首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cathepsin B is a lysosomal cysteine protease exhibiting mainly dipeptidyl carboxypeptidase activity, which decreases dramatically above pH 5.5, when the enzyme starts acting as an endopeptidase. Since the common cathepsin B assays are performed at pH 6 and do not distinguish between these activities, we synthesized a series of peptide substrates specifically designed for the carboxydipeptidase activity of cathepsin B. The amino-acid sequences of the P(5)-P(1) part of these substrates were based on the binding fragments of cystatin C and cystatin SA, the natural reversible inhibitors of papain-like cysteine protease. The sequences of the P'(1)-P'(2) dipeptide fragments of the substrates were chosen on the basis of the specificity of the S'(1)-S'(2) sites of the cathepsin B catalytic cleft. The rates of hydrolysis by cathepsin B and papain, the archetypal cysteine protease, were monitored by a continuous fluorescence assay based on internal resonance energy transfer from an Edans to a Dabcyl group. The fluorescence energy donor and acceptor were attached to the C- and the N-terminal amino-acid residues, respectively. The kinetics of hydrolysis followed the Michaelis-Menten model. Out of all the examined peptides Dabcyl-R-L-V-G-F- E(Edans) turned out to be a very good substrate for both papain and cathepsin B at both pH 6 and pH 5. The replacement of Glu by Asp turned this peptide into an exclusive substrate for cathepsin B not hydrolyzed by papain. The substitution of Phe by Nal in the original substrate caused an increase of the specificity constant for cathepsin B at pH 5, and a significant decrease at pH 6. The results of kinetic studies also suggest that Arg in position P(4) is not important for the exopeptidase activity of cathepsin B, and that introducing Glu in place of Val in position P(2) causes an increase of the substrate preference towards this activity.  相似文献   

2.
N Marks  M J Berg  W Danho 《Peptides》1989,10(2):391-394
A series of enkephalin-like peptides (X-Tyr-Gly-Gly-R-Pro) were synthesized for assay of cathepsin L and papain. Enzymes acted only at the Gly-Gly bond to release N-terminal dipeptides. When X = dansyl and R = Phe(NO2) the substrate was suited for continuous fluorimetric assay of rat brain cathepsin L (Km 45 microM, kcat/Km 1333 mM-1 sec-1). The substituted pentapeptides provided information on the influence of P2, P2' residues on rates of Gly-Gly cleavage. The synthetic substrate provided rapid and sensitive assays for the brain cathepsin L and its interaction with 13-14 kDa (cerebrocystatin) and 70 kDa (T-kininogen) rat brain inhibitors. The suppression of cathepsin L- or papain-mediated hydrolysis of substrates by inhibitors may be the result of competition between their binding domains at the enzyme catalytic center.  相似文献   

3.
Cathepsin X, purified to homogeneity from human liver, is a single chain glycoprotein with a molecular mass of approximately 33 kDa and pI 5.1-5.3. Cathepsin X was inhibited by stefin A, cystatin C and chicken cystatin (Ki = 1.7-15.0 nM), but poorly or not at all by stefin B (Ki > 250 nM) and L-kininogen, respectively. The enzyme was also inhibited by two specific synthetic cathepsin B inhibitors, CA-074 and GFG-semicarbazone. Cathepsin X was similar to cathepsin B and found to be a carboxypeptidase with preference for a positively charged Arg in P1 position. Contrary to the preference of cathepsin B, cathepsin X normally acts as a carboxymonopeptidase. However, the preference for Arg in the P1 position is so strong that cathepsin X cleaves substrates with Arg in antepenultimate position, acting also as a carboxydipeptidase. A large hydrophobic residue such as Trp is preferred in the P1' position, although the enzyme cleaved all P1' residues investigated (Trp, Phe, Ala, Arg, Pro). Cathepsin X also cleaved substrates with amide-blocked C-terminal carboxyl group with rates similar to those of the unblocked substrates. In contrast, no endopeptidase activity of cathepsin X could be detected on a series of o-aminobenzoic acid-peptidyl-N-[2,-dinitrophenyl]ethylenediamine substrates. Furthermore, the standard cysteine protease methylcoumarine amide substrates (kcat/Km approximately 5.0 x 103 M-1.s-1) were degraded approximately 25-fold less efficiently than the carboxypeptidase substrates (kcat/Km approximately 120.0 x 103 M-1.s-1).  相似文献   

4.
We have set up stably transfected HEK293 cells overexpressing the beta-secretases BACE1 and BACE2 either alone or in combination with wild-type beta-amyloid precursor protein (betaAPP). The characterization of the betaAPP-derived catabolites indicates that cells expressing BACEs produce less genuine Abeta1- 40/42 but higher amounts of secreted sAPPbeta and N-terminal-truncated Abeta species. This was accompanied by a concomitant modulation of the C-terminal counterpart products C89 and C79 for BACE1 and BACE2, respectively. These cells were used to set up a novel BACE assay based on two quenched fluorimetric substrates mimicking the wild-type (JMV2235) and Swedish-mutated (JMV2236) betaAPP sequences targeted by BACE activities. We show that BACEs activities are enhanced by the Swedish mutation and maximal at pH 4.5. The specificity of this double assay for genuine beta-secretase activity was demonstrated by means of cathepsin D, a "false positive" BACE candidate. Thus, cathepsin D was unable to cleave preferentially the JMV2236-mutated substrate. The selectivity of the assay was also emphasized by the lack of JMV cleavage triggered by other "secretases" candidates such as ADAM10 (A disintegrin and metalloprotease 10), tumor necrosis alpha-converting enzyme, and presenilins 1 and 2. Finally, the assay was used to screen for putative in vitro BACE inhibitors. We identified a series of statine-derived sequences that dose-dependently inhibited BACE1 and BACE2 activities with IC50 in the micromolar range, some of which displaying selectivity for either BACE1 or BACE2.  相似文献   

5.
Cathepsin S (CatS) is a lysosomal cysteine protease belonging to the papain superfamily. Because of the relatively broad substrate specificity of this family, a specific substrate for CatS is not yet known. Based on a detailed study of the CatS endopeptidase specificity, using six series of internally quenched fluorescent peptides, we were able to design a specific substrate for CatS. The peptide series was based on the sequence GRWHTVGLRWE-Lys(Dnp)-DArg-NH2, which shows only one single cleavage site between Gly and Leu and where every substrate position between P-3 and P-3' was substituted with up to 15 different amino acids. The endopeptidase specificity of CatS was mainly determined by the P-2, P-1', and the P-3' substrate positions. Based on this result, systematically modified substrates were synthesized. Two of these modified substrates, Mca-GRWPPMGLPWE-Lys(Dnp)-DArg-NH2 and Mca-GRWHPMGAPWE-Lys(Dnp)-DArg-NH2, did not react with the purified cysteine proteases cathepsin B (CatB) and cathepsin L (CatL). Using a specific CatS inhibitor, we could further show that these two peptides were not cleaved by endosomal fractions of antigen presenting cells (APCs), when CatS was inhibited and related cysteine proteases cathepsin B, H, L and X were still active. Although aspartic proteases like cathepsin E and cathepsin D were also present, our substrates were suitable to quantify cathepsin S activity specifically in APCs, including B cells, macrophages, and dendritic cells without the use of any protease inhibitor. We find that CatS activity differs significantly not only between the three types of professional APCs but also between endosomal and lysosomal compartments.  相似文献   

6.
An improved cathepsin-D substrate and assay procedure   总被引:1,自引:0,他引:1  
Ten analogs of the peptide A-Phe(NO2)-Phe-Val-Leu-B were synthesized and tested as substrates for cathepsin D and pepsin. The best substrate found for cathepsin D, Phe-Ala-Ala-Phe(NO2)-Phe-Val-Leu-OM4P (kcat = 2.9 s-1; Km = 7.1 microM), has the largest kcat/Km value (408 mM-1 s-1) reported to date for this enzyme. The effect of peptide structure on solubility and kinetic parameters is discussed. The peptide provides a useful new substrate for continuous assay of cathepsin D.  相似文献   

7.
Cathepsin G has both trypsin- and chymotrypsin-like activity, but studies on its enzymatic properties have been limited by a lack of sensitive synthetic substrates. Cathepsin G activity is physiologically controlled by the fast acting serpin inhibitors alpha1-antichymotrypsin and alpha1-proteinase inhibitor, in which the reactive site loops are cleaved during interaction with their target enzymes. We therefore synthesized a series of intramolecularly quenched fluorogenic peptides based on the sequence of various serpin loops. Those peptides were assayed as substrates for cathepsin G and other chymotrypsin-like enzymes including chymotrypsin and chymase. Peptide substrates derived from the alpha1-antichymotrypsin loop were the most sensitive for cathepsin G with kcat/Km values of 5-20 mM-1 s-1. Substitutions were introduced at positions P1 and P2 in alpha1-antichymotrypsin-derived substrates to tentatively improve their sensitivity. Replacement of Leu-Leu in ortho-aminobenzoyl (Abz)-Thr-Leu-Leu-Ser-Ala-Leu-Gln-N-(2, 4-dinitrophenyl)ethylenediamine (EDDnp) by Pro-Phe in Abz-Thr-Pro-Phe-Ser-Ala-Leu-Gln-EDDnp produced the most sensitive substrate of cathepsin G ever reported. It was cleaved with a specificity constant kcat/Km of 150 mM-1 s-1. Analysis by molecular modeling of a peptide substrate bound into the cathepsin G active site revealed that, in addition to the protease S1 subsite, subsites S1' and S2' significantly contribute to the definition of the substrate specificity of cathepsin G.  相似文献   

8.
Dipeptidyl peptidase 1 (DPP1) (EC 3.4.14.1; also known as cathepsin C, cathepsin J, dipeptidyl aminopeptidase, and dipeptidyl aminotransferase) is a lysosomal cysteinyl protease of the papain family involved in the intracellular degradation of proteins. Isolated enzyme assays for DPP1 activity using a variety of synthetic substrates such as dipeptide or peptide linked to amino-methyl-coumarin (AMC) or other fluorophores are well established. There is, however, no report of a simple whole-cell-based assay for measuring lysosomal DPP1 activity other than the use of flow cytometry (fluorescence-activated cell sorting) or the use of invasive activity-based probes or the production of physiological products such as neutrophil elastase. The authors investigated a number of DPP1 fluorogenic substrates that have the potential to access the lysosome and enable the measurement of DPP1 enzyme activity in situ. They describe the development and evaluation of a simple noninvasive fluorescence assay for measuring DPP1 activity in fresh or cryopreserved human THP-1 cells using the substrate H-Gly-Phe-AFC (amino-fluoro-coumarin). This cell-based fluorescence assay can be performed in a 96-well plate format and is ideally suited for determining the cell potency of potential DPP1 enzyme inhibitors.  相似文献   

9.
The S1 and S2 subsite specificity of recombinant human cathepsins X was studied using fluorescence resonance energy transfer (FRET) peptides with the general sequences Abz-Phe-Xaa-Lys(Dnp)-OH and Abz-Xaa-Arg-Lys(Dnp)-OH, respectively (Abz=ortho-aminobenzoic acid and Dnp=2,4-dinitrophenyl; Xaa=various amino acids). Cathepsin X cleaved all substrates exclusively as a carboxymonopeptidase and exhibited broad specificity. For comparison, these peptides were also assayed with cathepsins B and L. Cathepsin L hydrolyzed the majority of them with similar or higher catalytic efficiency than cathepsin X, acting as an endopeptidase mimicking a carboxymonopeptidase (pseudo-carboxymonopeptidase). In contrast, cathepsin B exhibited poor catalytic efficiency with these substrates, acting as a carboxydipeptidase or an endopeptidase. The S1' subsite of cathepsin X was mapped with the peptide series Abz-Phe-Arg-Xaa-OH and the enzyme preferentially hydrolyzed substrates with hydrophobic residues in the P1' position.  相似文献   

10.
Cytotoxic T-lymphocyte antigen-2α (CTLA-2α) is a potent inhibitor of cathepsin L-like cysteine proteases. Recombinant CTLA-2α is known to be a potent, competitive inhibitor of cathepsin L-like cysteine proteases. In this study, cathepsin L, cathepsin C, and tubulointerstitial nephritis antigen-related protein 1 (TINAGL1) were identified as novel interactive proteins of CTLA-2α by the yeast two-hybrid screening system. The direct interactions and co-localization of these proteins with CTLA-2α were confirmed using co-immunoprecipitation and immunofluorescence staining, respectively. The disulfide-bonded CTLA-2α/cathepsin L complex was isolated from mouse tissue. CTLA-2α was found to be specific and consistently expressed on the maternal side of the mouse placenta. Double immunofluorescence analysis showed that CTLA-2α was co-localized with cathepsin L, cathepsin C, and TINAGL1 in placenta. A simple cell-based fluorescence assay revealed that CTLA-2α exhibited inhibitory activity toward cathepsin C in live cells, which indicated that CTLA-2α is a novel endogenous inhibitor of cathepsin C.  相似文献   

11.
We synthesized one series of fluorogenic substrates for cathepsin B derived from the peptide Bz-F-R-MCA (Bz=benzoyl, MCA=7-methyl-coumarin amide) substituting Phe at the P(2) position by non-natural basic amino acids that combine a positively charged group with aromatic or aliphatic radicals at the same side chain, namely, 4-aminomethyl-phenylalanine, 4-guanidine-phenylalanine, 4-aminomethyl-N-isopropyl-phenylalanine, 3-pyridyl-alanine, 4-piperidinyl-alanine, 4-aminomethyl-cyclohexyl-alanine, 4-aminocyclohexyl-alanine, and N(im)-dimethyl-histidine. Bz-F-R-MCA was the best substrate for cathepsin B but also hydrolyzed Bz-R-R-MCA with lower efficiency, since the protease accepts Arg at S(2) due to the presence of Glu(245) at the bottom of this subsite. The presence of the basic non-natural amino acids at the P(2) position of the substrate partially restored the catalytic efficiency of cathepsin B. All the kinetic parameters for hydrolysis of the peptides described in this paper are in accordance with the structures of the S(2) pocket previously described. In addition, the substrate with 4-aminocyclohexyl-alanine presented the highest affinity to cathepsin B although the peptide was obtained from a mixture of cis/trans isomers of the amino acid and we were not able to separate them. For comparison all the obtained substrates were assayed with cathepsin L and papain.  相似文献   

12.
The dipeptidyl rhodamine diamide substrates (Z-Phe-Arg)2-R110 and (Z-Arg-Arg)2-R110 are 820- and 360-fold more selective for cathepsin L than for cathepsin B allowing a sensitive determination of cathepsin L activity in the presence of high activity of cathepsin B. The results obtained with cell lysates suggest that the cysteine proteinase activity of vital macrophages detected by flow cytometry with these substrates is mainly due to cathepsin L.  相似文献   

13.
1. Several peptides containing either of the sequences -Phe(NO2)-Trp- and -Phe(NO2)-Phe- and an uncharged hydrophilic group were synthesized, and the steady-state kinetics of their hydrolysis by pig pepsin (EC 3.4.23.1) and chicken liver cathepsin D (EC 3.4.23.5) were determined. Despite the presence of a hydrophilic group to increase substrate solubility, it was not possible to achieve the condition [S]0 much greater than Km, and, in some cases, only values of kcat./Km could be determined by measuring the first-order rate constant when [S]0 much less than Km. 2. Occupancy of the P2 and P3 sites considerably enhanced the specificity constant, and alanine was more effective than glycine at site P2. 3. The specificity constants for the hydrolysis by pepsin of those substrates in the present series that contain an amino acid residue at site P3 are considerably lower than for comparable substrates containing a cationic group. This difference does not apply to cathepsin D. 4. Hydrolyses with cathepsin D commonly exhibited a lag phase, and a possible explanation for this is given.  相似文献   

14.
The action of bovine spleen cathepsin B as a dipeptidyl carboxypeptidase on newly synthesized substrates of the type peptidyl-X-p-nitrophenylalanyl (Phe(NO2))-Y (X,Y = amino acid residue) or 5-dimethylaminonaphthalene-1-sulfonyl (Dns)-peptidyl-X-Phe(NO2)-Y was investigated. The kinetic parameters of hydrolysis of the X-Phe(NO2) bond were determined by difference spectrophotometry (delta epsilon 310 = 1600 M-1 cm-1) or by spectrofluorometry by following the five- to eightfold increase of Dns-group fluorescence with excitation at 350 nm and emission at 535 nm. The substrates were moderately sensitive to cathepsin B; kcat varied from 0.7 to 4 s-1 at pH 5 and 25 degrees C; Km varied from 6 to 240 microM. The very acidic optima of pH 4-5 are characteristic for dipeptidyl carboxypeptidase activity of cathepsin B. Bovine spleen cathepsins S and H had little and no activity, respectively, when assayed with Pro-Glu-Ala-Phe(NO2)-Gly. These peptides should be a valuable tool for routine assays and for mechanistic studies on cathepsin B.  相似文献   

15.
We have incorporated peptides selected by combinatorial library [Peterson, J. J., and Meares, C. F. (1998) Bioconjugate Chem. 9, 618-626) into peptide-linked radiolabeled immunoconjugates of the form DOTA-peptide-antibody. Decapeptide linkers -GFQGVQFAGF- and -GFGSVQFAGF-, selected for cleavage by human liver cathepsin B, were rapidly digested in vitro when compared to the simple model tetrapeptide motif of the prototype -GGGF- [Li, M., and Meares, C. F. (1993) Bioconjugate Chem. 4, 275-283]. Cleavage properties of these library-selected substrates for cathepsin B compared favorably with decapeptide linkers -GLVGGAGAGF- and -GGFLGLGAGF-, which incorporate two of the most labile extended cathepsin B substrates from the literature. The decapeptide linker -GFGSTFFAGF-, selected from the library for cleavage by human liver cathepsin D, was rapidly digested by cathepsin D while the others were not.  相似文献   

16.
J K McDonald  S Ellis 《Life sciences》1975,17(8):1269-1276
Cathepsin B1 from bovine spleen exhibited its greatest rates of hydrolysis on peptide β-naphthylamide (βNA) derivatives containing paired basic residues, i.e., Cbz-Arg-Arg-βNA, t-Boc-Lys-Lys-βNA, and t-Boc-Lys-Arg-βNA. Internal peptide bonds were not attacked. At its pH 6.5 optimum, cathepsin B1 hydrolyzed Cbz-Arg-Arg-βNA (Km 0.18 mM) 64 times faster than Bz-DL-Arg-βNA (Km 3.3 mM or 1.6 mM for the L isomer) and was therefore chosen to replace the latter as a more soluble and sensitive substrate for the assay of cathepsin B1. Although cathepsin B2 had no action on the β-naphthylamide substrates, it did manifest carboxypeptidase activity by attacking COOH-terminal residues exposed by the action of cathepsin B1. At its pH 5.0 optimum, cathepsin B2 behaved as a SH-dependent, non-specific carboxypeptidase by releasing COOH-terminal amino acids from a variety of Cbz-Gly-X substrates and polypeptides such as glucagon, Val-Leu-Ser-Glu-Gly, and penta-lysine.  相似文献   

17.
The peptide-bond-specificity of bovine spleen cathepsin S in the cleavage of the oxidized insulin B-chain and peptide methylcoumarylamide substrates was investigated and the results are compared with those obtained with rat liver cathepsins L and B. Major cleavage sites in the oxidized insulin B-chain generated by cathepsin S are the bonds Glu13-Ala14, Leu17-Val18 and Phe23-Tyr26; minor cleavage sites are the bonds Asn3-Gln4, Ser9-His10 and Leu15-Tyr16. The bond-specificity of this proteinase is in part similar to the specificities of cathepsin L and cathepsin N. Larger differences are discernible in the reaction with synthetic peptide substrates. Cathepsin S prefers smaller neutral amino acid residues in the subsites S2 and S3, whereas cathepsin L efficiently hydrolyses substrates with bulky hydrophobic residues in the P2 and P3 positions. The results obtained from inhibitor studies differ somewhat from those based on substrates. Z-Phe-Ala-CH2F (where Z- represents benzyloxycarbonyl-) is a very potent time-dependent inhibitor for cathepsin S, and inhibits this proteinase 30 times more efficiently than it does cathepsin L and about 300 times better than it does cathepsin B. By contrast, the peptidylmethanes Z-Val-Phe-CH3 and Z-Phe-Lys(Z)-CH3 inhibit competitively both cathepsin S and cathepsin L in the micromolar range.  相似文献   

18.
The extended substrate binding site of cathepsin G from human leukocytes has been mapped by using a series of peptide 4-nitroanilide substrates. The enzyme has a significant preference for substrates with a P1 Phe over those with the other aromatic amino acids Tyr and Trp. The S2 subsite was mapped with the substrates Suc-Phe-AA-Phe-NA where AA was 13 of the 20 amino acid residues commonly found in proteins. The best residues were Pro and Met. The S3 subsite was mapped with the sequence Suc-AA-Pro-Phe-NA by using 14 different amino acid residues for AA. The two best residues were the isosteric Val and Thr. No significant improvement in reactivity was obtained by extending the substrate to include seven different P4 residues. The kinetic parameters for cathepsin G are significantly slower than those for many other serine proteases. Changes in the reaction conditions and addition of possible cofactors or ligands were in general found to have little effect on the enzymatic activity, while chemical modifications and proteolysis destroyed the activity of cathepsin G. Cathepsin G hydrolyzed peptides containing model desmosine residues and prefers the hydrophobic picolinoyllysine derivative over lysine by substantial margins at both the S4 and S2 subsites but will not tolerate it at S3. Substrates with sequences related to the cathepsin G cleavage site in angiotensin I and angiotensinogen, and the reactive site of alpha 1-antichymotrypsin, were hydrolyzed effectively by enzyme, but with unexceptional rates. Our results indicate that the natural substrate(s) and function(s) of cathepsin G still remain to be discovered.  相似文献   

19.
The trematode Fasciola hepatica secretes a number of cathepsin L-like proteases that are proposed to be involved in feeding, migration, and immune evasion by the parasite. To date, six full cDNA sequences encoding cathepsin L preproproteins have been identified. Previous studies have demonstrated that one of these cathepsins (L2) is unusual in that it is able to cleave substrates with a proline in the P2 position, translating into an unusual ability (for a cysteine proteinase) to clot fibrinogen. In this study, we report the sequence of a novel cathepsin (L5) and compare the substrate specificity of a recombinant enzyme with that of recombinant cathepsin L2. Despite sharing 80% sequence identity with cathepsin L2, cathepsin L5 does not exhibit substantial catalytic activity against substrates containing proline in the P2 position. Molecular modeling studies suggested that a single amino acid change (L69Y) in the mature proteinases may account for the difference in specificity at the S2 subsite. Recombinant cathepsin L5/L69Y was expressed in yeast and a substantial increase in the ability of this variant to accommodate substrates with a proline residue in the P2 position was observed. Thus, we have identified a single amino acid substitution that can substantially influence the architecture of the S2 subsite of F. hepatica cathepsin L proteases.  相似文献   

20.
Using the cell-permeable, radioiodinated, irreversible inhibitor BIL-DMK, we probed active cysteine cathepsins in blood. Incubation of the probe in human whole blood followed by separation of white blood cells by dextran sedimentation led to the labeling of one major band at 24 kDa. Two-dimensional gel electrophoresis showed that the band resolved in a single protein spot and corresponded to cathepsin S based on its molecular mass, isoelectric point, and Western blot analysis using anti-human cathepsin S antibodies. Cathepsin S activity in human whole blood was dependent on the time of blood collection, suggesting that cathepsin S activity is subject to circadian variations. Separation of white blood cell populations using a magnetic cell sorter and further characterization by FACS (fluorescent-activated cell sorting) analysis demonstrated that the majority of active cathepsin S resided in the monocyte and neutrophil populations, whereas on a cell basis cathepsin S activity in granulocytes is 10-fold lower than that in monocytes. A whole blood cathepsin S assay was developed and used to measure cathepsin S inhibition in both in vitro and ex vivo conditions. To determine the correlation between the in vitro and ex vivo assays, a reversible cathepsin S inhibitor was dosed intravenously to a rhesus monkey. The inhibitor concentration required to inhibit 50% of the cathepsin S activity ex vivo correlated well with the concentration required to inhibit the enzyme in rhesus monkey whole blood in vitro. The results reported here demonstrate the utility of the activity-based probe BIL-DMK for the ex vivo assessment of cathepsin S inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号