent protein fragments. These vectors carry constitutive expression cassettes with an expanded multi-cloning site. In addition, these vectors facilitate the assembly of BiFC expression cassettes into Agrobacterium multi-gene expression binary plasmids for co-expression of interacting partners and additional autofluorescent proteins that may serve as internal transformation controls and markers of subcellular compartments. We demonstrate the utility of these vectors for the analysis of specific protein-protein interactions in various cellular compartments, including the nucleus, plasmodesmata, and chloroplasts of different plant species and cell types.  相似文献   

10.
The 11th influenza A virus gene product is an 87-amino-acid protein provisionally named PB1-F2 (because it is encoded by an open reading frame overlapping the PB1 open reading frame). A significant fraction of PB1-F2 localizes to the inner mitochondrial membrane in influenza A virus-infected cells. PB1-F2 appears to enhance virus-induced cell death in a cell type-dependent manner. For the present communication we have identified and characterized a region near the COOH terminus of PB1-F2 that is necessary and sufficient for its inner mitochondrial membrane localization, as determined by transient expression of chimeric proteins consisting of elements of PB1-F2 genetically fused to enhanced green fluorescent protein (EGFP) in HeLa cells. Targeting of EGFP to mitochondria by this sequence resulted in the loss of the inner mitochondrial membrane potential, leading to cell death. The mitochondrial targeting sequence (MTS) is predicted to form a positively charged amphipathic alpha-helix and, as such, is similar to the MTS of the p13(II) protein of human T-cell leukemia virus type 1. We formally demonstrate the functional interchangeability of the two sequences for mitochondrial localization of PB1-F2. Mutation analysis of the putative amphipathic helix in the PB1-F2 reveals that replacement of five basic amino acids with Ala abolishes mitochondrial targeting, whereas mutation of two highly conserved Leu to Ala does not. These findings demonstrate that PB1-F2 possesses an MTS similar to other viral proteins and that this MTS, when fused to EGFP, is capable of independently compromising mitochondrial function and cellular viability.  相似文献   

11.
We have analyzed the sorting of the mammalian nucleoporin p62 in human culture cells and in the yeast Saccharomyces cerevisiae. To this end, gene fusions were generated that carry Aequorea victoria green fluorescence protein and defined portions of p62. Upon transient gene expression fluorescent fusion proteins were localized in HeLa cells. Likewise, fusion proteins were studied in S. cerevisiae using wild-type as well as mutant cells that cluster nuclear pore complexes. Our results demonstrate that evolutionarily distant organisms, such as humans and yeasts, recognize the same sequence elements of p62 for sorting to the nuclear envelope. Specifically, the entire sequence of p62 or its complete C-terminal domain targeted fusion proteins to the nuclear membranes. In contrast, truncations of the C-terminal domain or the N-terminal segment of p62 failed to associate with the nuclear envelope in either organism. In HeLa cells overexpression of several p62-containing fusion proteins resulted in nuclear fragmentation. The C-terminal domain of p62 caused this effect, and amino acid residues 477 to 525 were sufficient to induce aberrant nuclei. Thus, overexpression of 49 amino acid residues located at the C-terminal tail of p62 interferes with the nuclear integrity in human culture cells.  相似文献   

12.
Succinate dehydrogenase (SDH), also known as complex II, is required for respiratory growth; it couples the oxidation of succinate to the reduction of ubiquinone. The enzyme is composed of two domains. A membrane-extrinsic catalytic domain composed of the Sdh1p and Sdh2p subunits harbors the flavin and iron-sulfur cluster cofactors. A membrane-intrinsic domain composed of the Sdh3p and Sdh4p subunits interacts with ubiquinone and may coordinate a b-type heme. In many organisms, including Saccharomyces cerevisiae, possible alternative SDH subunits have been identified in the genome. S. cerevisiae contains one paralog of the Sdh3p subunit, Shh3p (YMR118c), and two paralogs of the Sdh4p subunit, Shh4p (YLR164w) and Tim18p (YOR297c). We cloned and expressed these alternative subunits. Shh3p and Shh4p were able to complement Δsdh3 and Δsdh4 deletion mutants, respectively, and support respiratory growth. Tim18p was unable to do so. Microarray and proteomics data indicate that the paralogs are expressed under respiratory and other more restrictive growth conditions. Strains expressing hybrid SDH enzymes have distinct metabolic profiles that we distinguished by (1)H NMR analysis of metabolites. Surprisingly, the Sdh3p subunit can form SDH isoenzymes with Sdh4p or with Shh4p as well as be a subunit of the TIM22 mitochondrial protein import complex.  相似文献   

13.
This study has investigated the expression of green fluorescent protein (GFP) variants in the cytosol and the endoplasmic reticulum (ER) of HeLa cells and evaluated the effects of the different cellular environments on the fluorescence properties of these GFP variants. Several GFP variants have been constructed by adding different N- or C-terminal signal sequences. These proteins were expressed and folded in distinct cellular compartments in HeLa cells. The localization of these GFP variants targeted to the endoplasmic recticulum was confirmed by the co-localization of DsRed2-ER as assessed by confocal microscopy. The addition of signal peptides targeting GFP variants to the ER or cytosol did not appear to alter the optical spectra of these GFP variants. However, the fluorescence intensity of these GFP variants in the ER was significantly less than that in the cytosol. Thus, the results clearly suggest that the cellular environment affects the formation and/or maturation of green fluorescence protein in vivo. These findings will be helpful in the future development and application of GFP technology aimed at investigating cellular functions performed in the ER and the cytosol.  相似文献   

14.
A main pathway for energy ATP production inhuman body is by tricarboxylic acid cycle (Krebs cy-cle). Sodium-dependent dicarboxylate co-transporterprotein (SDCT, NaDC, NaC) is an organic aniontransporter protein family responsible for trans-mem- for 30 s, and extension 72℃ for 2 min; followed bybrane transport of Krebs cycle intermediate metabolite final extension 72℃ for 7 min. PCR products weresuch as succinate and citrate. They predominantly lo- …  相似文献   

15.
Manna SK  Aggarwal BB 《FEBS letters》2000,471(1):113-118
The effect of the expression of murine Bax protein on growth and vitality was examined in Saccharomyces cerevisiae and compared with the effect of Bax in mutant cells lacking functional mitochondria. The cytotoxic effect of Bax on yeast does not require functional oxidative phosphorylation, respiration, or mitochondrial proteins (ADP/ATP carriers) implicated in the formation of the permeability transition pore in mammalian mitochondria. In the wild type S. cerevisiae the expression of Bax does not result in a severe effect on mitochondrial membrane potential and respiration. On the basis of Bax induced differences in the fluorescence of green fluorescent protein fused to mitochondrial proteins, it is proposed that Bax may interfere with one essential cellular process in yeast: the mitochondrial protein import pathway that is specific for the proteins of the mitochondrial carrier family.  相似文献   

16.
17.
Succinate dehydrogenase (SDH) plays a key role in energy generation by coupling the oxidation of succinate to the reduction of ubiquinone in the mitochondrial electron transport chain. The Saccharomyces cerevisiae SDH is composed of a catalytic dimer of the Sdh1p and Sdh2p subunits containing flavin adenine dinucleotide (FAD) and iron-sulfur clusters and a heme b-containing membrane-anchoring domain comprised of the Sdh3p and Sdh4p subunits. We systematically mutated all the histidine and cysteine residues in Sdh3p and Sdh4p to identify the residues involved in axial heme ligation. The mutants were characterized for growth on a non-fermentable carbon source, for enzyme assembly, for succinate-dependent quinone reduction, for heme b content, and for heme spectral properties. Mutation of Sdh3p His-46 or His-113 leads to a marked reduction in the catalytic efficiency of the enzyme for quinone reduction, suggesting that these residues form part of a quinone-binding site. We identified Sdh3p His-106 and Sdh4p Cys-78 as the most probable axial ligands for cytochrome b(562). Replacement of His-106 or Cys-78 with an alanine residue leads to a marked reduction in cytochrome b(562) content and to altered heme spectral characteristics that are consistent with a direct perturbation of heme b environment. This is the first identification of a cysteine residue serving as an axial ligand for heme b in the SDH family of enzymes. Loss of cytochrome b(562) has no effect on enzyme assembly and quinone reduction; the role of the heme in enzyme structure and function is discussed.  相似文献   

18.
The adenine nucleotide carrier (Ancp) catalyzes the transport of ADP and ATP across the mitochondrial inner membrane, thus playing an essential role in the cellular energy metabolism. Two regions of Anc2p from Saccharomyces cerevisiae are specifically photolabeled using a photoactivable ADP derivative; they are the central matrix loop, m2, and the C-terminal end. To get more insights into the structure-function relationships of the C-terminal region during nucleotide transport, we have developed two independent approaches. In the first we have deleted the last eight amino acids of Anc2p (Anc2pDeltaCter) and demonstrated that the C-terminal end of Anc2p plays an essential role in yeast growth on a non-fermentable carbon source. This resulted from impaired nucleotide binding properties of the Anc2pDeltaCter variant in line with conversion of ADP binding sites from high to low affinity. In the second we probed the ligand-induced conformational changes of Anc2p C-terminal end (i) by assessing its accessibility to anti-C-terminal antibodies and (ii) by measuring intrinsic fluorescence changes of an Anc2p mutant containing only one tryptophan residue located at its C-terminal end (Anc2p3Y-u). We show that the C-terminal region is no further accessible to antibodies when Anc2p binds non-transportable analogues of ADP. Besides, Trp-316 fluorescence is highly increased upon ligand binding, suggesting large conformational changes. Taken together, our results highlight the involvement of the Anc2p C-terminal region in nucleotide recognition, binding, and transport.  相似文献   

19.
Succinate dehydrogenases and fumarate reductases are complex mitochondrial or bacterial respiratory chain proteins with remarkably similar structures and functions. Succinate dehydrogenase oxidizes succinate and reduces ubiquinone using a flavin adenine dinucleotide cofactor and iron-sulfur clusters to transport electrons. A model of the quaternary structure of the tetrameric Saccharomyces cerevisiae succinate dehydrogenase was constructed based on the crystal structures of the Escherichia coli succinate dehydrogenase, the E. coli fumarate reductase, and the Wolinella succinogenes fumarate reductase. One FAD and three iron-sulfur clusters were docked into the Sdh1p and Sdh2p catalytic dimer. One b-type heme and two ubiquinone or inhibitor analog molecules were docked into the Sdh3p and Sdh4p membrane dimer. The model is consistent with numerous experimental observations. The calculated free energies of inhibitor binding are in excellent agreement with the experimentally determined inhibitory constants. Functionally important residues identified by mutagenesis of the SDH3 and SDH4 genes are located near the two proposed quinone-binding sites, which are separated by the heme. The proximal quinone-binding site, located nearest the catalytic dimer, has a considerably more polar environment than the distal site. Alternative low energy conformations of the membrane subunits were explored in a molecular dynamics simulation of the dimer embedded in a phospholipid bilayer. The simulation offers insight into why Sdh4p Cys-78 may be serving as the second axial ligand for the heme instead of a histidine residue. We discuss the possible roles of heme and of the two quinone-binding sites in electron transport.  相似文献   

20.
应用分子克隆技术 ,分别将增强型绿色荧光蛋白 (enhancedgreenfluorescentprotein ,EGFP)、内部核糖体进入位点 (internalribosomeentrysite,IRES)和编码H-ras基因C端 2 0个氨基酸的DNA(rasc2 0 )片段插入真核表达载体pcDNA3,构建真核重组表达载体并将其命名为pZX。通过脂质体介导将该载体转染人宫颈癌细胞系HeLa ,培养过夜后在荧光显微镜下观察绿色荧光蛋白在细胞内的分布 ,并与pEGFP-C3质粒DNA转染该细胞系进行比较。结果表明 ,转染pZX载体的实验组细胞膜发出绿色荧光 ,而对照组绿色荧光则均匀弥散于整个细胞中 ,工具性载体pZX已构建成功  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号