首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombinant adenovirus (rAd) vectors are being investigated as vaccine delivery vehicles in preclinical and clinical studies. rAds constructed from different serotypes differ in receptor usage, tropism, and ability to activate cells, aspects of which likely contribute to their different immunogenicity profiles. In this study, we compared the infectivity and cell stimulatory capacity of recombinant adenovirus serotype 5 (rAd5), recombinant adenovirus serotype 28 (rAd28), and recombinant adenovirus serotype 35 (rAd35) in association with their respective immunogenicity profiles. We found that rAd28 and rAd35 infected and led to the in vitro maturation and activation of both human and mouse dendritic cells more efficiently compared with rAd5. In stark contrast to rAd5, rAd28 and rAd35 induced production of IFN-α and stimulated IFN-related intracellular pathways. However, the in vivo immunogenicity of rAd28 and rAd35 was significantly lower than that of rAd5. Deletion of IFN-α signaling during vaccination with rAd28 and rAd35 vectors increased the magnitude of the insert-specific T cell response to levels induced by vaccination with rAd5 vector. The negative impact of IFN-α signaling on the magnitude of the T cell response could be overcome by increasing the vaccine dose, which was also associated with greater polyfunctionality and a more favorable long-term memory phenotype of the CD8 T cell response in the presence of IFN-α signaling. Taken together, our results demonstrate that rAd-induced IFN-α production has multiple effects on T cell immunogenicity, the understanding of which should be considered in the design of rAd vaccine vectors.  相似文献   

2.
We have previously reported that the CD8+ T cell response elicited by recombinant adenovirus vaccination displayed a delayed contraction in the spleen. In our current study, we demonstrate that this unusual kinetic is a general phenomenon observed in multiple tissues. Phenotypic analysis of transgene-specific CD8+ T cells present 30 days postimmunization with recombinant adenovirus revealed a population with evidence of partial exhaustion, suggesting that the cells had been chronically exposed to Ag. Although Ag expression could no longer be detected 3 wk after immunization, examination of Ag presentation within the draining lymph nodes demonstrated that APCs were loaded with Ag peptide for at least 40 days postimmunization, suggesting that Ag remains available to the system for a prolonged period, although the exact source of this Ag remains to be determined. At 60 days postimmunization, the CD8+ T cell population continued to exhibit a phenotype consistent with partially exhausted effector memory cells. Nonetheless, these CD8+ T cells conferred sterilizing immunity against virus challenge 7-12 wk postimmunization, suggesting that robust protective immunity can be provided by CD8+ T cells with an exhausted phenotype. These data demonstrate that prolonged exposure to Ag may not necessarily impair protective immunity and prompt a re-evaluation of the impact of persistent exposure to Ag on T cell function.  相似文献   

3.
The capacity of recombinant adenoviruses (rAd) to induce immunization against their transgene products has been well documented. In the present study, we evaluated the vaccinal adjuvant role of rAd independently of its vector function. BALB/c mice received one subcutaneous injection of a mixture of six lipopeptides (LP6) used as a model immunogen, along with AdE1 degrees (10(9) particles), a first-generation rAd empty vector. Although coinjected with a suboptimal dose of lipopeptides, AdE1 degrees significantly improved the effectiveness of the vaccination, even in the absence of booster immunization. In contrast to mice that received LP6 alone or LP6 plus a mock adjuvant, mice injected with AdE1 degrees plus LP6 developed both a polyspecific T-helper type 1 response and an effector CD8 T-cell response specific to at least two class I-restricted epitopes. The helper response was still observed when immunization was performed using LP6 plus a mixture of soluble capsid components released from detergent-disrupted virions. When mice were immunized with LP6 and each individual capsid component, i.e., hexon, penton base, or fiber, the results obtained suggested that hexon protein was responsible for the adjuvant effect exerted by disrupted Ad particles on the helper response to the immunogen. Our results thus have some important implications not only in vaccinology but also for gene therapy using rAd vectors.  相似文献   

4.
Recombinant adenovirus (Ad) type 35 (rAd35) shows great promise as vaccine carrier with the advantage of low pre-existing immunity in human populations, in contrast to the more commonly used rAd5 vector. The rAd35 vector uses CD46 as a high-affinity receptor, which, unlike the rAd5 receptor, is expressed on human dendritic cells (DC), the most powerful APCs identified to date. In this study, we show that in contrast to rAd5, rAd35 infects migrated and mature CD83+ cutaneous DC with high efficiency (up to 80%), when delivered intradermally in an established human skin explant model. The high transduction efficiency is in line with high expression levels of CD46 detected on migratory cutaneous DC, which proved to be further increased upon intradermal administration of GM-CSF and IL-4. As compared with Ad5, these Ad35 infection characteristics translate into higher absolute numbers of skin-emigrated DC per explant that both express the transgene and are phenotypically mature. Finally, we demonstrate that upon intracutaneous delivery of a rAd35 vaccine encoding the circumsporozoite (CS) protein of Plasmodium falciparum, emigrated DC functionally express and process CS-derived epitopes and are capable of activating specific CD8+ effector T cells, as evidenced by activation of an HLA-A2-restricted CS-specific CD8+ T cell clone. Collectively, these data demonstrate the utility of rAd35 vectors for efficient in vivo human DC transduction.  相似文献   

5.
Vectors derived from the adeno-associated virus (AAV) have been successfully used for the long-term expression of therapeutic genes in animal models and patients. One of the major advantages of these vectors is the absence of deleterious immune responses following gene transfer. However, AAV vectors, when used in vaccination studies, can result in efficient humoral and cellular responses against the transgene product. It is therefore important to understand the factors which influence the establishment of these immune responses in order to design safe and efficient procedures for AAV-based gene therapies. We have compared T-cell activation against a strongly immunogenic protein, the influenza virus hemagglutinin (HA), which is synthesized in skeletal muscle following gene transfer with an adenovirus (Ad) or an AAV vector. In both cases, cellular immune responses resulted in the elimination of transduced muscle fibers within 4 weeks. However, the kinetics of CD4(+) T-cell activation were markedly delayed when AAV vectors were used. Upon recombinant Ad (rAd) gene transfer, T cells were activated both by direct transduction of dendritic cells and by cross-presentation of the transgene product, while upon rAAV gene transfer T cells were only activated by the latter mechanism. These results suggested that activation of the immune system by the transgene product following rAAV-mediated gene transfer might be easier to control than that following rAd-mediated gene transfer. Therefore, we tested protocols aimed at interfering with either antigen presentation by blocking the CD40/CD40L pathway or with the T-cell response by inducing transgene-specific tolerance. Long-term expression of the AAV-HA was achieved in both cases, whereas immune responses against Ad-HA could not be prevented. These data clearly underline the importance of understanding the mechanisms by which vector-encoded proteins are recognized by the immune system in order to specifically interfere with them and to achieve safe and stable gene transfer in clinical trials.  相似文献   

6.
With the aim to develop an efficient and cost-effective approach to control malaria, we have generated porcine parvovirus-like particles (PPV-VLPs) carrying the CD8(+) T cell epitope (SYVPSAEQI) of the circumsporozoite (CS) protein from Plasmodium yoelii fused to the PPV VP2 capsid protein (PPV-PYCS), and tested in prime/boost protocols with poxvirus vectors for efficacy in a rodent malaria model. As a proof-of concept, we have characterized the anti-CS CD8(+) T cell response elicited by these hybrid PPV-VLPs in BALB/c mice after immunizations with the protein PPV-PYCS administered alone or in combination with recombinant vaccinia virus (VACV) vectors from the Western Reserve (WR) and modified virus Ankara (MVA) strains expressing the entire P. yoelii CS protein. The results of different immunization protocols showed that the combination of PPV-PYCS prime/poxvirus boost was highly immunogenic, inducing specific CD8+ T cell responses to CS resulting in 95% reduction in liver stage parasites two days following sporozoite challenge. In contrast, neither the administration of PPV-PYCS alone nor the immunization with the vectors given in the order poxvirus/VLPs was as effective. The immune profile induced by VLPs/MVA boost was associated with polyfunctional and effector memory CD8+ T cell responses. These findings highlight the use of recombinant parvovirus PPV-PYCS particles as priming agents and poxvirus vectors, like MVA, as booster to enhance specific CD8+ T cell responses to Plasmodium antigens and to control infection. These observations are relevant in the design of T cell-inducing vaccines against malaria.  相似文献   

7.
E1-deleted adenoviral recombinants most commonly based on the human serotype 5 (AdHu5) have been shown thus far to induce unsurpassed transgene product-specific CD8(+) T cell responses. A large percentage of the adult human population carries neutralizing Abs due to natural exposures to AdHu5 virus. To circumvent reduction of the efficacy of adenovirus (Ad) vector-based vaccines by neutralizing Abs to the vaccine carrier, we developed E1-deleted adenoviral vaccine carriers based on simian serotypes. One of these carriers, termed AdC68, expressing a codon-optimized truncated form of gag of HIV-1 was shown previously to induce a potent transgene product-specific CD8(+) T cell response in mice. We constructed a second chimpanzee adenovirus vaccine vector, termed AdC6, also expressing the truncated gag of HIV-1. This vector, which belongs to a different serotype than the AdC68 virus, induces high frequencies of gag-specific CD8(+) T cells in mice including those pre-exposed to AdHu5 virus. Generation of an additional E1-deleted adenoviral vector of chimpanzee origin allows for sequential booster immunizations with heterologous vaccine carriers. In this study, we show that such heterologous prime boost regimens based on E1-deleted adenoviral vectors of different serotypes expressing the same transgene product are highly efficient in increasing the transgene product-specific CD8(+) T cell response. They are equivalent to sequential vaccinations with an E1-deleted Ad vector followed by booster immunization with a poxvirus vector and they surpass regimens based on DNA vaccine prime followed by a recombinant adenoviral vector boost.  相似文献   

8.
Candidate HIV-1 vaccine regimens utilizing intramuscularly (i.m.) administered recombinant adenovirus (rAd)-based vectors can induce potent mucosal cellular immunity. However, the degree to which mucosal rAd vaccine routing might alter the quality and anatomic distribution of vaccine-elicited CD8+ T lymphocytes remains unclear. We show that the route of vaccination critically impacts not only the magnitude but also the phenotype and trafficking of antigen-specific CD8+ T lymphocytes in mice. I.m. rAd immunization induced robust local transgene expression and elicited high-frequency, polyfunctional CD8+ T lymphocytes that trafficked broadly to both systemic and mucosal compartments. In contrast, intranasal (i.n.) rAd immunization led to similarly robust local transgene expression but generated low-frequency, monofunctional CD8+ T lymphocytes with restricted anatomic trafficking patterns. Respiratory rAd immunization elicited systemic and mucosal CD8+ T lymphocytes with phenotypes and trafficking properties distinct from those elicited by i.m. or i.n. rAd immunization. Our findings indicate that the anatomic microenvironment of antigen expression critically impacts the phenotype and trafficking of antigen-specific CD8+ T lymphocytes.Acute human immunodeficiency virus type 1 (HIV-1) infection is accompanied by a massive, irreversible destruction of memory CD4+ T lymphocytes, particularly within the intestinal mucosa (11, 26, 30, 42), as a result of the high proportion of effector/memory target cells within the intestinal lamina propria. Chronic HIV-1 infection is characterized by inflammation within the intestinal mucosa, breakdown of epithelial-barrier integrity, and translocation of gut microflora from the intestinal lumen (10, 24). These processes may drive systemic inflammation and contribute to HIV-1 disease progression. Therefore, vaccination strategies that enhance mucosal cellular immunity and attenuate the mucosal immunopathology of HIV-1 infection would be desirable.Recombinant adenovirus (rAd) vectors are potent inducers of cellular immunity (3, 12, 25), and we have recently demonstrated that intramuscular (i.m.) rAd immunization transiently activates peripheral antigen-specific CD8+ T lymphocytes and allows them to migrate to mucosal surfaces and establish potent, durable mucosal cellular immunity (22). Moreover, we have shown that an i.m. delivered heterologous rAd prime-boost regimen prevented the destruction of CD4+ T lymphocytes within the intestinal mucosa and attenuated disease progression following simian immunodeficiency virus (SIV) challenge (29). Notably, this vaccine regimen did not contain the SIV Env protein, indicating that cellular mucosal immunity likely played a critical role in abrogating mucosal CD4+ T-lymphocyte destruction.While our laboratory and others have observed potent mucosal CD8+ T-lymphocyte responses after i.m. immunization with rAd vectors (2, 21, 28, 41) and other vaccine modalities (40-41), other studies have suggested that mucosal routing of vaccine vectors may optimize mucosal cellular immunity (4-7, 16, 33, 36, 46). We therefore assessed the phenotype and anatomic trafficking patterns of antigen-specific CD8+ T-lymphocyte responses following i.m. and mucosal rAd immunization in mice. We found that the immunization route dramatically impacted the phenotype of vaccine-elicited systemic and mucosal CD8+ T lymphocytes. In particular, while both i.m. and intranasal (i.n.) rAd immunization resulted in efficient local transgene expression, only i.m. immunization induced potent, polyfunctional cellular immune memory in both systemic and mucosal anatomic compartments, while i.n. immunization elicited lower-frequency cellular immune responses that were restricted to mucosal surfaces and characterized by monofunctional gamma interferon (IFN-γ) secretion. Our data highlight the critical impact of the route of antigen delivery and the anatomic microenvironment of transgene expression on the quality and distribution of vaccine-elicited CD8+ T-lymphocyte responses.  相似文献   

9.
10.
Antimicrobial memory CD8+ T cell responses are not readily expanded by either repeated infections or immunizations. This is a major obstacle to the development of T cell vaccines. Prime-boost immunization with heterologous microbes sharing the same CD8+ epitope can induce a large expansion of the CD8+ response; however, different vectors vary greatly in their ability to boost for reasons that are poorly understood. To investigate how efficient memory T cell expansion can occur, we evaluated immune regulatory events and Ag presentation after secondary immunization with strong and weak boosting vectors. We found that dendritic cells were essential for T cell boosting and that Ag presentation by these cells was regulated by cognate memory CD8+ T cells. When weak boosting vectors were used for secondary immunization, pre-established CD8+ T cells were able to effectively curtail Ag presentation, resulting in limited CD8+ T cell expansion. In contrast, a strong boosting vector, vaccinia virus, induced highly efficient Ag presentation that overcame regulation by cognate T cells and induced large numbers of memory CD8+ T cells to expand. Thus, efficient targeting of Ag to dendritic cells in the face of cognate immunity is an important requirement for T cell expansion.  相似文献   

11.
In the present study we evaluated the protection raised by immunization with recombinant influenza viruses carrying sequences coding for polypeptides corresponding to medial and carboxi-terminal moieties of Trypanosoma cruzi ´s amastigote surface protein 2 (ASP2). Those viruses were used in sequential immunization with recombinant adenovirus (heterologous prime-boost immunization protocol) encoding the complete sequence of ASP2 (Ad-ASP2) in two mouse strains (C57BL/6 and C3H/He). The CD8 effector response elicited by this protocol was comparable to that observed in mice immunized twice with Ad-ASP2 and more robust than that observed in mice that were immunized once with Ad-ASP2. Whereas a single immunization with Ad-ASP2 sufficed to completely protect C57BL/6 mice, a higher survival rate was observed in C3H/He mice that were primed with recombinant influenza virus and boosted with Ad-ASP2 after being challenged with T. cruzi. Analyzing the phenotype of CD8+ T cells obtained from spleen of vaccinated C3H/He mice we observed that heterologous prime-boost immunization protocol elicited more CD8+ T cells specific for the immunodominant epitope as well as a higher number of CD8+ T cells producing TNF-α and IFN-γ and a higher mobilization of surface marker CD107a. Taken together, our results suggest that immunodominant subpopulations of CD8+ T elicited after immunization could be directly related to degree of protection achieved by different immunization protocols using different viral vectors. Overall, these results demonstrated the usefulness of recombinant influenza viruses in immunization protocols against Chagas Disease.  相似文献   

12.
Gene transfer vectors such as lentiviral vectors offer versatile possibilities to express transgenic antigens for vaccination purposes. However, viral vaccines leading to broad transduction and transgene expression in vivo, are undesirable. Therefore, strategies capable of directing gene transfer only to professional antigen-presenting cells would increase the specific activity and safety of genetic vaccines. A lentiviral vector pseudotype specific for murine major histocompatibilty complex class II (LV-MHCII) was recently developed and the present study aims to characterize the in vivo biodistribution profile and immunization potential of this vector in mice. Whereas the systemic administration of a vector pseudotyped with a ubiquitously-interacting envelope led to prominent detection of vector copies in the liver of animals, the injection of an equivalent amount of LV-MHCII resulted in a more specific biodistribution of vector and transgene. Copies of LV-MHCII were found only in secondary lymphoid organs, essentially in CD11c+ dendritic cells expressing the transgene whereas B cells were not efficiently targeted in vivo, contrary to expectations based on in vitro testing. Upon a single injection of LV-MHCII, naive mice mounted specific effector CD4 and CD8 T cell responses against the intracelllular transgene product with the generation of Th1 cytokines, development of in vivo cytotoxic activity and establishment of T cell immune memory. The targeting of dendritic cells by recombinant viral vaccines must therefore be assessed in vivo but this strategy is feasible, effective for immunization and cross-presentation and constitutes a potentially safe alternative to limit off-target gene expression in gene-based vaccination strategies with integrative vectors.  相似文献   

13.
The humoral and CD4+ cellular immune responses in mice following genetic immunization with three retroviral vectors encoding different forms of hepatitis B virus core antigen (HBcAg) and e antigen (HBeAg) were analyzed. The retroviral vectors induced expression of intracellular HBcAg (HBc[3A4]), secreted HBeAg (HBe[5A2]), or an intracellular HBcAg-neomycin phosphoryltransferase fusion protein (HBc-NEO[6A3]). Specific antibody levels and immunoglobulin G isotype restriction were highly dependent on both the host major histocompatibility complex and the transferred gene. Humoral and CD4+ cellular HBcAg and/or HBeAg (HBc/eAg)-specific immune responses following retroviral vector immunization were of a lower magnitude but followed the same characteristics compared with those after immunization with HBc/eAg in adjuvant. Two factors influenced the humoral responses. First, in vivo depletion of CD8+ cells in HBc-NEO[6A3]-immunized H-2k mice abrogated both HBcAg-specific antibodies and in vitro-detectable cytotoxic T lymphocytes. Second, priming of H-2b mice with an HBc/eAg-derived T-helper (Th) peptide in adjuvant prior to retroviral vector immunization greatly enhanced the HBc/eAg-specific humoral responses to all three vectors, suggesting that insufficient HBc/eAg-specific CD4+ Th-cell priming limits the humoral responses. In conclusion, direct injection of retroviral vectors seems to be effective in priming HBc/eAg-specific CD8+ but comparatively inefficient in priming CD4+ Th cells and subsequently specific antibodies. However, the limited HBc/eAg-specific CD4+ cell priming can effectively be circumvented by prior administration of a recombinant or synthetic form of HBc/eAg in adjuvant.  相似文献   

14.
15.
Human immunodeficiency virus type 1 (HIV-1) infection is characterized by the rapid onset of intestinal T-cell depletion that initiates the progression to AIDS. The induction of protective immunity in the intestinal mucosa therefore represents a potentially desirable feature of a preventive AIDS vaccine. In this study, we have evaluated the ability of an enteric adenovirus, recombinant adenovirus 41 (rAd41), to elicit intestinal and systemic immune responses by different immunization routes, alone or in combination with rAd5. rAd41 expressing HIV envelope (Env) protein induced cellular immune responses comparable to those of rAd5-based vectors after either a single intramuscular injection or a DNA prime/rAd boost. Oral priming with rAd41-Env followed by intramuscular boosting with rAd5-Env stimulated a more potent CD8+ T-cell response in the small intestine than the other immunization regimens. Furthermore, the direct injection of rAd41-Env into ileum together with intramuscular rAd5-Env boosting increased Env-specific cellular immunity markedly in mucosal as well as systemic compartments. These data demonstrate that heterologous rAd41 oral or ileal priming with rAd5 intramuscular boosting elicits enhanced intestinal mucosal cellular immunity and that oral or ileal vector delivery for primary immunization facilitates the generation of mucosal immunity.  相似文献   

16.
Most HIV infections result from heterosexual transmission to women. Because cellular immunity plays a key role in the control of the infection, we sought to strengthen cellular immune responses in vaginal tissue. We explored a novel prime-boost protocol that used two live mucosal agents that trigger different pathways of innate immunity and induce strong cellular immunity. Adenovirus serotype 5 (Ad5) has frequently been used as a boost for DNA vaccines. In this study we used attenuated, recombinant L. monocytogenes-gag (rLm-gag) to prime mice by various mucosal routes-oral, intrarectal, and intravaginally (ivag)-followed by a systemic or mucosal boost with replication-defective rAd5-gag. Mice primed with a single administration of rLm-gag by any route and then boosted with rAd5-gag intramuscularly exhibited abundant Gag-specific CD8 T cells in spleen and vaginal lamina propria. Conversely, when boosted with rAd5-gag ivag, the immune response was reoriented toward the vagina with strikingly higher CD8 T cell responses in that tissue, particularly after ivag immunization by both vectors (ivag/ivag). Five weeks to 5 mo later, ivag/ivag-immunized mice continued to show high levels of effector memory CD8 T cells in vagina, while the pool of memory T cells in spleen assumed a progressively more central memory T cell phenotype. The memory mice showed high in vivo CTL activity in vagina, a strong recall response, and robust protection after ivag vaccinia-gag challenge, suggesting that this prime-boost strategy can induce strong cellular immunity, especially in vaginal tissues, and might be able to block the heterosexual transmission of HIV-1 at the vaginal mucosa.  相似文献   

17.
Many candidate HIV vaccines are designed to primarily elicit T cell responses. Although repeated immunization with the same vaccine boosts Ab responses, the benefit for T cell responses is ill defined. We compared two immunization regimens that include the same recombinant adenoviral serotype 5 (rAd5) boost. Repeated homologous rAd5 immunization fails to increase T cell responses, but increases gp140 Ab responses 10-fold. DNA prime, as compared with rAd5 prime, directs long-term memory CD8(+) T cells toward a terminally differentiated effector memory phenotype with cytotoxic potential. Based on the kinetics of activated cells measured directly ex vivo, the DNA vaccination primes for both CD4(+) and CD8(+) T cells, despite the lack of detection of the latter until after the boost. These results suggest that heterologous prime-boost combinations have distinct immunological advantages over homologous prime-boosts and suggest that the effect of DNA on subsequent boosting may not be easily detectable directly after the DNA vaccination.  相似文献   

18.
The innate immune pathways that contribute to the potent immunogenicity of recombinant adenovirus (rAd) vaccine vectors remain largely undefined. Previous studies assessing innate immunity triggered by vaccine vectors have largely focused on in vitro studies involving antigen-presenting cells and on early in vivo inflammatory responses. Here, we systematically explore the Toll-like receptor (TLR) signaling requirements for the generation of cellular immune responses by intramuscular immunization with common and alternative serotype rAd vectors in mice. Antigen-specific CD8(+) T-lymphocyte responses elicited by these rAd vectors were significantly diminished in MyD88(-/-) mice but not in TRIF(-/-) or TLR3(-/-) mice, suggesting the importance of MyD88-dependent TLR signaling. However, the absence of each individual TLR resulted in minimal to no effect on vaccine-elicited cellular immune responses. Moreover, responses were not diminished in IL-1R(-/-) or IL-18R(-/-) mice. These data suggest that rAd vectors engage multiple MyD88-dependent signaling pathways, none of which are individually critical; rather, they are integrated to contribute to the potent immunogenicity of rAd vectors. Stimulation of multiple innate immune mechanisms may prove a generalizable property of potent vaccines, and this strategy could be harnessed in the development of next-generation vaccine vectors and adjuvants.  相似文献   

19.
Sterile immunity can be provided against the pre-erythrocytic stages of malaria by IFN-gamma-secreting CD8(+) T cells that recognize parasite-infected hepatocytes. In this study, we have investigated the use of attenuated fowlpox virus (FPV) strains as recombinant vaccine vectors for eliciting CD8(+) T cells against Plasmodium berghei. The gene encoding the P. berghei circumsporozoite (PbCS) protein was inserted into an FPV vaccine strain licensed for use in chickens, Webster's FPV, and the novel FPV vaccine strain FP9 by homologous recombination. The novel FP9 strain proved more potent as a vaccine for eliciting CD8(+) T cell responses against the PbCS Ag. Sequential immunization with rFP9 and recombinant modified vaccinia virus Anakara (MVA) encoding the PbCS protein, administered by clinically acceptable routes, elicited potent CD8(+) T cell responses against the PbCS protein. This immunization regimen elicited substantial protection against a stringent liver-stage challenge with P. berghei and was more immunogenic and protective than DNA/MVA prime/boost immunization. However, further improvement was not achieved by sequential (triple) immunization with a DNA vaccine, FP9, and MVA.  相似文献   

20.
Although replication-incompetent recombinant adenovirus (rAd) type 5 is a potent vaccine vector for stimulating T and B cell responses, high seroprevalence of adenovirus type 5 (Ad5) within human populations may limit its clinical utility. Therefore, alternative adenovirus serotypes have been studied as vaccine vectors. In this study, we characterized the ability of rAd5 and rAd35 to infect and induce maturation of human CD11c(+) myeloid dendritic cells (MDCs) and CD123(+) plasmacytoid dendritic cells (PDCs), and their ability to stimulate Ag-specific T cells. Both MDCs and PDCs were found to express the primary receptor for Ad35 (CD46) but not Ad5 (coxsackie-adenovirus receptor; CAR). Both dendritic cell (DC) subsets were also more susceptible to rAd35 than to rAd5. MDCs were more susceptible to both rAd35 and rAd5 than were PDCs. Whereas rAd35 used CD46 for entry into DCs, entry of rAd5 may be through a CAR-independent pathway. Exposure to rAd35 but not rAd5 induced high levels of IFN-alpha in PDCs and phenotypic differentiation in both DC subsets. MDCs and PDCs exposed to either rAd5 or rAd35 encoding for CMV pp65 were able to present pp65 and activate CMV-specific memory CD8(+) and CD4(+) T cells in a dose-dependent manner, but MDCs stimulated the highest frequencies of pp65-specific T cells. Responding T cells expressed multiple functions including degranulation (CD107a surface mobilization) and production of IFN-gamma, IL-2, TNF-alpha, and MIP-1beta. Thus, the ability of rAd35 to naturally target important DC subsets, induce their maturation, and appropriately present Ag to T cells may herald greater in vivo immunogenicity than has been observed with rAd5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号